
HAL Id: hal-03471522
https://hal.science/hal-03471522

Submitted on 8 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Math-Heuristic for Network Slice Design
Wesley da Silva Coelho, Amal Benhamiche, Nancy Perrot, Stefano Secci

To cite this version:
Wesley da Silva Coelho, Amal Benhamiche, Nancy Perrot, Stefano Secci. A Math-Heuristic for Net-
work Slice Design. International Teletraffic Congress, Aug 2021, Avignon, France. �hal-03471522�

https://hal.science/hal-03471522
https://hal.archives-ouvertes.fr

A Math-Heuristic for Network Slice Design
Wesley da Silva Coelho

CNAM, Orange Labs
Chatillon, France

wesley.dasilvacoelho@orange.com

Amal Benhamiche
Orange Labs

Chatillon, France
amal.benhamiche@orange.com

Nancy Perrot
Orange Labs

Chatillon, France
nancy.perrot@orange.com

Stefano Secci
CNAM

Paris, France
stefano.secci@cnam.fr

Abstract—In this paper, we address the Network Slice Design
problem, which arises from blueprinting end-to-end communica-
tion networks using fifth-generation (5G) radio access technology.
With regard to new sharing policies and radio-access integration,
it shows peculiar requirements with respect to conventional func-
tion placement and routing problems. To address the underlying
optimization problem, we propose an open-access framework
based on a math-heuristic that encompasses control-plane and
data-plane separation and novel mapping and decomposition di-
mensions influencing the placement and interconnection of slices.
Our framework also incorporates flexible functional splitting,
with possibly different splitting for different slices while taking
into consideration dependency factors such as varying network
latency and data volume throughout the virtual access networks.
Numerical results are then presented to assess the efficiency of
our approach.

Index Terms—Network slicing, flexible splitting, math-heuristic

I. INTRODUCTION

5G mobile systems integrate into a single physical network
a variety of communication services, each with specific re-
quirements in terms of latency, availability, and bandwidth,
for instance. In this context, each service might use a set
of customized logical networks, named Network Slices (NSs),
specifically tailored to its requirements. Enhanced by Network
Function Virtualization [1] and Software-Defined Network-
ing [2] techniques, a network slice is composed of different
virtualized Network Functions (NFs) representing different
functionalities that used to be provided by dedicated machines.
These virtual NFs are installed on physical servers, intercon-
nected, and responsible for treating the data flow between
two access points (data-plane NFs) and for managing and
controlling the whole network slice (control-plane NFs). While
each slice has only one set of control planes NFs, one ordered
data-plane NF chain must be available to treat the flow from
each access point (there might potentially be several of them
serving each slice).

Addressing end-to-end network slicing problems requires,
however, considering different virtual and physical network
topologies, each with specific orchestration rules and technical
constraints. For instance, recent 5G specifications [3]–[5]
come with novel mapping dimensions that will affect the
placement and interconnection of slices and network functions:
(i) a communication service can be delivered by multiple
slices; and (ii) Network Functions can be decomposed into

This work is supported by the french Agence Nationale de la Recherche
(ANR), Project MAESTRO-5G ANR-18-CE25-0012.

micro-functions called Network Function Services (NFSs).
These new mapping requirements come with new technical
constraints to guarantee coherent provisioning of each com-
munication service, such as NF scaling and sharing policies.
Furthermore, the Flexible Radio Access Network splitting [6]
that appears as a key technique to increase network efficiency,
will bring even more flexibility in the way to design 5G
networks. Indeed, Radio Access Network Functions could be
split so that some functionalities could be distributed on a
set of Distributed Units (DU), corresponding to access points,
while others could be installed in a Centralized Unit (CU),
corresponding then to pools of data-center servers. Hence,
network designers should define the best functional splitting
taking into account delay and bandwidth constraints on each
physical path connecting DUs and CUs while considering
dependency factors such as varying network latency and data
volume between each pair of functions [7].

Fig. 1 shows an example of how to design different slices
and embedding them into a physical network. In this example,
we consider 2 slices requests, 5 traffic demands (e.g., from
slice request 2: DU23→ App16), 7 NFS types (3 for data-
plane and 4 for control-plane), 8 NFs, and a physical network
with 23 nodes (6 DUs, 12 CUs, and 5 application nodes).
Note that, for each slice, several copies of the same NFS type
could be required (e.g. NFS 2). In the illustrated solution,
copies of NFS 1 from slice request 1 are installed locally, at
each of its origin nodes, while all other NFSs are centralized.
Furthermore, copies of NFS 5 are packed into NF6 and shared
by both network slices. Finally, the traffic flow from each slice
request is routed through the physical network: regarding the
traffic demand (DU3→ App7) of slice 1, its virtual DP flow

Fig. 1: Example of a solution for an NSDP instance.

corresponds to the virtual link (NF1, NF4), and the related
physical path (3,6,7). In our previous work [8], we reported
numerical results showing that flexible splitting appears as a
key factor to deal with heterogeneous requirements to deploy
distinct communication services, leading to considerable net-
work slice cost decrease. In our simulations, the number of
NFSs needed to deploy the virtual networks could be reduced
by up to 56%.

A. Related Work

Optimization approaches related to network slicing prob-
lems mostly consider them either as Virtual Network Embed-
ding (VNE) [9] or Function Placement and Routing (FPR) [10]
problems. The former problem can be defined as follows: given
a set of r requested virtual network represented by graphs
Gv = (Vv,Av), v ∈ {1, . . . ,r} and a physical network repre-
sented by graph Gp = (Vp,Ap), the aforementioned approaches
seek to embed the graphs Gv into Gp. Hence, each requested
node u ∈ Vv, v ∈ {1, . . . ,r} is mapped to a physical node in
Vp, each requested arc a ∈ Av is mapped to a physical path
on Gp, and all technical constraints are respected. In the case
of the FPR problem, each virtual network request is given
by a directed acyclic graph to represent ordering constraints
on mapping virtual nodes through physical paths connecting
different pairs of source-destination nodes on the physical
network. For instance, Esteves et al. [11] propose an FPR-
based ILP formulation to design network function placement
under slice-mimicking demands while considering the users’
geographic location to guarantee the acceptable end-to-end
latency on the data-plane flow; the same authors propose
in [12] an online heuristic to address the computational com-
plexity of the studied problem. In the same context, Fendt et
al. [13] present a MILP taking into consideration the network
function chaining and path splitting, which is based on an FPR
formation. The proposed model also considers an embedding
with minimum latency for the virtual links of the NF chains
related to the slices. Liu et al. [14], in turn, consider that the
quantity, the types, and the locations of the NFs related to the
slice are determined by the requirements and distribution of
users. Due to the complexity of the proposed model, they also
present a VNE-based heuristic to address the related problem
in large-scale networks.

B. Our contribution

Even though different works partially cover the network
slicing [15], [16] and related sub-problems, such as functional
split mode selection [6], [17], network slicing with NF sharing
[18]–[20], and network slicing with NF scaling [21]–[23], no
attention has been given to address jointly all aforementioned
aspects in designing network slices and allocating resources to
them. The overall objective of this work is to go beyond our
previous work in [8] defining, for the Network Slice Design
Problem (NSDP), a new math-heuristic including splitting,
mapping and provisioning constraints made in the formulation
compliant with the specifications [3]–[5]. Finally, we present
numerical results to assess the efficiency of our approach.

TABLE I: Main notation

Set
Vp Set of all nodes.
V du

p Set of all access nodes.
V ac

p Set of all non-access nodes.
V ap

p Set of all applications server nodes.
Ap Set of all arcs.
F Set of all NFS types.
Fd Set of all data-plane NFS types.
Fc Set of all control-plane NFS types.
S Set of all network slice requests.
F(s) Set of all CP NFS pairs that must be connected in slice s.
G(s) Set of all pairs of NFSs from different type sets that must

be connected to each other in slice s.
K(s) Set of all demands of slice request s.
O(s) Set of origin nodes of all traffic demand from slice s.
N Set of all NFs.
C set of resource types available on physical nodes
Parameter
cc

u amount of available resource c on node u.
µc

u cost of one unit of resource c provided by node u.
ba bandwidth value on arc a.
da delay value on arc a.
cc

f amount of resource c required by NFS f .
cap(f) traffic processing capacity of NFS f .
b f g total amount of traffic generated between NFSs f and g

by an UE.
b f expected data rate of NFS f given one UE.
d f g the maximum accepted delay between NFSs f and g.
λ f compression coefficient of NFS f .
αs

f equals to 1 if a NFS type f must be present in slice s; 0
otherwise.

qst
f g equals to 1 if slice request s admits sharing a NFS of type

f with a NFS of type g of slice t; 0 otherwise.
qst equals to 1 if slice request s admits sharing physical node

with slice t; 0 otherwise.
ηs expected number of UEs connected to slice s
ds maximum accepted delay on data plane of slice s.
ok origin node of demand k
tk target node of demand k
bk expected volume of data between sent by origin node of

demand k.

II. PROBLEM STATEMENT AND NOTATIONS

In this section, we introduce a set of necessary notations
and we give a formal definition of the Network Slice Design
Problem in terms of graphs. Table I summarizes the notations.

Physical Network: The physical layer is modeled by a directed
graph denoted G = (V , A), where V is the set of nodes and A
the set of arcs. The set V consists of three disjoint subsets
denoted V du

p , V ac
p , and V ap

p and corresponding to different
types of nodes, namely the distributed unities, aggregation/core
servers, and application nodes, respectively. Each node u ∈V
is characterized by a set of available capacities denoted by
C = {c1

u, . . . ,c
c
u}, corresponding to the types of physical re-

sources, and a cost per unit of resource usage c ∈ C, noted
µu > 0. Each arc a = (u,v) ∈ A represents a physical link
connecting nodes u and v ∈ V , and is characterized by a
bandwidth capacity ba and a latency value da.

Network Function Services: Let N denote the set of Network
Functions (NF). Each NF n∈N is composed of one or several
Network Function Services (NFS). The set of all NFS is noted
F . We suppose that F is composed of a sub-set Fc of control-
plane NFSs, an ordered sub-set Fd of data-plane NFSs and an

auxiliary dummy function f0, so that F = Fc∪Fd∪{ f0}. Every
NFS f ∈F requires a set of resources {c1

f , . . . ,c
c
f }, has a traffic

processing capacity denoted cap(f) and delivers an expected
data rate b f . Moreover, we let b f g > 0 denote the total amount
of traffic generated by two communicating NFSs f and g and
by d f g the maximum delay threshold between NFSs f and g.
For each f ∈ Fd , λ f denotes a compression coefficient applied
on the data-plane traffic of NFS f . We set λ f0 = 1 and all the
aforementioned parameters are set to 0 for the dummy NFS f0.

Network Slice Requests: We denote by S the set of network
slice requests. Every request s ∈ S is associated with a binary
parameter αs

f that takes 1 (resp. 0) if at least one NFS of
type f ∈ F is (resp. is not) required in the associated slice.
Let F(s) = {(f ,g) : (f ∈ Fc)∧ (g ∈ Fc)} be the set of NFS
types that must be connected. Additionally, we denote by
G(s) = {(f ,g) : (f ∈ Fc)⊕ (g ∈ Fc)} the set of NFS pairs
from different sub-sets of NFS types that must be connected.
Hence, the control-plane required by a slice s is given by
F(s) ∪ G(s). We denote by qst

f g the binary parameter that
takes value 1 if two NFS f ,g ∈ F respectively required by
slice s, t ∈ S can be packed together in the same NF, and
0 otherwise, representing then the so-called virtual layer
isolation. Similarly, the physical layer isolation requirement
is expressed by the binary parameter qst that takes value 1
if slice requests s, t ∈ S can share a common physical node,
0 otherwise. Each slice request s ∈ S is associated with a set
K(s) of traffic demands, generated by the slice and to be routed
on the physical layer. Each demand k ∈ K(s) is defined by a
pair of origin-destination nodes (ok, tk), an initial data rate bk
sent by ok to tk and a maximum end-to-end latency value ds,
similar for all traffic demands in K(s). Finally, the expected
number of users connected to slice s is denoted by ns.

We define the target optimization problem as follows.
Definition 2.1 (Network Slice Design Problem): Given a

directed graph G representing the physical network, a set of
slice requests S, a set of traffic demands K(s) associated with
each request s ∈ S, and a set F of NFS types, the NSDP
consists in determining the number of NFSs to install for
each s ∈ S, the size of NF hosting them as well as decide
whether they are to be installed centrally or distributed (i.e.,
selecting the functional splitting), so that (i) K(s) demands can
be controlled and routed in G using these NFs; (ii) the NFSs
installed on G can be packed into the NFs while satisfying
both isolation and capacity constraints; and (iii) a path in G
is associated with each pair of installed NFs that must be
connected. The objective is to design each network slice and
embed them into the physical network G while minimizing the
cost of deploying the slice requests and satisfying the technical
constraints imposed by both physical and virtual layers.

III. PROPOSED HEURISTIC RESOLUTION APPROACH

Algorithm 1 presents the global framework of our approach.
The overall idea of the proposed math-heuristic1 relies on
decomposing the NSDP into several sub-problems to se-
quentially solve them. These sub-problems are related to the

1Mathematical programming techniques are applied within the framework.

Algorithm 1: Math-heuristic for the NSDP
input : An NSDP instance I(G,S,F,N,C).
output: A solution to I.

1 BestSolution, CurrentSolution ← /0

2 while a feasible solution to I is not found do
3 chooseCUs()
4 foreach s ∈ S do
5 foreach k ∈ K(s) do
6 getPaths() ; /* By Yen’s algorithm */

7 choosePaths() ; /* See ILP (3)-(7) */

8 selectSplit()
9 while a feasible embedding is not found or maximal

number of tries is reached do
10 if N ← packNFSs() ; /* See Algorithm 2 */

11 is not feasible then stop and go to step 3;
12 else if embedNFs() fails or maximal number of

tries is reached then stop and go to step 3;

13 if routing() fails; /* See Algorithm 3 */

14 then stop and go to step 3 ;
15 if CurrentSolution is feasible and

cost(CurrentSolution) < cost(BestSolution) then
16 BestSolution ← CurrentSolution
17 if rand() > ρ then
18 try to find another solution to I by going to

step 3
19 else
20 return BestSolution

following decisions: split selection, NFS-NF packing, NF-node
embedding, and traffic routing. As input, the math-heuristic
receives an NSDP instance composed of a directed graph G
representing the physical network with the set of capacities C,
a set of slice requests S, each of which with a set of traffic
demands K(s), a set F of NFS types, and a set N of potential
host virtual functions. As output, it returns a virtual network
for each slice request s ∈ S ensuring technical constraints
imposed by both physical and virtual layers.
A. Split Selection

After initializing the auxiliary variables at step 1, the
first decision is made by the chooseCUs() procedure. It first
calculates the minimal number of CUs to host all functions
serving slices without isolation constraints: this lower-bound α

is given by Equation (1), which considers the ratio of the most
demanded physical resource by NFSs and the most critical
resource on physical nodes as well as the different traffic from
data and control planes.

α = ∑
f∈Fc

max{cc
f /cc

u : c ∈C,u ∈V ac}
⌈
∑
s∈S

nsb f

cap(f)

⌉
+ ∑

f∈Fd

max{cc
f /cc

u : c ∈C,u ∈V ac}
⌈

∑
k∈K(s):s∈S

λ f−1bk

cap(f)

⌉
(1)

Then, the procedure builds a set V h of α host CUs with the
most centralized nodes. If it is not called for the first time, the
procedure builds a new set with the nodes already chosen in
previous iterations. The Closeness Centrality value cent(u) of
each node u∈V ac is given by Equation (2), which verifies the
distance dist(u,v), in terms of latency, between the node u to
all other nodes in G.

cent(u) =
1

∑
v∈V :v6=u

dist(u,v)
,∀u ∈V (2)

Next, steps 3-7 are dedicated to find elementary paths to the
related traffic demands of each slice request s∈ S, and to select
a split setting to the related data-plane flow. First, the Yen()
procedure is called to find θ paths between the origin ok and
target tk nodes of each traffic demand k ∈ K(s). These paths
are generated by Yen’s algorithm [24] in order to find only
paths that respect the end-to-end latency ds while traversing
as many host CUs (those found in step 3) as possible. Since
finding paths for each slice request is done independently,
this procedure is run in parallel, with each thread being
responsible for running Yen’s algorithm on a single traffic
demand. Subsequently, a path is chosen for each traffic demand
by procedure choosePaths() in step 7, which seeks to maximize
the number of host CUs visited by the selected paths. For this
purpose, let xk

p be a binary variable that takes the value 1 if
path p from the set of paths P(k) is chosen to carry the flow
of traffic demand k ∈ K(s); 0 otherwise. Also, let zuv be an
integer variable corresponding to the number of active paths
passing by node u ∈ V h before node v ∈ V h, with V h ⊆ V ac

being the set of host CUs generated in step 3. Finally, let πuv
be the associated cost of each pair of nodes u,v∈V h. In order
to break the inherent symmetry of the proposed formulation,
we set πuv = 1 + 10−4 and πvu = 1− 10−4 for any pair of
nodes u,v ∈V h. Then, the choosePaths() procedure solves the
following Integer Linear Program:

max ∑
u,v∈V h|u6=v

πuvzuv (3)

∑
p∈P(k)

xk
p = 1 ,∀k ∈ K(s) : s ∈ S (4)

∑
k∈K(s)

∑
p∈P(k)

λ
p
uvxk

p = zuv ,∀u,v ∈V h|u 6= v (5)

xk
p ∈ {0,1} ,∀k ∈ K(s)|s ∈ S,∀p ∈ P(k) (6)

zuv ∈ N0 ,∀u,v ∈V h|u 6= v (7)

Since the aim is to share ordered data-plane NFS chains
among as many traffic demands as possible, the objective
function (3) consists in maximizing the number of chosen
paths that have similar structures. For this end, Equation (5)
calculates how many activated paths pass by node u ∈ V h

before node v∈V h, where λ
p
uv is an auxiliary binary parameter

that holds 1 if node u ∈ V h comes before node v ∈ V h in
path p, and 0 otherwise. While Equation (4) ensures that
there is exactly one path selected to each traffic demand k,
(6) and (7) are the variable domain constraints. The proposed

Algorithm 2: packNFSs()
input : An NSDP instance I and a partial solution

CurrentSolution to I.
output: A set N of network functions with the related

hosted NFSs.
1 distGraph ← getDistributedConflictGraph()
2 distCliqueSize ← getClique(distGraph)
3 colorGraph(distGraph, distCliqueSize)
4 N ← buildNFs(distGraph)
5 centGraph ← getCentralizedConflictGraph()
6 centCliqueSize ← getClique(centGraph)
7 while a feasible set of NFs is found or the number of

tries is reached do
8 colorGraph(centGraph, centCliqueSize)
9 N’ ← buildNFs(centGraph)

10 foreach centralized NF n ∈ N′,capacityc ∈C do
11 if ∑

f∈n
cc

f > max{cc
u : c ∈C,u ∈V h} then

12 if number of tries is not reached then
13 stop and go to step 8
14 else
15 stop and return no solution

16 return N∪N′

formulation is then solved by a distributed parallel branch-
and-bound algorithm [25] using multiple threads to solve each
singular branch-and-bound tree’s node.

In what follows, a split setting is selected for each slice in
step 8. For this purpose, the selectSplit() procedure verifies if
there is at least one common host CU visited by the chosen
path of each traffic demand k ∈ K(s) of a given slice s ∈ S.
If that is the case, a split setting is randomly chosen for a
random sub-set S′ ⊆ S of slices requests as follows. For each
slice request s ∈ S′, an NFS f ∈ Fd is randomly chosen to
be the first centralized NFS in the data-plane chain. Then, all
NFSs before the chosen NFSs f in the ordered set Fd are set
to be distributed. The remain sub-set S\S′ of slice requests
are set to have all their data-plane NFSs centralized. On the
other hand, if there is no common host CU visited by the
chosen path of each traffic demand k ∈ K(s) of a given slice
s ∈ S, all related data-plane NFSs are forced to be distributed,
that is, they must be installed in each DU node u ∈O(s). Let
us recall that control-plane NFSs cannot be distributed and
hence are always installed in aggregation/core nodes. Since
selecting a split for each slice request is done independently,
the selectSplit() is run in a parallel way, with each distributed
thread being responsible for a single slice. As output, sets
Fdist(s) and Fcent(s) are generated with the distributed and
centralized network function service copies, respectively.

B. Network Function Service Packing

In what follows, packNFSs() procedure (see Algorithm 2)
generates copies of network functions with different NFS types

in order to process the data from all slices. This decision is
made by translating the related NSDP sub-problem into a Ver-
tex Coloring Problem [26]. To this end, let distGraph = (V d ,
Ed) be the conflict graph associated with the set of distributed
NFSs as follows. A node u in V d is associated with every
tuple (s, f ,u) : s ∈ S, f ∈ Fdist(s),u ∈ O(s) and there exists
an edge in (v,v′) ∈ Ed between any two nodes v = (s, f ,u)
and v′ = (s′, f ′,u′) from V d if (qss′

f f ′q
s′s
f ′ f = 0)∨ (u 6= u′) holds.

Hence, an edge in distGraph exists in order to forbid two
NFSs to be packed together in the same function n while
violating the isolation constraints imposed by the NSs, or
slices s and t do not share any access node u ∈ V du. Once
the conflict graph is generated in step 1 in Algorithm 2,
its maximal clique size is calculated with getCliquesSize()
on step 2 by applying the Grimmett-McDiarmids greedy
algorithm [27]: in each iteration, a random vertex is chosen
and added to the current clique if and only if it is a common
neighbor.

In order to find a clique with maximal size, the greedy
algorithm is run several times in a distributed parallel way (i.e.,
across multiple threads) within the getCliquesSize() procedure.
The best value is then taken into consideration as lower-
bounds to the related vertex coloring problem. This translated
sub-problem is then solved in step 3 by the colorGraph()
procedure, which runs the randomized sequential coloring
algorithm presented by Syslo [28]. It is also run several times
in a distributed parallel way and returns the best coloring (i.e.,
with the minimal chromatic number). Regarding the related
clique size calculated in step 2, the colorGraph() procedure
stops any time an optimal coloring is found (i.e., the clique
size equals to the chromatic number) or a maximal number
of tries is reached. Hence, each NFSs represented by a vertex
with the same color is packed in the same network function
by the buildNFs() procedure in step 4.

Steps 7-15 in Algorithm 2 repeat the previous ones in
order to pack the centralized NFS set, which also includes
control-plane network function services. For this purpose, let
centGraph = (V c, Ec) be the associated conflict graph as
follows. For each centralized NFS f ∈ Fcent(s)|s ∈ S, we
associate a node v in V c with every tuple (s, f). Also, let
ws

f ∈ R+ be the ratio between the quantity of traffic from
slice s and processed by NFS f , over its capacity cap(f) as
calculated by Equation (8).

ws
f =


nsb f

cap(f)
if f ∈ Fc;

∑
k∈K(s)

λ f−1bk

cap(f)
if f ∈ Fd .

,∀s ∈ S,∀ f ∈ Fcent(s) (8)

Moreover, there exists an edge in (v,v′) ∈ Ec between
any two nodes v = (s, f) and v′ = (s′,g′) from V d if

(max{
cc

f ws
f + cc

f ′w
s′
f ′

cc
u

: c ∈ C,u ∈ V h} > 1) ∨ (qss′
f f ′q

s′s
f ′ f +

qss′qs′s < 2) holds. Hence, an edge in centGraph exists in order
to forbid two NFSs to be packed together in the same function

n while violating capacity and isolation constraints. Since the
conflict graph is built regarding only each pair of NFSs, the
coloring solution calculated in step 8 must be checked: if the
sum of physical capacity required by all NFSs hosted by a
given NF n ∈ N′ is greater than the maximal amount that any
host CU can provide, another coloring for the related conflict
graph must be provided if the maximal number of tries is not
reached; otherwise, packNFSs() procedure will be stopped and
no solution will be generated.

C. Network Function Embedding

In step 12 from Algorithm 1, each network function n ∈ N
generated in the previous step is embedded into a physical
node. A copy of each n hosting a distributed NFS f ∈ Fdist(s)
from any slice s ∈ S is generated and embedded into every
associated DU node u ∈ O(s). For network functions hosting
centralized data-plane NFSs, a host node is chosen as follows.
Let S(n) be the set of slices from S and served by NF n ∈ N,
and V (n) the set of host CUs among those visited by all paths
p∈P(k) : s∈ S(n),k∈K(s) as chosen in step 7 of Algorithm 1.
Then, for each NF n hosting centralized network functions
services, a host physical node is randomly chosen among those
in V (n). This procedure is repeated until an embedding that
respects capacity constraints on physical nodes is found or the
maximal number of tries is reached.

D. Traffic Routing

The last sub-problem solved within Algorithm 1 is related
to finding a path for each pair of physical nodes that host
NF copies that must be connected. Algorithm 3 depicts our
approach to generate a solution to this sub-problem. First,
let hostPairs be the set of such pair of nodes. Then, a set
paths(u,v) of paths to each pair of nodes in hostPairs is

Algorithm 3: routing()
input : An NSDP instance I(G,S,F,N,C) and a Current

Solution to the problem.
output: A path to each pair u,v ∈V hosting NFs that

must be connected.
1 foreach u,v ∈ hostPairs do
2 paths(u,v) ← getPaths(); /* By Yen’s algorithm */

3 eliminate all paths in paths(u,v) that does not support
the expected traffic volume between u and v

4 if paths(u,v) = /0 then stop and return /0;

5 while the maximal number of tries is not reached do
6 randomly choose a path to each pair of nodes in

hostPairs
7 if all paths respect link capacity and end-to-end

latency constraints then
8 return selected paths
9 else

10 stop and go to step 6

11 return /0

generated. For this purpose, Yen’s algorithm [24] is used to
find θ shortest paths between each node pair (u,v)∈ hostPairs
that respects the maximal latency imposed by related NF
copies. Then, all paths that do not support the expected
volume between the related NFs are deleted. Since finding
paths for each flow is done independently, this procedure is
run in a distributed parallel way: each thread is responsible
for running Yen’s algorithm for a given flow and verifying
the capacity constraints. Finally, a path from path(u,v) is
randomly chosen for each u,v ∈ hostPairs. If the combined
traffic volume of the selected paths does not respect the
capacity of the related physical links, another selection of paths
is made. The procedure returns no path if the number of tries
of path selection is reached or no feasible path is generated in
steps 1-4.

E. Final Solution

If a feasible solution is generated, its cost is then calculated
in step 15 of Algorithm 1 as follows:

cost(Solution) = ∑
f∈F

∑
n∈N

∑
u∈V

∑
c∈C

µ
c
uy f

nu (9)

Where y f
nu ∈Z0 and µc

u are the total number of NFSs f packed
into NF n and installed on node u, and the related cost per
unit of resource usage c ∈ C, respectively. It is worthwhile
mentioning that the first cost of BestSolution is set to +∞

in step 1. Then, step 17 tests if a better solution should be
found, where rand() uniformly generates a random number
between 0 and 1 and ρ(t) = 1−φ/t is a function depending
on the time t (in seconds) that passed until such verification
and a parameterizable value φ . For instance, setting φ to 60,
the probability P(rand()≥ ρ) that rand() is greater than ρ is
equal to 100% if t is equal to 60 seconds or less, and less than
50% (resp. 10%) if t is equal to 120 (resp. 600) seconds. If the
test returns true, then another solution is generated. Otherwise,
the best solution found theretofore is returned as output and
the procedure stops.

F. Algorithm’s Time Complexity

Table II summarizes the time complexity of each procedure
within Algorithm 1, where K = ∑

s∈S
|K(s)|. All other notations

TABLE II: Time Complexity

Main Procedures Asymptotic Complexity
chooseCU() O(F +V)
getPaths() O(KV 4)
choosePaths() Solver’s black box’s complexity
selectSplit() O(SFd)
packNFSs() O(SF +V 3 +N), V from conflict graph
embedNFs() O(N)
colorGraph() O(V 2), V from conflict graph
routing() O(V 4)
Auxiliary Procedures Asymptotic Complexity
getDistributedConflictGraph() O(SFd)
getCentralizedConflictGraph() O(SF)
getCliqueSize() O(V 4), V from conflict graph
BuildNFs() O(N)

TABLE III: Instance Sizes

Instance size |V | Density* |S| |K| |Fd | |Fc|
Tiny (T) 10 0.15 2 1 2 2
Small (S) 15 0.10 2 2 4 2

Medium-Small (SM) 20 0.15 4 3 4 3
Medium (M) 25 0.15 4 8 6 4

Medium-Big (MB) 30 0.20 4 8 6 6
Big (B) 35 0.20 8 8 8 6

Extra-Big (EB) 40 0.25 8 8 8 8
* Ratio between exiting and theoretically possible number of arcs.

TABLE IV: Instance Classes

Latency Description
Low (L) The maximum latency d f g between two NFSs and the

end-to-end latency ds imposed by each slice request
s∈ S is set respectively to between 50% and 150% and
to between 250% and 500% of the average latency on
the physical links, which is set to 6 milleseconds.

High (H) The maximum latency d f g between two NFSs and
the end-to-end latency ds of each slice s ∈ S is
set respectively to between 200% and 400% and to
between 300% and 1000% of the average latency on
the physical links.

Capacity Description
Tight (T) The available bandwidth ba on the physical links

have between 50% and 100% of the average volume
(without compression) generated by the slices. In
addition, each physical node u ∈ V\V ap has enough
capacity to host between 1 and 3 copies of each NFS
type; application nodes has no available capacity.

Moderate (M) The available bandwidth ba on the physical links
have between 200% and 300% of the average volume
(without compression) generated by the slices. In
addition, each physical node u ∈ V\V ap has enough
capacity to host between 5 and 8 copies of each NFS
type; application nodes has no available capacity.

Isolation Description
Weak (W) 10% of isolation parameters qst and qst

f g are set to 0;
they are randomly chosen.

Strong (S) 75% of isolation parameters qst and qst
f g are set to 0;

they are randomly chosen.

follow those presented in Table I. Let us recall that, besides
chooseCU() and embedNFs(), all procedures are able to be
run in a distributed parallel way.

IV. NUMERICAL EXPERIMENTS

Let us first detail the simulation settings. We propose
different instance sizes (see Table III), in which we set the
processing capacity cap(f) of each NFS in Fd to between
50% and 100% of the average volume generated by the traffic
demands. For NFSs of Fc, this value was set to between
50% and 100% of the volume related to the total number
ns of expected UEs connected to the slice. Also, the total
amount b f g of traffic between two functions from F(s)∪G(s)
was set to 1 Kbps per UE. As shown in Table IV, different
instance classes are also proposed, which are related to the
ratio between the resource required by the slices and those
available on the physical network, and also between the latency
on the physical links and the threshold imposed by slices
and pairs of NFSs. The complete reference of each generated
instance is given by joining the acronyms of each size/class

Fig. 2: Quantitative analyses: tiny and small instances.

name from tables III and IV. For example, < S,L,M,S >
refers to a small instance with low latency threshold, moderate
capacity requirements, and strong isolation constraints. We
implemented our model in a Julia-JuMP environment using
ILOG CPLEX 12.10 as the linear solver. Our tests were run
on a Linux server with an Intel Xeon E5-2650 CPU. Also,
we provided 12 threads for each distributed parallel procedure.
Finally, for each instance size/class, 30 different instances were
randomly generated following the parameters in Tables III
and IV. The data-set and the source code are available on [29].

A. Quantitative Analyses
We first analyze the efficiency of the proposed Math-

Heuristic. For this purpose, we compare it with the mixed-
integer linear programming formulation, hereafter referred to
as to MILP, introduced in [8], whose objective function
is replaced by the solution cost (9). Concerning step 17
of Algorithm 1, we set ρ to 1− 60/seconds for tiny and
small instances and 1−600/seconds for all other sizes in our
simulations.

Fig. 2 shows different results on tiny and small instances.
First, as seen in Fig. 2a and Fig. 2f, approximately 75% (resp.
70%) of all tiny (resp. small) instances were solved in less than
130 (resp. 220) seconds. We also observe that tiny (resp. small)
instances with moderate (resp. tight) capacity constraints were
solved faster in general. For instance, the average runtime
was roughly 98 and 118 (resp. 85 and 120) seconds on
< T,M,L,W > and < T,T,L,W > (resp. < S,T,L,W > and
< S,M,L,W >) instance classes, respectively. While there is
no strong impact on the number of feasible solutions found by
the Math-heuristic on small-size instances (see Fig. 2g), this
behavior led to an increase in the number of solutions for tiny-
size instances (see Fig. 2b). In fact, 75% of < T,M,L,W >
and < T,M,L,S > (resp. < T,T,H,W > and < T,T,L,W >)
instance classes had more (resp. less) than 1700 (resp. 900)
feasible solutions found within 180 seconds of execution time.
Considering all instance classes, the average time needed
to find a feasible solution for tiny and small instances was

approximately 1 and 3 seconds, respectively. Moreover, as seen
in Fig. 2c and Fig. 2h, the best solution (not necessarily the
optimal one) was found in less than 300 rounds for more than
50% of all tiny and small instances. Due to greater feasible
solution space, more iterations were needed for instances
with moderate capacity constraints. In fact, the best solution
could be found only after 800 (resp. 1000) rounds for some
< T,M,L,S > (resp. < S,M,L,W >) instances.

Fig. 2d and Fig. 2i depict the final gap related to the best
solution found by the proposed Math-heuristic and the optimal
value obtained by MILP. First, we observe that more than 80%
(resp 75%) of tiny-size (resp. small-size) instances had a gap
smaller than 2% (resp. 4%). Also, we do not observe any
strong impact on the final gap related to different instance
classes. In fact, 100% of all instances solved by the Math-
Heuristic had a final gap less or equal to 10%. However, the
average gap of each feasible solution for tiny-size instances
was better when strong isolation and strict latency constraints
were applied. As seen in Fig. 2e and Fig. 2j, the average gap
on < T,T,L,S > and < T,M,H,W > (resp. < S,M,L,S > and
< S,T,H,W >) instances were respectively 2% and 5% (resp.
5% and 8%).

Table V shows the total execution time and final gap
on medium-small, medium, medium big, big, and extra big
instances. In each simulation, an instance class (i.e., a com-
bination of capacity, latency, and isolation constraints; see
Table IV) was randomly chosen. While the third and fourth

TABLE V: Quantitative analyses: from medium small to extra
big instances

Instance Size MILP Math-Heuristic
Runtime (s) Gap (%) Runtime (s) Gap (%)

Medium-Small 2165 ± 364 0 732 ± 87 3.2 ± 0.5
Medium 3600∗ 5.7 ± 2.1 803± 122 4.5±0.7
Medium-Big 3600∗ 36.3 ± 4.8 894 ± 109 4.3±1.2
Big 3600∗ ** 997 ± 84 8.2±3.6
Extra-Big 3600∗ ** 1245 ± 241 11.5±2.4
* Time limit reached. ** No feasible solution was found.

Fig. 3: Qualitative analyses: tiny and small instances.

columns of Table V are related to MILP, the two last columns
depict the values when the proposed Math-Heuristic was ap-
plied. In both cases, the final gap is related to the best solution
and the lower bound obtained from the linear relaxation of
MILP. First, we observe that the Math-Heuristic was faster
than MILP in all instance sizes. While MILP reached the time
limit in almost all instance sizes, our Math-Heuristic needed
less than 20 minutes to find a good solution. As seen in
Table V, the average gap could be reduced from 36.3% to
4.3% on medium-big instances. Moreover, while MILP could
not find any feasible integer solution for big and extra big
instances within 1 hour, the average runtime and final gap
were respectively 997 seconds and 8.2% (resp. 1245 seconds
and 11.5%) when Math-Heuristic was applied on big (resp.
extra big) instances.

B. Qualitative Analyses

To better understand the impact of our math-heuristic on
the physical network, we now analyze different parameters
related to both physical nodes and physical links, as well as
the end-to-end (e2e) latency on the data-plane flow. Fig. 3
shows the impact of each approach on the aforementioned
network parameters; the error bars correspond to the related
95% confidence interval. Compared to MILP, more physical
links are used to carry the expected slice flows in the final
solution found by the proposed Math-Heuristic. For instance,
the average link usage ratio was respectively 62% and 76%
(resp. 53% and 58%) on < T,M,H,S > and < S,M,H,S >
when Math-heuristic (resp. MILP) was applied, (see Fig. 3a
and Fig. 3f). However, the average load on active links
remains the same on tiny instances (see Fig. 3b) and on
small instances without strict capacity constraints (see Fig. 3g).
Also, as seen in Fig. 3g, the Math-heuristic could reduce the
average load on active links on small instances with strict
capacity constraints, especially those with strong isolation
restrictions: compared to MILP, we observe a reduction from

58% (resp. 55%) to 40% (resp. 38%) on < S,T,L,S > (res.
< S,T,H,S >) instances. Regarding all instance classes, the
average reduction was approximately 16% on small instances.
Finally, we observe an adverse effect on the e2e latency only
on small instances without strict capacity constraints applying
the proposed Math-Heuristic, especially on instances without
strict latency constraints. Even though all latency constraints
are respected (i.e., e2e latency and between each pair of NFSs)
by both approaches, the average e2e data-plane latency was
respectively 0.5 ms and 2.55 ms (resp. 0.38 ms and 1.89 ms)
on < T,M,H,S > and < S,M,H,W > when Math-Heuristic
(resp. MILP) was applied; regarding all instance classes, the
average increase on the e2e latency was equal to 14% and
25% on tiny and small instances, respectively (see Fig. 3c and
Fig. 3h).

We also observe similar behavior on physical nodes. The
proposed Math-Heuristic led to more nodes hosting at least
one network function than the MILP formulation. As seen
in Fig.3i, the number of host nodes considerably increased
when the Math-heuristic was applied on small instances,
especially those with strong isolation constraints. For instance,
the proportion of host nodes increased from 17% (resp.
17%) with MILP to 36% (resp. 27%) with Math-Heuristic
on < S,T,L,S > (resp. < S,M,L,S >) instances; regarding all
instance classes, the average ratio increased by roughly 2% and
47% on tiny and small instances, respectively (see Fig.3d and
Fig.3i). This behavior, however, led to an important decreasing
in the average node load, especially on small-size instances
with strict capacity and isolation constraints. As seen in Fig. 3j,
the Math-heuristic could reduced the average load on host
nodes from 41% (resp. 30%) to 18% on < S,T,L,S > (res.
< S,T,H,S >) instances. Regarding all instance classes, the
average reduction was approximately 35% on small instances
(see Fig. 3j); we did not observe an important impact on the
average load of physical nodes on tiny instances (see Fig. 3e).

V. CONCLUDING REMARKS

In this work, we presented and discussed the Network Slice
Design Problem in 5G systems, proposing an open-access
framework based on a Math-heuristic to address the under-
lying optimization problem. The overall idea of the proposed
approach relies on decomposing the NSDP into several sub-
problems and sequentially solve them while encompassing
control-plane and data-plane separation and novel mapping
and decomposition dimensions influencing the placement and
interconnection of slices. Numerical experiments showed the
efficiency of our approach on different instance classes, which
could attain near-optimal solutions in a competitive runtime.
Comparing it to a mixed-integer linear programming formu-
lation, the proposed Math-Heuristic could reduce the average
runtime and the final gap by up to 78% and 90%, respec-
tively. Moreover, our approach could reduce the congestion
on the physical network, better balancing the data flow while
considering all technical constraints. For instance, the average
load on physical links and physical nodes could be reduced
by 16% and 35%, respectively.

On a practical note, as our Math-Heuristic could reduce
the average load on physical nodes and physical links, a
tough but interesting extension is to use it within an online
algorithm. Our approach might potentially increase the slice
acceptance ratio, that is the ratio between the number of
embedded slices and the number of requests, since the solution
proposed by the Math-Heuristic better distributes the data flow
among several nodes and links, leading to a decreasing in the
network congestion. More tests must therefore be carried out
to assess the effects of the proposed Math-heuristic on such
scenarios and before conclusions can be drawn. Also, let us
recall that, as the proposed approach is a Math-Heuristic, the
optimality of the solutions found by our algorithm cannot be
ensured. However, as seen in the presented numerical results,
the efficiency of our algorithm offsets this aspect and led
to finding solutions with a small average gap on relatively
short execution time, even on big instances. Thus, it would
be interesting and most probably very powerful to use it as a
primal heuristic to boost the efficiency of an exact algorithm.

REFERENCES

[1] S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati, “Network
function virtualization in 5G,” IEEE Comm. Mag., vol. 54, no. 4, pp.
84–91, 2016.

[2] T. Chen, M. Matinmikko, X. Chen, X. Zhou, and P. Ahokangas, “Soft-
ware defined mobile networks: concept, survey, and research directions,”
IEEE Comm. Mag., vol. 53, no. 11, pp. 126–133.

[3] 3rd Generation Partnership Project, “3GPP TR 38.913 V14.3.0; Study
on scenarios and requirements for next generation access technologies
,” 2017.

[4] ——, “3GPP TR 28.801 V15.1.0: Study on management and orchestra-
tion of network slicing for next generation network ,” 2018.

[5] ——, “3GPP TS 23.501 V15.4.0: System Architecture for the 5G
System ,” 2018.

[6] O. Chabbouh, S. B. Rejeb, N. Agoulmine, and Z. Choukair, “Cloud
RAN architecture model based upon flexible RAN functionalities split
for 5G networks,” in WAINA 2017.

[7] L. M. Larsen, A. Checko, and H. L. Christiansen, “A survey of the
functional splits proposed for 5G mobile crosshaul networks,” IEEE
Comm. Surveys & Tutorials, vol. 21, no. 1, pp. 146–172, 2018.

[8] W. da Silva Coelho, A. Benhamiche, N. Perrot, and S. Secci, “On the
impact of novel function mappings, sharing policies, and split settings
in network slice design,” in International Conference on Network and
Service Management, 2020.

[9] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Comm. Surveys & Tuto-
rials, vol. 15, no. 4, pp. 1888–1906, 2013.

[10] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in 2015 IEEE 4th In-
ternational Conference on Cloud Networking (CloudNet). IEEE, 2015,
pp. 171–177.

[11] J. J. A. Esteves, A. Boubendir, F. Guillemin, and P. Sens, “Location-
based data model for optimized network slice placement,” in 2020 6th
IEEE Conference on Network Softwarization (NetSoft). IEEE, 2020,
pp. 404–412.

[12] ——, “Heuristic for edge-enabled network slicing optimization using
the power of two choices,” in 2020 16th International Conference on
Network and Service Management (CNSM). IEEE, 2020, pp. 1–9.

[13] A. Fendt, C. Mannweiler, L. C. Schmelz, and B. Bauer, “A formal
optimization model for 5g mobile network slice resource allocation,” in
2018 IEEE 9th Annual Information Technology, Electronics and Mobile
Communication Conference (IEMCON). IEEE, 2018, pp. 101–106.

[14] J. Liu, B. Zhao, M. Shao, Q. Yang, and G. Simon, “Provisioning
optimization for determining and embedding 5g end-to-end information
centric network slice,” IEEE Transactions on Network and Service
Management, 2020.

[15] A. Baumgartner, T. Bauschert, A. M. Koster, and V. S. Reddy, “Op-
timisation models for robust and survivable network slice design: A
comparative analysis,” in GLOBECOM 2017-2017 IEEE Global Com-
munications Conference. IEEE, 2017, pp. 1–7.

[16] B. Tan, J. Wu, Y. Li, H. Cui, W. Yu, and C. W. Chen, “Analog coded
softcast: A network slice design for multimedia broadcast/multicast,”
IEEE Transactions on Multimedia, vol. 19, no. 10, pp. 2293–2306, 2017.

[17] X. Wang, L. Wang, S. E. Elayoubi, A. Conte, B. Mukherjee, and
C. Cavdar, “Centralize or distribute? a techno-economic study to design
a low-cost cloud radio access network,” in ICC. IEEE, 2017.

[18] F. Malandrino and C.-F. Chiasserini, “Getting the most out of your vnfs:
Flexible assignment of service priorities in 5G,” in WoWMoM 2019.

[19] T. Truong-Huu, P. M. Mohan, and M. Gurusamy, “Service chain em-
bedding for diversified 5G slices with virtual network function sharing,”
IEEE Comm. Letters, vol. 23, no. 5, pp. 826–829, 2019.

[20] M. R. Crippa, P. Arnold, V. Friderikos, B. Gajic, C. Guerrero, O. Hol-
land, I. L. Pavon, V. Sciancalepore, D. von Hugo, S. Wong et al.,
“Resource sharing for a 5G multi-tenant and multi-service architecture,”
in European Wireless Conference. VDE, 2017.

[21] I. Alawe, Y. Hadjadj-Aoul, A. Ksentini, P. Bertin, and D. Darche, “On
the scalability of 5G core network: the AMF case,” in CCNC. IEEE,
2018, pp. 1–6.

[22] I. Alawe, Y. Hadjadj-Aoul, A. Ksentini, P. Bertin, C. Viho, and
D. Darche, “Smart scaling of the 5G core network: an rnn-based
approach,” in 2018 GLOBECOM. IEEE, 2018, pp. 1–6.

[23] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive VNF scaling and flow
routing with proactive demand prediction,” in INFOCOM. IEEE, 2018,
pp. 486–494.

[24] J. Y. Yen, “An algorithm for finding shortest routes from all source
nodes to a given destination in general networks,” Quarterly of Applied
Mathematics, vol. 27, no. 4, pp. 526–530, 1970.

[25] Solving a MIP with distributed parallel optimization.
IBM. [consulted on 18th December 2020]. Available on:
https://www.ibm.com/docs/en/icos/20.1.0?topic=optimization-solving-
mip-distributed-parallel.

[26] E. Malaguti and P. Toth, “A survey on vertex coloring problems,”
International transactions in operational research, vol. 17, no. 1, pp.
1–34, 2010.

[27] G. R. Grimmett and C. J. McDiarmid, “On colouring random graphs,”
in Mathematical Proceedings of the Cambridge Philosophical Society,
vol. 77, no. 2. Cambridge University Press, 1975, pp. 313–324.

[28] M. M. Sysło, “Sequential coloring versus welsh-powell bound,” Discrete
mathematics, vol. 74, no. 1-2, pp. 241–243, 1989.

[29] W. da Silva Coelho. (2021) A Math-Heuristic for the NSDP: source
code and instances. [Online]. Available: https://github.com/wdscoelho/
NSDP heuristic

