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Abstract 

Background: The spatial functional chronnectome is an innovative mathematical model designed to 

capture dynamic features in the organization of brain function derived from resting-state functional 

magnetic resonance imaging (rs-fMRI) data. Measurements of dynamic functional connectivity 

(dFC) have been developed from this model to quantify the brain dynamical self-reconfigurations at 

different spatial and temporal scales. This study examined whether two spatiotemporal dFC 

quantifications were linked to late adolescence-onset major depressive disorder (AO-MDD), and 

scaled with depression and symptom severity measured with the Montgomery-Asberg depression 

rating scale (MADRS). Methods: Thirty-five AO-MDD patients (21±6y) and fifty-three age- and 

gender-matched healthy young participants (20±3y) underwent 3T MRI structural and rs-fMRI 

acquisitions. The chronnectome here comprised seven individualized functional networks portrayed 

along 132 temporal overlapping windows, each framing 110s of resting brain activity. Results: 

Based on voxelwise analyses, AO-MDD patients demonstrated significantly reduced temporal 

variability within the bilateral prefrontal cortex in five functional networks including the limbic 

network, the default-mode network (DMN) and frontoparietal network (FPN). Furthermore, the 

limbic network appeared to be particularly involved in this sample, and was associated with 

MADRS scores, and its progressive dynamic inflexibility was linked to sadness. DMN and FPN 

dynamics scaled with negative thoughts and neurovegetative symptoms, respectively. Conclusions: 

This triple-network imbalance could delay spatiotemporal integration, while across-subject 

symptom variability would be network-specific. Therefore, the present approach supports that brain 

network dynamics underlie patients’ symptom heterogeneity in AO-MDD.  
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1. Introduction 

Major depressive disorder (MDD) is a prevalent chronic episodically-recurrent disorder (1) that 

presents core symptoms of profound sadness and anhedonia, irritability, indecisiveness and 

recurrent suicidal ideation (2) associated with sleep and eating disturbances, physical fatigue and 

comorbid anxiety symptoms (3). First MDD episodes often occur prior to adulthood with 

adolescence-onset MDD (AO-MDD) patients being more likely to suffer from exacerbated 

recurrent episodes and poorer social and occupational function throughout lifespan (4, 5). Task-free 

neuroimaging studies conducted using resting-state functional magnetic resonance imaging (rs-

fMRI) suggest that MDD arises from abnormal synchronism in spontaneous brain activity in neural 

circuitries implicated in emotional processing and regulation (6-11). Although their neural-

behavioral mechanisms remain uncertain, they could reflect adolescence developmental changes 

that might contribute to the persistence of depression risk through young adulthood (12). 

Abnormal synchrony, commonly quantified using functional connectivity (FC) methods (13), is 

connoted by disrupted FC in the anterior Default-mode network (DMN) and Frontoparietal network 

(FPN) whereas the subgenual cingulate augments FC within the Limbic network which can 

furthermore return to normal after pharmacological treatment (14, 15). Many studies have therefore 

implemented such network-based approaches to investigate the value of FC as an endogenous 

imaging biomarker of MDD (16, 17), in terms of disease severity (18, 19), qualitative symptoms 

(20), and pharmaceutical (21) or psychotherapeutic interventions (22, 23). 

Taken together, these findings promote the development of imaging biomarkers to support 

psychiatric diagnosis and interpret MDD symptomatology (24). However, commonly adopted FC 

methods assume static brain networks' configurations, averaged over the scanning time. This 

assumption might impact FC sensitivity to MDD pathology, leading to inconsistent or incomparable 

findings, thence discouraging the clinical usage of FC from rs-fMRI (25, 26). The functional 

chronnectome approach suggests that brain FC is dynamic in nature in that its intrinsic neural 
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organization embraces stationary as well as non-stationary events (26). This approach has revealed 

that several resting-state brain networks transit across different discrete, recurrent, spatiotemporal 

configurations, consistent across healthy subjects (26). This dynamic FC (dFC) approach assumes 

that during rest these spatiotemporal configurations would reflect dynamic interactions across brain 

networks for supporting internally oriented cognition (27, 28). Therefore, dFC might be useful to 

assess intrinsic functional brain organization (29), neural-behavioral relationships (31-33) and their 

alterations in MDD (34-36). 

In this dynamic rs-fMRI study, we contributed to this stream of research probing the temporal 

evolution of the functional connectome in young AO-MDD patients, evaluating its linear 

relationships with depression severity as assessed by the clinician-rated Montgomery-Asberg 

Depression Rating Scale (MADRS), a robust psychometric instrument used to track disease staging 

and recovery (37)
 
(Montgomery-Asberg Depression Rating Scale, RRID:SCR_003690). Moreover, 

we examined dynamic neural-behavioral covariation at the symptom-level selecting a multifactorial 

hierarchical MADRS model (38) to further investigate relationships between dFC and MDD 

symptom dimensions. To maximize MADRS sensitivity, we defined a clinically variegated sample 

of young patients also including underage individuals at different stages of disease and treatment 

course. To attenuate potential dFC biases due to sample variability, we used a spatial chronnectome 

model (29) that exploits group independent component analysis (gICA) to generate time-resolved 

individual coupling maps for any resting-state functional network. 
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2. Methods & Materials 

2.1. Subjects & psychometrics 

Thirty-five AO-MDD patients and 53 healthy participants were herein studied (Table 1). Data were 

retrieved from two conjoined studies of AO-MDD in young adults and adolescents, respectively. 

The former one provided 15 patients and 2 control subjects, while the latter provided datasets for 20 

patients and 22 healthy participants. The remaining ones, 29 healthy participants, were retrieved 

from the IMAGEN database (http://imagen-europe.com), matched with patients for age and gender. 

All participants were included and scanned in the same center at the same time period. 

All patients referred to had experienced first depressive symptoms during adolescence when they 

received a diagnosis of major depressive disorder according to the DSM-IV-TR from psychiatrists 

either in hospitalization wards or outpatient clinics (Table 1). These young patients were 

investigated at various stages of their depressive episodes to maximize sample variability. Thus, at 

scanning time, 19 patients were in their first episode of illness according to Mini-International 

Neuropsychiatric Interview (30) (M.I.N.I.). The 16 other ones were in their second or third episode. 

Sixteen patients, of whom 8 in their first episode of illness, were treated with selective serotonin 

reuptake inhibitors (SSRIs) and 4 patients (1 first-episode) received serotonin–norepinephrine 

reuptake inhibitors (SNRIs). One first-episode patient had received noradrenergic and specific 

serotoninergic antidepressant (NaSSa). Eight SSRI and 2 SNRI-treated cases also received 

benzodiazepines (Alprazolam, Bromazepam, Prazepam) to reduce excessive anxiety. Medicated 

patients were stabilized and showed no discontinuation symptoms. 

Depression severity was assessed by MADRS (Montgomery-Asberg Depression Rating Scale, 

RRID:SCR_003690) administration before the scanning session by an experienced research 

psychiatrist (JLM, EA). The MADRS is a clinician-rated seven-point scale, based on 10 items: 

apparent sadness; reported sadness; inner tension; reduced sleep; reduced appetite; concentration 
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difficulties; lassitude; inability to feel; pessimistic and suicidal thoughts. The total MADRS score 

across these items ranges from 0 to 60, with higher scores reflecting greater depression severity. A 

multifactorial time- and gender-invariant model of MADRS was used to differentiate MDD 

symptoms into four sub-dimensions, namely sadness (apparent and reported sadness), 

neurovegetative symptoms (inner tension, reduced sleep and appetite), detachment symptoms 

(concentration difficulties, lassitude and inability to feel) and negative thoughts (pessimistic and 

suicidal thoughts) (38). Each MADRS sub-dimension was assessed via the straight sum across its 

items. 

Healthy participants had not experienced any past or current MDD episode, according to M.I.N.I. 

criteria. MADRS scores were rated by a trained psychiatrist (JLM, EA) in 25 healthy controls. The 

self-rated versions of the Centre for Epidemiological Studies Depression (39) (CES-D) or the 

Adolescent Depression Rating Scale (ADRS) (40) were administered as alternative in the remaining 

participants depending on their age. 

Exclusion criteria included pregnancy, alcohol or substance abuse or dependence in the past six 

months, electroconvulsive therapy treatment in the past six months, any present medical somatic 

condition, history of epileptic seizures, history of bipolarity or other psychiatric, neurological 

disorders or substantial brain damage, and contraindication to magnetic fields, according to 

established safety criteria. Written informed consent had been obtained from all participants or their 

parents in case of individuals aged less than 18. The study had obtained approval from the Bicêtre 

ethics committee Ile de France 7. 

2.2. Data acquisition and preprocessing 

Participants underwent a single ~45 min neuroimaging session using a 3T MR Siemens Prisma 

(Siemens Healthcare, Erlangen, Germany) at Center for NeuroImaging Research (CENIR) within 

the Institut du Cerveau (ICM), Paris. All participants had been scanned on the same machine, using 

the same head-coil and MR sequences conformed to the IMAGEN acquisition protocol. In 
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particular, all participants had undergone an initial magnetization-prepared radio-frequency rapid 

gradient-echo (MPRAGE) volume acquisition (TR=2300ms, TE=2.93ms, FA=9°, TI=900ms, 

voxel-size=1.1mm
3
, duration=10min). The MR acquisition included eyes-closed resting-state 

blood-oxygen level-dependent echo-planar imaging (BOLD-EPI) to image brain function 

(TR=2200ms, TE=30ms, FA=75°, voxel-size=2.4mm
3
, length=187, duration=7min). Participants 

were asked to remain as still as they could during the scanning time, and relax. They were soothed 

and recommended not to fall asleep during rs-fMRI acquisitions. 

Neuroimaging processing was performed in AFNI (41) (Analysis of Functional NeuroImages, 

RRID:SCR_005927) and FSL (42)
 
(FSL, RRID:SCR_002823). Image preprocessing steps were 

described in previous works (43). For clarity, T1-weighted MPRAGE and BOLD-EPI functional 

images were aligned and preprocessed in their original space. Rigid-body head-motion correction 

was performed as implemented in FSL. Multiple regressions of six displacement time-courses, their 

derivatives and mean regional white matter (WM) and cerebral spinal fluid (CSF) were conducted 

for effective motion and physiological denoising of BOLD-EPI data (43). After confound 

regression, AFNI’s 3dDespike was additionally performed to account for micro-movements. 

Subjects exceeding either 1.5mm in translations, 1.25 degrees in rotation were discarded from the 

study (44). To summarize head-motion in each participant, framewise displacements (FD) were 

measured. After being preprocessed, individual BOLD-EPI data were linearly normalized to 2-mm 

isotropic Montreal Neurological Institute (MNI) template using 12 degrees-of-freedom affine 

transformation. 

2.3. Characterizing group-level functional networks 

Functional imaging data were decomposed into group functional networks using group-ICA 

algorithms as implemented in MELODIC. Temporal concatenation of preprocessed BOLD-EPI 

functional data across subjects (N=88) preceded ICA decomposition into 20 spatial and temporal 

components. To exclude components related to physiologic, motion and scanner noise artifacts, 
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each stochastic component was spatially compared with 7 external templates (45) namely the DMN, 

the FPN, the Limbic and Salience networks, the Dorsal-attention network (DAN), the Visual and 

Sensory-motor networks. The 7 best-matched components, so defined by their highest and lowest 

degree of positive z-scores respectively within and outside each template, were finally retained. 

This data-driven approach allowed us to identify common functional networks in the full cohort, 

exploiting temporal concatenation to maximize detectability of temporal variance in each network 

(46) while compensating for relatively short scan acquisition length (47). 

2.4. Characterizing individual dFC networks 

Dual regression was used to reconstruct individual functional networks in two steps (48). First, the 

chosen components were regressed into each processed functional dataset to determine a set of 7 

time-courses per subject. Second, individual time-courses were regressed into their processed 

functional dataset to finally characterize 7 network spatial maps per subject. These 7 spatial maps 

are hereinafter defined static FC networks. For each subject, the 7 time-courses were used to 

calculate dFC networks. The first step in dual regression returned 616 (88 subjects ⊗ 7 networks) 

time-courses, which were detrended and orthogonalized to head-motion displacements (29). 

Afterwards, these were used to calculate voxel-wise temporal coupling maps (i.e. voxel-to-network 

correlations) between each subject's preprocessed BOLD-EPI image and each network time-courses 

by means of Pearson's correlations (29). 

A sliding-window approach (Figure 1A) was implemented to calculate dFC (i.e., to visualize 

spatial reconfigurations in temporal coupling maps over time). Each window covered 110s of 

spontaneous BOLD oscillations (50TR) such that its length exceeded the processed signal largest 

wavelength (49), meanwhile the sliding step size was determined as the highest temporal resolution 

available (1TR=2.2s) to study progressive evolution of dFC and produce a statistically large number 

of temporal coupling maps (N=132) for each subject and network (50)
 
(Figure 1B, atop). Spatial 

dFC variation maps were then calculated voxelwise using the L1 norm distance (sum of absolute 
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differences) between each two consecutive temporal coupling maps, which were then summed up to 

obtain a unique image for subject and network. In other words, this measure accounts for spatial 

variations in voxel-to-network coupling over time (sliding-window correlations) for each voxel, 

network and subject (Figure 1C, atop). 

In Matlab R2019a, a texture analytic method was furthermore implemented to measure the 

spatiotemporal changeover in dFC for each subject and network (29)
 
(Figure 1B, at bottom). First, 

Pearson's correlations were discretized into 10 equal bins. For clarity, this discretization considered 

the full Pearson's correlation range (from -1 to 1), hence both positive and negative temporal 

coupling, with each bin covering a 0.2 step in such range. Spatiotemporal dFC transition matrices 

(10x10) were so defined as the cumulative frequency of cross-bin voxel transits between each 

consecutive sliding window per subject and network (Figure1C, at bottom). Spatiotemporal dFC 

transitions were finally normalized by their maximum value. Spatial dFC variation maps and 

spatiotemporal dFC transition matrices provide complementary perspectives of brain dynamism: 

while the former localizes variations in functional networks voxelwise, the latter describes how 

these occur over time (29). 

2.5. Statistical analyses 

Statistical analysis was performed in Matlab R2019a. A chi-squared test was conducted to evaluate 

the proportion of gender distribution across the two samples. Age (in years) and head-motion (mean 

FD) were tested using two sample t-tests. Two-sample t-tests were conducted between groups to 

evaluate MDD effects in spatial dFC variation, for each network separately. In MDD patients, 

brain-behavior relationships were evaluated running analyses of covariance (ANCOVA) between 

spatial dFC variation and total, as well as sub-dimensional (i.e., sadness, negative thoughts, 

detachment and neurovegetative symptoms) MADRS scores, for each network separately. Age, 

gender, mean FD and study dataset were considered scalar confounding regressors in all analytic 

models. 
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The same analyses were conducted to identify spatiotemporal dFC transition patterns associated 

with MDD, and assess covarying relationships between dFC transitions and total or sub-

dimensional MADRS scores in patients only, for each network separately. In this case, ANCOVAs 

were run for each matrix cell, factoring out main linear effects associated with MDD diagnosis, 

depression severity or MDD symptom subfactor, respectively. Age, gender, mean FD and study 

dataset were also factored out as scalar confounds. The same analyses were reiterated also 

controlling for pharmacological treatment effects in AO-MDD patients. In this analysis, continuous 

and categorical factors determined the hierarchy model for the sum of squares. Bivariate 

correlations across all variables followed by the Levine's and Shapiro-Wilk tests were conducted for 

each ANCOVA to assure that all assumptions were always met. Statistical significance level was 

set to p < .05 and multiple comparisons were counteracted using the Holm–Bonferroni method 

(FWER, alpha = .05, p < .001). 
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3. Results 

3.1. Depression severity 

Both patient and control groups showed comparable demographical characteristics (Table 1). Mean 

FD showed modest head movements (< 0.25 mm) which did not differ between groups. In average, 

total MADRS scores indicated overall mild-to-moderate depression severity across MDD patients 

(Table 1). There was no statistical difference in mean depression severity between first-episode 

16±10 (M±SD) and recurrent MDD patients 17±12 (M±SD), t(33) = -0.54, p = .6. There was a 

statistically significant difference in mean depression severity between pharmacologically treated 

13±10 (M±SD) and untreated MDD patients 21±11 (M±SD), t(32) = 2.4, p = .02. 

3.2. Spatial dynamic variations in AO-MDD 

The automatic selection of static gICA maps successfully identified all 7 canonical networks which 

contribute to the intrinsic functional connectome (45) (Figure 2). Spatial dFC variations were 

overall reduced in AO-MDD (Figure 3) when compared to healthy controls in prefrontal cortical 

regions across several networks (p < .005, uncorrected). Spatial dFC variations were decreased in 

the lateral prefrontal cortex (lPFC) and middle frontal gyri (MFG) in all dFC networks whereas the 

DMN, Limbic and salience networks also involved ventromedial PFC (vmPFC) regions, such as the 

orbitofrontal cortex (OFC). Visual and somatomotor network dynamics were not affected by the 

disorder and thus excluded from further examinations. A detailed list of results can be found in 

Table 2. 

Spatial dFC variations in the Limbic and DMN also showed reversed relationships with total and 

sub-dimensional MADRS scores in patients (p < .05, FDR corrected), with negative thoughts linked 

to DMN dynamics (Table 3). In contrast, sadness showed positive relationships with Limbic and 

DMN dynamics in the subgenual nucleus and Precuneal regions, respectively. The clinical 

relevance of these networks would have been overlooked by static FC, which instead highlights a 
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prominent involvement of the FPN (Supplemental Table 1). 

3.3. Spatiotemporal dFC transitions and associations with symptomatology 

Spatiotemporal dFC transitions were defined for all the remaining rs-fMRI networks but 

statistically significant differences in mean dFC transitions as a function of MDD diagnosis 

(F(1,81) > 11.6) were only found in recurrent coupling reconfigurations of the limbic network 

(Figure 4). These reconfigurations involved negative coupling areas which modulate the transitions 

across multiple dynamic states. In this network, spatiotemporal dFC transitions underlying negative 

network coupling were significantly scaling along total MADRS scores in patients (F(1,27) > 13.6). 

When considering MADRS dimensions, only the limbic network exhibited significant associations 

between spatiotemporal dFC transitions and the dimension of sadness (F(1,27) > 13.6). These 

transitions implied an intense shift towards positive dynamic coupling, indicating network 

excessive recruitment (Figure 4). 

In the DMN, there were significant associations between spatiotemporal dFC transitions and 

negative thoughts (F(1,27) > 13.6). These involved both recurrent reconfigurations and minimally 

changing patterns during network negative coupling. Recurrent spatial reconfigurations in the FPN 

significantly scaled with neurovegetative symptoms (F(1,27) > 13.6). There was no significant 

relationship between spatiotemporal dFC transitions and the detachment dimension in any network: 

the DAN and salience network were not associated to AO-MDD. 
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4. Discussion 

This spatially dynamic rs-fMRI study explored time-varying patterns in functionally parcellated, 

spatially distributed human brain networks to assess their temporal evolution in AO-MDD severity 

and symptom heterogeneity. The functional chronnectome allowed to quantify voxelwise temporal 

variations and spatiotemporal transitions across consecutive sliding windows for seven personalized 

networks obtained within an ICA framework. This methodology revealed that 1) multiple networks 

functionally interconnected in the PFC are affected in AO-MDD; 2) the limbic network is the 

foremost affected circuitry whose dynamics specifically link to depression severity; 3) across-

subject symptom variability is associated with changes within specific functional networks. 

4.1. Prefrontal functional dynamicity in adolescence-onset MDD. 

If earlier functional chronnectome applications had shown increased brain dynamicity in psychiatric 

disorders like schizophrenia (29), here they showed prefrontal inflexibility (i.e., reduced 

dynamicity) in young MDD patients. This is consistent with recent functional dFC studies of 

unmedicated MDD and bipolar disorder adult patients (51), confirming the pivotal role of frontal 

lobe function in these disorders and favoring the development of transdiagnostic models in 

psychiatry (52). To our knowledge, no prior dFC study has investigated AO-MDD: on a speculative 

note, prefrontal inflexibility might subtend altered PFC maturation during adolescence that would 

persist in early adulthood (53). 

Most functional networks showed dynamic inflexibility within the lPFC, whereas the OFC was 

inflexible in the DMN and salience networks, and the anterior cingulate cortex (ACC) only in the 

limbic network. The lPFC and OFC play a critical role in top-down cognitive control, a process that 

requires multiple networks involvement (54) whereas the ACC integrates affective and cognitive 

processes to facilitate response selection (55). We speculate that dFC inflexibility reveals network 

communication failure due to the tirelessly recruitment of lPFC in an unsuccessful attempt to 
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regulate persistent negative emotions (56), subsequently leading to loss of interest in previously 

pleasant events or lack of volition (57). 

Fundamentally, dynamic inflexibility here expresses prefrontal lobe dysfunction, analogously to 

measurements of brain glucose metabolism and blood flow (58). The functional chronnectome 

could therefore enhance non-invasively and non-expensively existing imaging biomarkers to 

characterize and typify the neurobiology of AO-MDD and its course onward (53, 59). 

4.2. Adolescence-onset MDD and limbic network dynamics. 

The limbic network and the DMN are hierarchically integrated during the resting state (60, 61). The 

OFC component of the limbic network is implicated in processing instinctive emotions, motivation 

and affiliative behaviors related to social cohesion (62) which would afterwards be coordinated and 

integrated into cognition by the DMN through the ACC (63, 64). Present findings are in accordance 

with theoretical models of MDD where bottom-up affective content is not passed on to cognitive 

top-down examination and control (64, 65). Since its onset, MDD biochemical distortions upset this 

intrinsic functional organization, inducing some networks to hijack control over others. 

Spatiotemporal dFC transitions in patients implicate larger limbic isolation in the functional 

connectome due to subcortical pathophysiology (66, 67). Consistently with this model, our dFC 

quantifications showed altered limbic reconfigurations, which are necessary to merge with other 

networks and convey processed visceral emotion to cortical regions through the ACC. 

4.3. Spatiotemporal dynamics as neuroimaging correlate of depression severity. 

This study also evaluated dFC measures as probable imaging endpoints of MDD. Among various 

depression rating scales, we chose the MADRS to measure MDD severity (37). Our choice was 

motivated by the tool's wide usage in clinical practice as a clinician-rated instrument to assess 

depression severity on symptoms that promptly respond to treatment and antidepressant medication 

(38). dFC relationships were furthermore investigated along four-factor MADRS symptom 
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subclasses to differentially target cognitive and affective symptoms (38). Spatial dFC variations 

demonstrated a reversed relationship with total MADRS scores (i.e. depression severity) in both the 

Limbic and DMN networks in the inferior temporal gyrus and inferior parietal lobule. These regions 

have been implicated in some studies of depressed patients (68). 

4.3.1.Dynamic limbic coupling reflects MDD severity. 

There was a tight relation between spatiotemporal dFC transitions and total MADRS scores in the 

limbic network only. This finding confirms the pivotal role of subcortical circuitries in AO-MDD 

and links limbic inflexibility to depression severity (69, 70). These relationships concerned minimal 

temporal variations in negative coupling content. Therefore, MDD would only partially affect the 

dynamic spatial reconfigurations of the limbic network, in particular affecting those circuits which 

are negatively correlated to the limbic component while leaving the rest unaffected. Alternatively, it 

may be that negative and positive coupled regions in the functional chronnectome present 

differential temporal characteristics and that, at the current temporal resolution, dynamic transitions 

in positive coupling remain insensitive to catch inflexible limbic dynamicity. In perspective, such 

abnormal limbic integration may help distinguish functionally impairing clinical depressions from 

milder not-disabling cases, and prepare support accordingly (71). 

4.3.2. Network - symptom associations in AO-MDD. 

When investigating different MDD symptom clusters, spatiotemporal dFC transitions showed 

network-symptom specific associations, indicating that the limbic network, the DMN, the salience 

and the FPN have separable roles in MDD-related symptoms. Maladaptive communications among 

these networks in MDD have already been linked with negative emotions reflected in mood, as well 

as speech, facial expression and posture (18).  

Here, spatiotemporal dFC transitions within the limbic network were associated with abnormal 

sadness. These involved regions characterized by large variations in their content that tend to 
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progressively minimize negative coupling over time. This finding is consistent with emotion 

regulation models that involve lower limbic structures to direct expressive and affective emotional 

components in MDD (72, 73). Present findings suggest that negative emotions in AO-MDD do not 

emerge as direct consequence of obstructed cortico-limbic integration but from incomplete limbic 

reconfigurations and consequent “crystallization” of functional dynamics as part of limbic 

segregation and isolation. 

In addition, spatiotemporal coupling transitions within the DMN were related to pessimistic and 

suicidal thoughts, intended as thoughts of guilt, inferiority, remorse and ruin (the MADRS items do 

not consider actual suicidal attempts). These symptoms, characterized by persistence of internally 

directed attention, have consistently been linked to DMN activity (74, 75) and dynamics (34). In the 

DMN too, these spatiotemporal transitions dominated negative coupled circuits, reflecting delayed 

integration in the functional connectome and thus its inability to efficiently control high self-critical 

thoughts, when functional interactions are unbalanced or ill-coordinated with bottom-up processing 

(64). Moreover, unsteady FPN dynamics, characterized by delayed spatiotemporal reconfigurations, 

were related to somatic symptoms of MADRS that could reflect inhibitory control and anticipatory 

anxiety, which would disrupt higher cognitive functions and goal-oriented behavior. 

The triple-network framework (55) assumes that cross-network interactions among the DMN, FPN 

and salience networks are characteristic of the healthy functional connectome. A recent dFC study 

demonstrated decreased dFC between the DMN and FPN in 51 unmedicated MDD (51). Our 

findings similarly suggest that lack of brain dynamicity between these two networks is actually 

relevant in the early stages of MDD both in adolescents and young adults (53). 

Although spatial dFC variations were significantly inflexible in the salience network, no 

relationships between spatiotemporal dFC transitions and symptoms were observed. Evidence 

suggests that the salience network is implicated in anxiety disorders and anxiety comorbid with 

MDD (76, 77). However, the MADRS structure does not consider mental tension and panic as an 
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independent symptom class, which in some measures explains our findings. Furthermore, this 

network likely plays a greater role in addiction behavior or delusional (55) psychotic experiences 

(78) which are present only in severe forms of MDD. 

4.4. Technical aspects and limitations 

Although mean FD was factored out when examining brain-behavior relationships, head-motion 

could still specifically confound non-stationary dFC transitions (79). We therefore examined 

whether FD spikes were accounted for by image preprocessing (Supplemental Figure1) and 

conducted a parallel analysis using an artifactual motion component (Supplemental Figure2). 

Choosing an optimal sliding-window length is vital to identify neural dynamic patterns in rs-fMRI 

data (80). This holds true even in harmonized multisite protocols that use same acquisition/receiver 

head-coils to prevent MRI background noise from invalidating neural dFC detectability. 

In this neuroimaging study, we took a novel spatial functional chronnectome model to investigate 

brain function dynamicity in AO-MDD patients and explore relationships with depression severity 

and symptoms. Nevertheless, there are other chronnectome models such as dynamic hierarchical 

approaches which could further elucidate between-network temporal relationships (81). Due to 

sample medication variability, some clinically relevant information might have been cancelled out: 

this might concern the salience network (benzodiazepine) or the DMN (SSRI). However, when 

including treatment as covariate we found the same functional pattern. Between-group differences 

in vigilance states might potentially lessen the specificity of our results (82). Independent measures 

of wakefulness are recommended in future clinical dFC studies of psychiatric disorders. The 

MADRS is a clinician-rated tool which monitors depression severity and treatment efficacy. 

However, it was not systematically administered in healthy controls, whom are typically 

administered as self-rated questionnaires. This might lessen dFC specificity to AO-MDD and needs 

independent confirmatory investigations. In particular, longitudinal studies could clarify whether 

brain dynamicity in MDD is linked to structural maturation (83) and follow treatment effects on 
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different symptom clusters. 

4.5. Conclusion 

In sum, this is the first functional chronnectome study to provide evidence for a dynamic imbalance 

between limbic, FPN and DMN in adolescence-onset MDD patients using rs-fMRI. This dynamic 

imbalance could underlie symptom variability not detected by the static FC approach. Distinct 

limbic network dynamics were related to sadness and severity of depression, while DMN dynamics 

were linked to negative thoughts. 
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Figure legends 

Figure 1: Calculation of dynamic functional connectivity. (A) The figure summarizes the dFC 

coupling analysis for a given subject and its network (e.g. the limbic network). Functional network 

coupling using Pearson’s correlations was calculated voxelwise between preprocessed resting-state 

BOLD data (the pink voxel signal) and limbic ICA time-course (the red signal) within 132 sliding 

windows. (B) This analysis returned 132 dynamic coupling maps voxelwise for that subject and its 

network. Voxels' transitions across consecutive coupling maps (e.g. the pink voxel) were calculated 

across ten equal-width discretized subsets (pink numbers) and stored in a transition matrix. (C) At 

top, the total sum of the absolute differences across each two consecutive coupling maps returned 

the dFC variability map whereas at bottom, the overall sum across all voxels determined the 

spatiotemporal dFC transitions for that subject and network. The matrix counter diagonal hosts 

minimally variable dynamics concerning positive (2nd quadrant) or negative (3rd quadrant) 

connectivity, comparable to static functional networks. As transitions leave this diagonal their 

variability increases, being the largest at opposite corners. Dynamic transitions in the 1st and 4th 

quadrants imply a change in correlation sign, which underlies spatiotemporal reconfigurations 

occurring through network dynamic states. dFC: dynamic functional connectivity; BOLD: blood-

oxygen level-dependent; ICA: independent component analysis. 

 

Figure 2. Group functional networks probed in the study. The figure shows the spatiotemporal 

characteristics of seven rs-fMRI functional networks selected out of 20 independent components. 

For each network, the spatial distribution of (anti-)correlations (z ≷ ± 2.3; p < .001) is overlaid on 

the MNI template. Next on the right, the power spectrum (0.01 - 0.1 Hz) validates the neural nature 

of the selected component. In the same plot, the percent similarity index (𝞀) to external template 

and total grey matter (GM) is also reported. For each of these networks, their time-course was 

reconstructed in each subject using dual regression methods. This was then used as input for dFC 

analysis. rs-fMRI: resting-state functional magnetic resonance imaging; gICA: group independent 
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component analysis; GM: grey matter; dFC: dynamic functional connectivity; LIM: limbic network; 

DMN: default-mode network; VIS: visual network; DAN: dorsal-attention network; FPN: 

frontoparietal network; SAL: salience network; SMN: somatomotor network. 

 

Figure 3. dFC variability maps within networks and MDD diagnosis effects. For each rs-fMRI 

network, dorsal and medial surface-projected dFC variability maps averaged across healthy subjects 

(left), MDD patients (middle) and two-sample student t-tests between groups (right) are presented. 

Left: spatiotemporal inflexibility is denoted by blue colors while high dynamicity is denoted by hot 

colors, as readily visible in the visual and somatomotor networks;  FOV limitations bias reduces 

dFC variability on top brain images. Middle: MDD patients’ inflexibility is apparent in the 

functional chronnectome. Right: statistical results indicate that all but visual and somatomotor 

networks are affected by MDD, in the PFC, precuneus, temporal and occipital regions (uncorrected, 

p < 0.005, t > ± 2.9). MDD: major depressive disorder; dFC: dynamic functional connectivity; PFC: 

prefrontal cortex; DMN: default-mode network; FPN: frontoparietal network; DAN: dorsal-

attention network. 

 

Figure 4. Main spatiotemporal dFC transition results. (Top) The figure shows mean 

spatiotemporal dFC transitions across all participants for five rs-fMRI networks. The distribution of 

cross-bin voxel transits is the largest (in yellow) on the counter diagonal to progressively lessen 

towards opposite corners (in blue), consistently across all rs-fMRI networks. The maximum is 

typically located upper-right, where positive correlations reside and networks reach their steady 

state (i.e. segregation). The bottom-left area represents network decoupling dynamics (i.e. negative 

correlations) associated with inter-network integration. Each triangular matrix (see Figure1, bottom 

left) represents non-stationary processes where spatial reconfigurations occur as network transits 

across these brain states. The upper-left and bottom right corners reflect excessive change in 

network dynamics unlikely to reflect neural dynamism but rather artifacts. (Bottom) The figure 



Intrinsic dFC in adolescence-onset MDD 

Page 32 of 32 

shows statistically corrected results from neurobehavioral analysis: MDD alters spatiotemporal 

reconfigurations in the limbic network dynamics (MDD diagnosis) with disease severity related to 

limbic decoupling (MADRS). Abnormal sadness is related to hyper-recruitment of the limbic 

system (Sadness); excessive negative thoughts are related to DMN alterations (Negative thoughts), 

whereas spatiotemporal FPN reconfigurations are related to vegetative subdimension. rs-fMRI: 

resting-state functional MRI; dFC: dynamic functional connectivity; MDD: major depressive 

disorder; DMN: default-mode network; DAN: dorsal-attention network; FPN: frontoparietal 

network. 
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Table 1. Epidemiological and Functional Imaging Characteristics. The table reports descriptive statistics for demographic, psychometric and 
functional imaging characteristics (first column) in both samples (second and third columns). Values are summarized by mean and standard deviation 
within each group. The range of their values is also provided in parenthesis. Across-sample statistical evaluations are reported in the last column. Age 
and disease onset are reported in years. Gender reports the percentage of female individuals. Head-motion indicates in-scanner mean FD in millimeters. 
AO-MDD: adolescent-onset major depressive disorder; MADRS: Montgomery–Åsberg Depression Rating Scale scores; ADRS: Adolescent 
Depression Rating Scale; CES-D: Centre for Epidemiological Studies Depression; FD: framewise displacement. 

 AO-MDD patients (N=35) Healthy controls (N=53) Across-sample statistics 
Age 21 ± 6 (15 – 36) 20 ± 3 (16 – 28) t(86) = -.7, p = .46 

Gender 21 (60%) 33 (62%) 𝛘𝛘2(1, N=88) = .05, p = .8 
MADRS 17 ± 11 (2 - 41) 2 ± 3 (0 – 9) (N=24/53) - 
ADRS - .4 ± .7 (0 – 2) (N=27/53) - 
CES-D - 8.2 ± 8 (0 – 35) (N=24/53) - 

Head-motion .1 ± .08 (.03 – .25) .08 ± .07 (.02 – .25) t(86) = -.9, p = .35 
Disease onset 16 ± 3 (11 – 21)   



 
 

Functional 
Network Cluster size 

Centroid 
 Cluster value  Brain Region

x   y   z   

 Limbic

 96  -42.5  -52.1  -7.4  -3.6551  BA11

 54  -40.3  -18.5  -11.7  -4.1251  BA13
 32  8  -64.3  -1.3  -4.0282  BA10

 31  18.3  -0.5  -29.6  -3.757  Amygdala

DMN 

 43  4.1  65.3  11.5  -3.9101  BA23

 34  37.8  -33  -15.3  -3.952  BA11

 29  6.9  -57.3  -1.4  -3.5376  BA10

DAN 

 184  -31.5  -4.2  62.5  -4.6306  BA6

 154  -50.3  11.2  13.4  -4.2957  BA13
 109  -60.6  9.2  34.2  -3.8761  BA6
 86  25.8  -64.7  -3.1  -3.9551  BA10
 39  -58.2  58.4  31.6  -4.5012  BA40

 29  24.4  -52.4  12.8  -4.377  BA10

FPN 

 61  -7.7  -32.1  26.3  -3.6419  BA32

 44  -20.8  -69.8  -3.6  -3.7134  BA10

 32  -24.4  -58.8  -8.3  -3.5482  BA10

 Salience

 123  38.1  -54.9  -9.9  -4.5252  BA11

 82  -37.6  68  43.2  -3.7285  BA11
 39  -24.3  -49.7  20.6  -4.0637  BA10

 39  -59.3  35.2  28.8  -3.8003  BA40

 
Table 2. Main regions characterized by spatial dFC inflexibility in AO-MDD. For each functional network, 
the table reports the spatial cluster size (in number of voxels), centroid (in RAI coordinates) and mean value (t-
score) for regions characterized by reduced spatial dFC variations in AO-MDD (p < .005). Brodmann areas are 
also herein reported for clarity. All networks showed dynamic inflexibility in the lateral PFC (BA10) whereas 
Limbic, DMN and salience networks showed reduced dFC variations in the ventromedial PFC (BA11). Only 
the limbic network showed reduced dFC variations in the Amygdala, whereas the anterior (BA32) and middle 
(BA23) cingulate showed inflexible dynamics in the FPN and DMN, respectively. Superior frontal (BA6) 
reductions were observed only in the DAN, which shared reductions with the Salience network in the Inferior 
parietal lobule (BA40). Reduced dFC variability was also found in the insula (BA13) for the limbic network 
and the DAN. No statistically significant effects were observed for the visual and somatomotor network. dFC: 
dynamic functional connectivity; (AO)-MDD: (adolescence-onset) major depressive disorder; RAI: right-
anterior-posterior; PFC: prefrontal cortex; OFC: orbitofrontal cortex; DMN: default-mode network; FPN: 
frontoparietal network; DAN: dorsal-attention network. 



 

Table 3. Spatial relationships between network dFC variations and MADRS scores. Spatial cluster size (in 
number of voxels), centroid (in RAI coordinates) and mean score (t-values) for sensitive regions to depression 
severity and symptom factors in the functional chronnectome. Only the DMN and Limbic networks show 
sensitivity to MADRS scores and symptoms (p < .05, FDR corrected). Both dFC networks scale with 
depression severity in middle temporal parietal regions (BA39/37/7). The same regions are associated with 
detachment symptoms in both networks, and negative thoughts only in the DMN. Sadness scaled with anterior 
and posterior cingulate regions in the Limbic and DMN, respectively. Neurovegetative symptoms were linked 
to dynamics in the inferior parietal lobule/supramarginal gyrus (BA40). Negative t-values indicate a reversed 
directionality between spatial dFC variations and MADRS scores. dFC: dynamic functional connectivity; 
MADRS: Montgomery-Asberg Depression Rating Scale; RAI: right-anterior-posterior; DMN: default-mode 
network; BA: Broadmann’s area. 
 
 

Functional 
Network 

MADRS 
 component Cluster size 

Centroid Cluster 
 value

Brain 
 Regionx   y   z   

 Limbic

 Total  564  -38  77  17  -4.4581  BA39

 Detachment  433  -40  75  15  -4.2143  BA39

 Sadness  494  0.8  -47  -14  4.1271  BA25

 Vegetative  1150  37  43  53  -4.8508  BA40

DMN 

 Total
 976  37  68  42  -3.4205  BA39/7

 649  56  58  -5  -4.6925  BA37

 Detachment
 465  55  8  6  -4.0018  BA22

 464  56  56  -7  -4.6742  BA37

Negative 
 thoughts

 1436  -2  59  30  -3.6308  BA7

 1120  36  67  41  -3.9274  BA39
 1000  54  62  -5  -5.198  BA37

 Sadness  1039  39  63  41  4.1891  BA7

 Vegetative  970  -50  40  50  -4.2026  BA40




