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One remedy to the misuse of p-values transforms them to bounds on Bayes factors. With a prior probability of the null hypothesis, such a bound gives a lower bound on the posterior probability. Unfortunately, knowing a posterior probability is above some number cannot ensure that the null hypothesis is improbable enough to warrant its rejection. For example, if the lower bound is 0.0001, that implies that the posterior probability is at least 0.0001 but does not imply it is lower than 0.05 or even 0.9.

A fiducial argument suggests an alternative estimate of the posterior probability that the null hypothesis is true. In the case that the prior probability of the null hypothesis is 50%, the estimated posterior probability is about p (ln p)^2 for low p. In other cases, p in the formula is the p-value calibrated by multiplying it by the prior odds of the null hypothesis.

Since the fiducial estimate of the posterior probability is greater than the lower bounds, its use in place of a bound leads to more stringent hypothesis testing. Making that replacement in a rationale for 0.005 as the significance level reduces the level to 0.001.

Introduction

Repeated failures to replicate a large fraction of research findings is now considered a crisis [START_REF] Seibold | Statisticians, roll up your sleeves! there's a crisis to be solved[END_REF] in scientific fields as diverse as biomedicine [START_REF] Ioannidis | Why most published research findings are false[END_REF], neuroscience [START_REF] Nieuwenhuis | Erroneous analyses of interactions in neuroscience: a problem of significance[END_REF][START_REF] Button | Power failure: why small sample size undermines the reliability of neuroscience[END_REF], more general biology [START_REF] Halsey | The reign of the <i>p</i>-value is over: what alternative analyses could we employ to fill the power vacuum?[END_REF], and especially psychology [START_REF] Hughes | Psychology in Crisis[END_REF], perhaps due to its small sample sizes [START_REF] Bausell | The Problem with Science: The Reproducibility Crisis and what to Do about it[END_REF]. In that field, the practice of frequentist hypothesis testing at the 0.05 threshold of statistical significance has taken much of the blame (e.g., Open Science Collaboration, 2015), even leading to a ban on p-values (Trafimow and Marks, 2015). Speaking more generally, [START_REF] Lash | The Harm Done to Reproducibility by the Culture of Null Hypothesis Significance Testing[END_REF] went as far as to argue that the "culture of null hypothesis significance testing raises the foremost barrier to the goal of reproducible science." The costs may include an estimated 28 billion US dollars per year in pre-clinical research that cannot be replicated [START_REF] Freedman | The economics of reproducibility in preclinical research[END_REF].

Such concerns compelled the American Statistical Association to issue an official response that discouraged the use of p-value thresholds to determine statistical significance [START_REF] Wasserstein | The ASA's statement on p-values: Context, process, and purpose[END_REF]. Then, as a stopgap to reduce the rate of false positives until a better solution emerged, many statisticians instead proposed a more stringent p-value threshold for social sciences [START_REF] Benjamin | Redefine statistical significance[END_REF]. Five years after the ASA statement, [START_REF] Matthews | The p-value statement, five years on[END_REF] expressed both disappointment in the lack of progress (cf. [START_REF] Seibold | Statisticians, roll up your sleeves! there's a crisis to be solved[END_REF] and hope in calculator-friendly methods that make "p-values work harder" by transforming them into more readily understood quantities.

One strategy in that spirit is to transform a p-value into a lower bound on the Bayes factor that increases with the posterior probability of a point null hypothesis (e.g., [START_REF] Held | On p-values and Bayes factors[END_REF][START_REF] Benjamin | Three recommendations for improving the use of p-values[END_REF][START_REF] Habiger | Publication policies for replicable research and the community-wide false discovery rate[END_REF]. A drawback is that no matter how small the lower bounds on the Bayes factor and posterior probability are, the null hypothesis could still have a very high posterior probability [START_REF] Goodman | Toward evidence-based medical statistics. 2: The Bayes factor[END_REF][START_REF] Sellke | Calibration of p values for testing precise null hypotheses[END_REF][START_REF] Bickel | Sharpen statistical significance: Evidence thresholds and Bayes factors sharpened into Occam's razor[END_REF][START_REF] Chen | The minimum Bayes factor hypothesis test for correlations and partial correlations[END_REF]. For that reason, [START_REF] Kline | Bayes factors based on p-values and sets of priors with restricted strength[END_REF] and Bickel (2021b) instead proposed upper bounds for situations in which either a bound on a prior normal variance [START_REF] Kline | Bayes factors based on p-values and sets of priors with restricted strength[END_REF] or a threshold for Bayesian model checking (Bickel, 2021b) can be specified. For more general settings, it appears that no practical upper bound exists [START_REF] Held | On p-values and Bayes factors[END_REF].

In the absence of a generally applicable upper bound on the posterior probability, an alternative strategy is to seek a conservative estimate of the posterior probability that the null hypothesis is approximately true. Section 2 proposes such an estimate that can be easily calculated on a phone Figure 1: The posterior probability of the null hypothesis according to the conservative estimate (solid black), the lower bound (dashed black), and the anti-conservative estimate that is defined by equation ( 7) in Section 2.1 (solid gray) under the assumption that the prior probability is 50%. from a p-value. For example, it is

(1 + p) p ln 1 + 1 p 2 , (1) 
if the prior probability of the null hypothesis were 50%. (Otherwise, the p in the formula is replaced with the product of the p-value and the prior odds.) The estimated posterior probability further simplifies to p (ln p) 2 if the p-value is sufficiently small (p ≈ 0). That is a factor of -e -1 ln p more conservative than the popular -e p ln p lower bound of the Bayes factor derived in [START_REF] Sellke | Calibration of p values for testing precise null hypotheses[END_REF] and recommended by [START_REF] Benjamin | Three recommendations for improving the use of p-values[END_REF], where e = ln -1 1 ≈ 2.72. That bound would also be the lower bound of the posterior probability of the null hypothesis if its prior probability is 50% and if p ≈ 0.

For in that case, the posterior probability is approximately the posterior odds, the product of the prior odds and the Bayes factor. The impact of using the conservative estimate in place of the lower bound is seen in Figure 1.

Example 1. (Following the Higgs boson example of Bickel (2021b).) The 5-sigma test result indicating evidence for the Higgs boson corresponds to a p-value of about 5 × 10 -7 under normality [START_REF] O'hagan | Higgs Boson -digest and discussion[END_REF]. Assuming 50% as the prior probability of the null hypothesis that there is no Higgs boson, the lower bound of the posterior probability is approximately 2×10 -5 . Unfortunately, that does not in itself warrant rejecting the null hypothesis, for it only says its posterior probabil-ity is somewhere between 2 × 10 -5 and 1. There is not enough information to say if it is a low probability such as 5 × 10 -5 or a high probability such as 0.9.

Equation (1) gives 1 × 10 -4 as a conservative estimate of the posterior probability of the null hypothesis. While it is 5 times the lower bound, it is still low enough to confidently reject the null hypothesis. An easy way to compute the estimate on a phone is to enter (1+p)p*ln(1+1/p)^2 where p=5.0e-7

or in this case just "p*ln(p)^2 where p=5.0e-7" at https://www.wolframalpha.com/ (accessed 30 November 2021).

What about less extreme p-values? The good news is that the p-value need not be as low as in the example to conclude that the null hypothesis is improbable enough to reject it. The bad news is that the p-value may need to be lower than 0.001 (Section 3). This paper closes with additional information on the false discovery rates (Appendix A) and fiducial inference (Appendix B) that underlies the proposed estimator.

Fiducial posterior probabilities

The method of Section 2.1 averages Bayesian models with respect to a fiducial distribution such as a confidence distribution [START_REF] Bickel | A note on fiducial model averaging as an alternative to checking Bayesian and frequentist models[END_REF]. The anti-conservative bias of that approach toward false positives is removed by conditioning on the observed p-value (Section 2.2).

Fiducial-Bayes false discovery rates

Reserving p for the observed p-value that tests H 0 , let P denote the corresponding random variable.

The Bayes false discovery rate at significance level α is defined by BFDR (α) = Pr (H 0 | P ≤ α) for any α between 0 and 1, where H 0 is the null hypothesis, and was originally defined for simultaneously testing multiple hypotheses [START_REF] Efron | Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction[END_REF]. By Bayes's theorem,

BFDR (α) = Pr (H 0 ) F 0 (α) F (α) , (2) 
where F 0 (p) = Pr (P ≤ α| H 0 ) and F (α) = Pr (P ≤ α). This section proposes an estimator of BFDR (α) based on fiducial probabilities as estimates of Bayesian posterior probabilities conditional on H 1 , the alternative hypothesis, as in Bickel (2021c,a).

Consider φ, a hyperparameter that determines F φ , the bijective distribution function of P , and Pr φ , the corresponding probability measure. In general, each value of φ refers to a different Bayesian model that includes a joint prior distribution of all of its unknown quantities. In this paper, φ is unknown but fixed, unlike under a hierarchical Bayesian approach, in which φ would instead be a random variable with some hyperprior distribution, a prior distribution of Bayesian models. In that notation, the probability that the p-value is less than or equal to the observed p-value is

Pr φ (P ≤ p) = F φ (p) . (3) 
Bayesian models are often checked using a p-value constructed at a higher level than the p-value used to test a conventional null hypothesis such as H 0 . The next result establishes that when p, the p-value testing H 0 , is also seen as an observed test statistic and as a realization of P as a random test statistic, F φ (P ) is a higher-level p-value. Instead of testing H 0 , it tests the Bayesian model labeled by φ.

Proposition 1. For every value of φ in the hyperparameter space, F φ (P ) is a one-sided prior predictive p-value testing the Bayesian model φ as the null hypothesis in the sense that F φ (P ) ∼ U (0, 1).

Proof. The assumptions that P ∼ F φ and that F φ is bijective imply that F φ (P ) ∼ U (0, 1) for any φ and thus that it is a valid p-value. Its one-sidedness is clear from the form F φ (p) = Pr φ (P ≤ p)

when considering P as a test statistic and p as its observed value.

Bickel (2021b) used that prior predictive p-value to calibrate each p by transforming it to an upper bound of BFDR (α).

Since, by Proposition 1, F φ (P ) has the same distribution for all φ, we can apply Fisher's fiducial argument with F φ (P ) as the pivotal quantity (Appendix B.1). He reasoned that, in the absence of conflicting information, the pre-observation pivotal quantity (with each observable quantity as a random variable given a parameter value) and the post-observation pivotal quantity (with the parameter as a random variable given the observations) have the same probability distribution [START_REF] Fisher | The logical inversion of the notion of the random variable[END_REF][START_REF] Fisher | Statistical Methods and Scientific Inference[END_REF][START_REF] Sprott | Statistical Inference in Science[END_REF]. Were there no conflicting information, the reasoning would apply to F φ (P ) as a pivotal quantity depending on φ as the parameter and on p as the observation: since F φ (P ) ∼ U (0, 1) for any value of φ in the hyperparameter space, the fiducial argument would conclude that F ϕ (p) ∼ U (0, 1) after observing that P = p, where ϕ is a random variable meeting that constraint. That fiducial reasoning is summarized in 

F φ (p) = Pr φ (P ≤ p) = Pr (H 0 ) Pr (P ≤ p | H 0 ) + Pr (H 1 ) Pr φ (P ≤ p | H 1 ) ,
we have

Pr (H 0 ) Pr (P ≤ p | H 0 ) ≤ F φ (p) ≤ Pr (H 0 ) Pr (P ≤ p | H 0 ) + Pr (H 1 ) ,
giving Pr (H 0 ) p and Pr (H 0 ) p + Pr (H 1 ) as exact or approximate bounds, depending on whether the data are continuous or discrete. As a result, F ϕ (p) is not uniform between 0 and 1 but rather uniform between 0 and 1 conditional on its being between the bounds. Therefore, the conditional probability distribution of F ϕ (p) is uniform between the bounds:

F ϕ (p) ∼ U (Pr (H 0 ) Pr (P ≤ p | H 0 ) , Pr (H 0 ) Pr (P ≤ p | H 0 ) + Pr (H 1 )) . (4) 
That way of applying conditional probability is a key element of modern fiducial inference (Appendix B.2).

As with equation ( 2), Bayes's theorem yields this Bayes false discovery rate at the observed p-value (α = p):

BFDR φ (p) := Pr φ (H 0 | P ≤ p) = Pr (H 0 ) Pr (P ≤ p | H 0 ) Pr φ (P ≤ p) = Pr (H 0 ) Pr (P ≤ p | H 0 ) F φ (p) ,
with the denominator from equation (3). Since the true value of φ underlying that equation is unknown, the true Bayes false discovery rate BFDR φ (p) corresponds to the random variable

BFDR ϕ (p) = Pr (H 0 ) Pr (P ≤ p | H 0 ) F ϕ (p) (5) 
in the same way that the random variable ϕ corresponds the fixed hyperparameter φ. Its expectation value with respect to ϕ defines Pr (H 0 : P ≤ p), the fiducial-Bayes false discovery rate at the observed p-value, as this probability of H 0 given P ≤ p:

Pr (H 0 : P ≤ p) := E (BFDR ϕ (p)) . (6) 
In the framework of Bickel (2020a), Pr (H 1 : P ≤ p) = 1 -Pr (H 0 : P ≤ p) would be interpreted as the extent to which Pr (H 0 ) and the observation that P ≤ p constitute enough evidence to conclude that H 0 is false.

Lemma 1. If the distribution of P given H 0 is U (0, 1) and if 0 < Pr (H 0 ) < 1 and 0 < p < 1, then Pr (H 0 :

P ≤ p) = odds (H 0 ) p ln 1 + 1 odds (H 0 ) p , (7) 
where odds (H 0 ) = Pr (H 0 ) / Pr (H 1 ), which is the prior odds of H 0 .

Proof. Since P ∼ U (0, 1) conditional on H 0 , we have Pr (P ≤ p | H 0 ) = p. Substitution into equation ( 5) yields

BFDR ϕ (p) = Pr (H 0 ) p F ϕ (p) ,
and substitution into formula (4) yields

F ϕ (p) ∼ U (Pr (H 0 ) p, Pr (H 0 ) p + Pr (H 1 )) .

Then equation (6) gives

Pr (H 0 :

P ≤ p) = E Pr (H 0 ) p F ϕ (p) = E Q∼U(Pr(H 0) p,Pr(H 0) p + Pr(H 1)) Pr (H 0 ) p Q = 1 Pr (H 1 ) Pr(H 0 ) p + Pr(H 1) Pr(H 0) p Pr (H 0 ) p q d q = Pr (H 0 ) p 1 -Pr (H 0 ) ln Pr (H 0 ) p + Pr (H 1 ) Pr (H 0 ) p = Pr (H 0 ) 1 -Pr (H 0 ) p ln 1 + 1 -Pr (H 0 ) Pr (H 0 ) p .
Lemma 1 reveals that Pr (H 0 : P ≤ p) is a function of odds (H 0 ) p. That suggests modifying a p-value for prior information by multiplying it by odds (H 0 ) to generate the prior-informed p-value odds (H 0 ) p.

Example 2. (Following the ESP example of Bickel (2021b).) Suppose a hypothesis of an ESP effect has an estimated prior probability on the order of Pr (H 1 ) = 10 -7 since even very small systematic biases could be ruled out. Assuming the p-value is 3 × 10 -4 , the prior-informed p-value is on the order of odds (H 0 ) p ≈ 3 × 10 -4 /10 -7 = 3000. Plugging that into equation (7) gives

Pr (H 1 : P ≤ p) = 1 -Pr (H 0 : P ≤ p) ≈ 1 -3000 ln 1 + 1 3000 = 2 × 10 -6

as the probability that the ESP hypothesis is true in the absence of systematic error. That means Pr (H 1 ) and the observation that P ≤ p constitute evidence that decisively refutes H 1 in spite of the small p-value, for Pr (H 1 ) is far smaller.

On a previous method of multiplicatively modifying a p-value for prior information and on the relevance of choosing a small Pr (H 1 ) to genomics data, see Bickel (2019a, Appendix A).

Fiducial false discovery rates

Figure 1 indicates that Pr (H 0 : P ≤ p), the fiducial-Bayes false discovery rate, is substantially lower than the lower bound defined in Section 1. That is a case of the anti-conservative bias resulting from evaluating the Bayes false discovery rate at α = p, which also poses a largely unrecognized problem for testing multiple hypotheses [START_REF] Hong | Local false discovery rate facilitates comparison of different microarray experiments[END_REF][START_REF] Bickel | Correcting false discovery rates for their bias toward false positives[END_REF]Bickel, 2019a, chapter 6).

Due to that bias in testing a single hypothesis at a time, [START_REF] Colquhoun | The reproducibility of research and the misinterpretation of p-values[END_REF][START_REF] Colquhoun | The false positive risk: A proposal concerning what to do about p-values[END_REF], [START_REF] Bickel | Correcting false discovery rates for their bias toward false positives[END_REF], and Bickel (2019a, chapters 6-7) recommend instead using what is now called the local false discovery rate given p, defined by LFDR (p) = Pr (H 0 | P = p) (Bickel, 2021c;[START_REF] Habiger | Publication policies for replicable research and the community-wide false discovery rate[END_REF], a term originally defined for multiple testing [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF][START_REF] Efron | Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction[END_REF]Bickel, 2019a). Additional discussion of the terminology is postponed until Appendix A.

Bayes's theorem yields

LFDR (p) = Pr (H 0 ) f 0 (p) f (p) , (8) 
where f 0 (p) and f (p), are, respectively, the conditional (given H 0 ) and marginal probability densities of the observed p-value. This lemma provides a way to transform Bayes false discovery rates into local false discovery rates:

Lemma 2. If the conditional distribution of P given H 0 is U (0, 1), then the local false discovery rate corresponding to the Bayes false discovery rate BFDR (α), as a function of α, is

LFDR (p) = ∂ ∂α BFDR (α) α -1 | α=p -1
.

Proof. Since, conditional on H 0 , P ∼ U (0, 1), we have F 0 (α) = α and f 0 (p) = 1. By equation ( 2),

∂ ∂α BFDR (α) α -1 | α=p = ∂ ∂α F (α) Pr (H 0 ) | α=p = 1 Pr (H 0 ) f 0 (p) ∂ ∂α F (α) | α=p = f (p) Pr (H 0 ) f 0 (p) = 1 LFDR (p) ,
with the last step from equation ( 8).

Let Pr (H 0 : P = p), called the fiducial false discovery rate at the observed p-value, denote the local false discovery rate corresponding to the fiducial-Bayes false discovery rate Pr (H 0 : P ≤ α), as a function of α.

Theorem 1. Given the conditions of Lemma 1 and Lemma 2, the fiducial false discovery rate at p is

Pr (H 0 : P = p) = 1 + 1 odds (H 0 ) p (Pr (H 0 : P ≤ p)) 2 = (1 + odds (H 0 ) p) (odds (H 0 ) p) ln 1 + 1 odds (H 0 ) p 2 . ( 9 
)
Proof. By Lemma 1 and Lemma 2, with α substituted for p in equation ( 7),

Pr (H 0 :

P = p) = ∂ ∂α Pr (H 0 : P ≤ α) α -1 | α=p -1 = ∂ ∂α odds (H 0 ) ln 1 + 1 odds (H 0 ) α -1 | α=p -1 = 1 odds (H 0 ) ∂ ∂α ln 1 + 1 odds (H 0 ) α -1 | α=p -1 =   1 odds (H 0 ) p (1 + odds (H 0 ) p) ln 1 + 1 odds (H 0 ) p 2 -1   -1 = odds (H 0 ) p (1 + odds (H 0 ) p) ln 1 + 1 odds (H 0 ) p 2 .

Fiducial significance

In response to recent criticisms of the concept of statistical significance (e.g., [START_REF] Wasserstein | The ASA's statement on p-values: Context, process, and purpose[END_REF][START_REF] Wasserstein | Moving to a world beyond "p < 0.05[END_REF], Wellek (2017, §3.4) and [START_REF] Benjamini | The ASA president's task force statement on statistical significance and replicability[END_REF] argued that thresholds on p-values still play an important role. For reporting discoveries, [START_REF] Benjamin | Redefine statistical significance[END_REF] recommended the statistical significance threshold of 0.005 in part because it corresponds to lower bounds on the H 0 Bayes factor between 0.0389 and 0.0719. [START_REF] Benjamin | Redefine statistical significance[END_REF] recommended calling results with a p-value below the threshold of 0.05 "suggestive" in part because it corresponds to lower bounds on the H 0 Bayes factor between 0.29 and 0.42.

Those p-value thresholds were adjusted using the proposed method, as explained in Table 2.

The results in its second column suggest calling p-values below 0.001 fiducially significant and those below 0.01 fiducially suggestive. Letting α = 0.001 define significant results and α = 0.01 suggestive results had also been suggested on the basis of Occam's razor [START_REF] Bickel | Sharpen statistical significance: Evidence thresholds and Bayes factors sharpened into Occam's razor[END_REF] instead of Table 2's argument from equation (1). [START_REF] Kline | Bayes factors based on p-values and sets of priors with restricted strength[END_REF] had recommended significance levels less than 0.005 for specific situations depending on the strength of priors and the sample size. [START_REF] Habiger | Publication policies for replicable research and the community-wide false discovery rate[END_REF] argued that the significance level should vary from one community to another, in broad agreement with [START_REF] Benjamini | The ASA president's task force statement on statistical significance and replicability[END_REF], even if the corresponding LFDR threshold were fixed. That can be accomplished by using community-specific values of odds (H 0 ) in equation ( 9). Table 2: Local false discovery rates (LFDRs) and p-value thresholds (α) that define the results of hypothesis tests as statistically significant (row 1) or suggestive (row 2). The LFDR ranges in the lower bound column are from Pr (H 0 ) = 1/2 and the ranges of lower bounds on the Bayes factor that [START_REF] Benjamin | Redefine statistical significance[END_REF] used to recommend their values of α. With those LFDR ranges constraining the conservative estimates of the LFDRs, the values of α in the conservative estimate column are those in {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, . . . } that, with formula (9), generated a conservative estimate on the LFDR falling within those ranges, again assuming that Pr (H 0 ) = 1/2. Those LFDR conservative estimates are also reported in the conservative estimate column.

A Posterior probabilities of the null hypothesis achieved Bayes false discovery rate [START_REF] Bickel | Correcting false discovery rates for their bias toward false positives[END_REF] Table 3: The posterior probabilities compared in Section A. Some of them have alternative names that emphasize specific distinctions. [START_REF] Held | Approximate Bayesian model selection with the deviance statistic[END_REF] call Pr (H 0 | P = p) the "test-based posterior" since they did not need to distinguish it from Pr (H 0 | P ≤ α), which is just as test-based. [START_REF] Colquhoun | The reproducibility of research and the misinterpretation of p-values[END_REF][START_REF] Colquhoun | The false positive risk: A proposal concerning what to do about p-values[END_REF] refers to both Pr (H 0 | P = p) and Pr (H 0 | P ≤ p) as the "false positive risk," labeling the former "p-equals" and the latter "p-less-than." [START_REF] Benjamin | Redefine statistical significance[END_REF] call Pr (H 0 | P ≤ α) the "false positive rate." [START_REF] Efron | Empirical Bayes methods and false discovery rates for microarrays[END_REF] instead call it the "Bayesian false discovery rate" to distinguish it from the false discovery rate of [START_REF] Benjamini | Controlling the false discovery rate: A practical and powerful approach to multiple testing[END_REF] since the latter quantity, while typically similar in practice, is not a posterior probability. [START_REF] Whittemore | A Bayesian false discovery rate for multiple testing[END_REF], however, assigns "Bayesian false discovery rate" to a quantity more specific to multiple testing. [START_REF] Wacholder | Assessing the probability that a positive report is false: An approach for molecular epidemiology studies[END_REF] [START_REF] Bickel | Simple estimators of false discovery rates given as few as one or two p-values without strong parametric assumptions[END_REF](Bickel, , 2019a) ) and the "achieved nonlocal false discovery rate" [START_REF] Bickel | Correcting false discovery rates for their bias toward false positives[END_REF], respectively.

always be conditional on Y = y rather than on P ≤ α or on P = p? No, for reducing the data to some function of y is often necessary for practical reasons even when it results in some loss of information. In fact, any sample y consists of data reduced from a raw data set w , which is turn is reduced from an even lower level data set, and so on, since "Any model is only an approximation to some complex data generating mechanism, ignoring many factors" (Lindsey, 1996, §6.5, p. 263).

From that perspective, there is no question of whether to reduce data but only questions of in what manner and to what extent to do so.

Accordingly, the requirement that a posterior probability must condition on all potentially relevant information would render Bayesian inference completely useless. For example, [START_REF] Allen | Burdens of proof[END_REF] refutes an ambitious form of Bayesian inference by insisting that Bayes's theorem cannot be applied to legal testimony without mathematically modeling all variables relevant to the credibility of the testimony, including but not limited to the witness's demeanor (sweating, twitching, body language, eye contact, voice inflection, etc.). If the posterior probability Pr (H 0 | W = w ) cannot be computed, that does not necessarily warrant giving up on Bayesian inference. It may instead be a reason to reduce the raw data set w to a data set y that is simple enough that a posterior probability Pr (H 0 | Y = y) can be computed.

Convenient terms for the posterior probabilities considered above appear in Table 3. While its "false discovery rate" terms first appeared in the literature on multiple testing, their definitions apply equally to single tests (Bickel, 2019a(Bickel, , 2021c;;[START_REF] Habiger | Publication policies for replicable research and the community-wide false discovery rate[END_REF].

B Fiducial inference

This appendix provides background behind Section 2.1. for all Π ∈ {0, 1, 2} . This t is a pivot, a measurable function t such that the probability measure of the pivotal quantity t θ (Y ) does not depend on the value of θ; in this special case of this median problem, t : Ω × Θ → {0, 1, 2} . [START_REF] Fisher | The logical inversion of the notion of the random variable[END_REF] then presented what he called "the fiducial argument."

B.1 Fisher's fiducial argument

Let ϑ be a random variable such that t θ (Y ) and t ϑ (y) have the same probability distribution; that is,

Pr (t θ (Y ) = Π) = Pr (t ϑ (y) = Π)
for all Π ∈ {0, 1, 2} . That implies these results:

Pr (y 1 < ϑ, y 2 < ϑ) = 1/4 (13)

Pr (y 1 < ϑ, y 2 > ϑ) + Pr (y 1 > ϑ, y 2 < ϑ) = 1/2

Section 2 uses

 2 Pr (H 0 | P ≤ p) and Pr (H 0 | P = p) as posterior probabilities of the null hypothesis rather than Pr (H 0 | Y = y), which is conditional on the observed sample, as in traditional Bayesian statistics. Why not instead use that?The answer uses the concept of data reduction, which means replacing the original data with reduced data, one or more values that depend on the original data, sometimes called raw data. For example, conditioning on P = p rather than on Y = y in effect reduces the sample y to the observed p-value with some loss of information. Reducing the data further to the observation of whether or not p ≤ α loses even more information. That observation is equivalent toχ (P ≤ α) = χ (p ≤ α),where χ is the characteristic or indicator function equal to 1 if its argument is true and equal to 0 if it is false. Reducing y and p to χ (p ≤ α) results in Pr (H 0 |χ (P ≤ α) = χ (p ≤ α)) as the posterior probability of the null hypothesis. In the case that p ≤ α,Pr (H 0 |χ (P ≤ α) = χ (p ≤ α)) = Pr (H 0 |χ (P ≤ α) = 1) = Pr (H 0 | P ≤ α) .Does the loss of information involved in data reduction mean the posterior probability should Posterior probability Term Source Pr (H 0 | W = w ) raw-data-based posterior probability N/A Pr (H 0 | Y = y) data-based posterior probability Held et al. (2015) Pr (H 0 | P = p) local false discovery rate Efron et al. (2001) Pr (H 0 | P ≤ α) Bayes false discovery rate Efron et al. (2001) Pr (H 0 | P ≤ p)

Fisher ( 1945 )

 1945 explained the motivation of fiducial inference as inductive logic with the following simple example involving the observation y = y 1 , y 2 , modeled as a realization of Y = Y 1 , Y 2 , a pair of independent random variables of each the same continuous probability distribution and parameterized by the median of unknown value θ. By independence and the definition of median, these are the probabilities that both variables are below the median, that only one of them is below the median, and that both of them are above the median:Pr (Y 1 < θ, Y 2 < θ) = 1/4 (10) Pr (Y 1 < θ, Y 2 > θ) + P θ (Y 1 > θ, Y 2 < θ) = 1/2 (11) Pr (Y 1 > θ, Y 2 > θ) = 1/4.(12)Let χ be the characteristic function such that χ (A) = 1 if A is true and χ (A) = 0 if A is false. The function t • (•) : Ω × Θ → {0, 1, 2} defined by t θ (

Table 1 :

 1 Notation for Fisher's general fiducial argument and its application to a hyperparameter. The hyperparameter, which may refer to a Bayesian model, is written as φ when considered fixed and as ϕ when considered random. Just as a single function t • (•) defines both t θ (Y ) and t ϑ (y), a single function F • (•) defines both F φ (P ) and F ϕ (p). The probability distribution Π is the law not only of t θ (Y ) but also of t ϑ (y), thereby determining the distribution of ϑ, as seen in Appendix B.1. As a special case, the probability distribution U (0, 1) is the law not only of F φ (P ) but also of F ϕ (p), thereby determining the distribution of ϕ.

		General fiducial argument	Special case
	fixed parameter value	θ	φ
	random observable	Y	P
	pre-observation pivotal quantity	t θ (Y ) ∼ Π	F φ (P ) ∼ U (0, 1)
	random parameter	ϑ	ϕ
	fixed observation	y	p
	post-observation pivotal quantity	t ϑ (y) ∼ Π	F ϕ (p) ∼ U (0, 1)

Table 1 and explained in Appendix B.1. However, there is conflicting information in the form of known values of Pr (H 0 ) and p, which is Pr (P ≤ p | H 0 ), exactly for continuous data and approximately for discrete data. For since

  originally called a special case of Pr (H 0 | P ≤ α) and Pr (H 0 | P ≤ p) the "false positive report probability," but that term has since been used more generally (e.g.,[START_REF] Whittemore | A Bayesian false discovery rate for multiple testing[END_REF]. To contrast Pr (H 0 | P ≤ α) and Pr (H 0 | P ≤ p) with the local false discovery rate, they are called the "nonlocal false discovery rate"
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