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Abstract: The task of human pose estimation (HPE) aims to predict the coordinates of body keypoints in images. Even
if nowadays, we achieve high performance on HPE, some difficulties remain to be fully overcome. For in-
stance, a strong occlusion can deceive the methods and make them predict false-positive keypoints with high
confidence. This can be problematic in applications that require reliable detection, such as posture analysis in
car-safety applications. Despite this difficulty, actual HPE solutions are designed to always predict coordinates
for each keypoint. To answer this problem, we propose a new metamodel that predicts both keypoints coor-
dinates and their visibility. Visibility is an attribute that indicates if a keypoint is visible, non-visible, or not
labeled. Our model is composed of three modules: the feature extraction, the coordinate estimation, and the
visibility prediction modules. We study in this paper the performance of the visibility predictions and the im-
pact of this task on the coordinate estimation. Baseline results are provided on the COCO dataset. Moreover,
to measure the performance of this method in a more occluded context, we also use the driver dataset DriPE.
Finally, we implement the proposed metamodel on several base models to demonstrate the general aspect of
our metamodel.

1 INTRODUCTION1

Human Pose Estimation (HPE) is the task that aims2

to locate body keypoints on images. These keypoints3

can be body joints (shoulders, elbows, hips, ankles,4

etc.) or facial markers (eyes, ears, nose). Additional5

keypoints on the face, hands or feet are sometimes6

used (Hidalgo et al., 2019; Cao et al., 2019).7

One of the difficulties of HPE is handling key-8

points occlusion. Even if recent solutions have9

been able to reach high performance, state-of-the-art10

datasets depict many pictures with few occlusion, es-11

pecially in pictures presenting one person (Andriluka12

et al., 2014; Lin et al., 2015). In contrast, in some13

specific contexts like crowds or narrow spaces, body14

parts have a high probability of being occluded or get-15

ting out of the field of view.16

Strong occlusion can lead the network to predict17

with high confidence keypoints that are not anno-18

tated, as we can see in Figure 1. Furthermore, the19

networks may predict many false-positive keypoints20

(Guesdon et al., 2021), which can be problematic in21

applications where reliable predictions with signifi-22

cant precision are required, e.g., for action recognition23

or driver’s posture analysis (Das et al., 2017; Zhao24
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Figure 1: HPE prediction. Red points represent false pos-
itives, i.e., keypoints that were predicted even if not anno-
tated due to strong occlusion. Confidence scores are pro-
vided in the boxes (maximum score = 1.0).

et al., 2020b). Despite the difficulty caused by oc-25

clusion, actual HPE networks are designed to predict26

coordinates for each keypoints during inference, even27

if the keypoint is outside of the image. Networks usu-28

ally predict a confidence score; however, it covers the29

confidence of both the presence and the coordinates of30

the keypoints. Therefore, this score cannot be used to31

properly distinguish keypoints that the network could32

consider as absent from the image.33

State-of-the-art datasets provide visibility labels,34

an attribute that depicts the perceptibility of each key-35



point. A labeled keypoint can be visible, or non-36

visible when the keypoint is lightly occluded but with37

enough information to be located. If the keypoint is38

heavily occluded or out of the field of view, it is not39

labeled. However, state-of-the-art networks do not40

consider these visibility labels. Furthermore, the few41

existing methods using visibility only consider binary42

visibility, i.e., labeled or non-labeled keypoints (Stoffl43

et al., 2021; Kumar et al., 2020).44

This paper proposes a novel HPE metamodel 1
45

that can predict both the visibility and the coordinates46

of the keypoints. Our solution can be implemented47

with most of the deep-learning HPE methods and al-48

lows these base models to predict keypoint visibil-49

ity. The model can predict the three classes of labels,50

which provides a finer description of the keypoint vis-51

ibility.52

This paper is organized as follows. We present in53

Section 2 the related work on human pose estimation54

and visibility prediction. Section 3 presents our meta-55

model and its detailed architecture, especially the vis-56

ibility module. We describe in Section 4 the details57

about the experiments, and present the results in Sec-58

tion 5. Finally, we discuss in Section 6 our conclu-59

sions and future work.60

2 RELATED WORK61

This section presents existing work on human pose62

estimation and visibility keypoints prediction.63

The task of human pose estimation is divided into64

two categories. Single-person HPE focuses on the de-65

tection in pictures presenting one person, in opposi-66

tion to multiperson detection. The first approach to67

solve single-person HPE using deep learning was pro-68

posed in (Toshev and Szegedy, 2014). This solution is69

based on the deep architecture AlexNet (Krizhevsky70

et al., 2012), which is used to estimate and refine71

the coordinates. An Iterative Error Feedback net-72

work was proposed in (Carreira et al., 2016) based73

on the convolutional network GoogleNet (Szegedy74

et al., 2015). The authors of (Sun et al., 2017) used75

ResNet50 (He et al., 2016) to predict a parametrized76

bones representation. However, all these methods try77

to directly predict the keypoints coordinates from the78

images, which affects the robustness of these methods79

due to the high non-linearity of this approach. Other80

solutions categorized as detection-based methods aim81

to predict 2D matrices called heatmaps where each82

1Source code is publicly available on: https://gitlab.liris.
cnrs.fr/aura autobehave/vis-pred

pixel represents the probability for a joint to be lo-83

cated here. The work of (Newell et al., 2016) pro-84

posed an hourglass module that can be stacked to pre-85

dict and refine features at several scales, which has in-86

spired many other works (Chu et al., 2017; Ke et al.,87

2018; Tang and Wu, 2019; Tang et al., 2018). Besides88

hourglass architectures, other detection-based meth-89

ods have been proposed. The architecture in (Chen90

et al., 2017) combines a heatmap generator with two91

discriminators. Simple Baseline (Xiao et al., 2018),92

is an architecture based on the ResNet network (He93

et al., 2016) with a deconvolution stage to generate94

the final heatmaps. Finally, Unipose (Artacho and95

Savakis, 2020) combines atrous and cascade convo-96

lutions to produce a multi-scale representation.97

In addition to finding the keypoints in the picture,98

multiperson HPE brings a new difficulty: to associate99

the different persons to the detected keypoints. State-100

of-the-art performance is achieved by methods called101

top-down approaches that first detect the subjects in102

the picture and then locate the keypoints for each per-103

son individually. These methods usually combine a104

person detector with a single-person HPE architec-105

ture (Xiao et al., 2018; Sun et al., 2019; Lin et al.,106

2017; Cai et al., 2020; Li et al., 2019). Conversely,107

the bottom-up approaches first detect every keypoints108

in the image before associating them to form people109

instances (Newell et al., 2017; Cao et al., 2017; Nie110

et al., 2018). Top-down approaches tend to outper-111

form the bottom-up methods while taking advantage112

of both state-of-the-art person detectors and HPE ar-113

chitectures.114

Among top-down methods, the Simple Baseline115

(SBl) network (Xiao et al., 2018) presents competi-116

tive performance while preserving a small size, which117

makes it practical for modifications and tests. In addi-118

tion, it can be used for multiperson HPE by combin-119

ing it with a person detector.120

Recent work on human pose estimation has mainly121

focused on improving the prediction of the keypoints’122

coordinates. Therefore, methods which estimate the123

visibility of HPE keypoints are scarce. In (Zhao et al.,124

2020a), visibility prediction is used to propose a new125

evaluation method for multiperson pose estimation in126

heavily occluded contexts. Visibility is predicted as127

an occlusion score and is used to compute a metric128

that highlights the performance of the evaluated net-129

works on occluded points. The multi-instance HPE130

network in (Stoffl et al., 2021) uses transformers to131

predict keypoint visibility, which serves as a sec-132

ondary task for end-to-end training. Besides, keypoint133

visibility is predicted in (Kumar et al., 2017; Kumar134

et al., 2020) as an annex task for face detection.135

https://gitlab.liris.cnrs.fr/aura_autobehave/vis-pred
https://gitlab.liris.cnrs.fr/aura_autobehave/vis-pred
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Figure 2: Architecture of our multitask metamodel for keypoint and visibility estimations.

However, prior works only predict binary visibil-136

ity and do not take advantage of the three visibility137

labels provided by the current datasets (visible, non-138

visible, non-labeled). Furthermore, the authors pro-139

vide few quantified results on the actual performance140

of the visibility predictions. Finally, these works pro-141

pose a fixed network where the visibility prediction142

part is mostly ancillary. In this context, we propose a143

metamodel that allows HPE methods to predict both144

keypoints coordinates and ternary visibility.145

3 PROPOSED METAMODEL146

This section presents the architecture of the proposed147

HPE visibility metamodel. First, we describe the148

overall architecture. Then, we provide a more detailed149

description of our visibility module.150

3.1 Metamodel151

The proposed architecture is split into three parts: the152

feature extraction, the coordinate estimation, and the153

visibility prediction modules. First, the feature ex-154

traction module processes the input image to gen-155

erate a feature vector. Examples of feature extrac-156

tor are encoder architectures (Newell et al., 2016;157

Tang and Wu, 2019; Artacho and Savakis, 2020; Li158

et al., 2019), or image recognition backbones such159

as ResNet (He et al., 2016) or EfficientNet (Tan and160

Le, 2019). Then, the generated vector serves as the161

input of the two other modules. Coordinate estima-162

tion can be performed by modules such as decoder or163

deconvolution stages, usually followed by a convolu-164

tion layer which generates the final heatmaps (Newell165

et al., 2016; Tang and Wu, 2019; Artacho and Savakis,166

2020; Li et al., 2019). Final coordinate predictions167

are computed as the local maximum of each heatmap.168

The majority of the HPE networks can be split into a169

feature extraction and a heatmap generation modules,170

which allows most of the architectures to be compati-171

ble with our metamodel.172

In addition to these two regular modules, we add a173

visibility branch (Figure 3). This module takes as in-174

put the same feature vector as the coordinate estima-175

tion module and outputs the visibility prediction for176

each keypoint. The detailed architecture is presented177

in the next section.178

3.2 Visibility branch179

We model the visibility prediction problem as a classi-180

fication task. We follow the COCO dataset formalism181

and define the visibility using integer labels: 0 when182

the keypoint is not labeled, 1 when it is labeled but183

not visible, and 2 when it is fully visible. Therefore,184

we associate to each keypoint one of the three labels.185

The visibility module takes as input the feature vector186

computed by the feature extraction module. It is com-187

posed of a convolutional module, followed by a fully188

connected network (FCN) that generates the final vis-189

ibility predictions.190

More precisely, a residual block (He et al., 2016)191

first processes the input features. This block is com-192

posed of three successive convolution layers with re-193

spective kernel sizes of 3x3, 1x1, and 3x3, which194

form a bottleneck. An additional skip connection en-195

ables the features to be directly propagated to the next196

layer. We use this block in our branch since it has197

shown good results in feature computation for HPE198

((Newell et al., 2016; Tang and Wu, 2019)). Then,199

a convolutional layer of kernel size 1x1 with Batch-200

Norm and 2x2 max pooling reduces the size and the201

number of channels of the features. Finally, features202

are flattened and a fully connected network with three203
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Figure 3: Architecture of our visibility predictor module.

hidden layers (4096, 2048, and 1024 neurons) fol-204

lowed by a SoftMax produces the predictions. Since205

the COCO dataset provides 17 annotated keypoints206

with three possible visibility classes, the output layer207

is composed of 51 neurons. The SoftMax function208

is applied to groups of three visibility neurons (one209

group representing one keypoint).210

3.3 Cost function211

The global cost function used to train the network is
defined as follows:

L = (1−α).LH +α.LV (1)

where LH is an L2 distance between the predicted212

heatmaps and the ground-truth. The ground-truth213

heatmaps are generated using Gaussian centered214

around the location of the keypoint, with a standard215

deviation of 1px.216

The function LV is the cross-entropy loss applied217

to the predictions of the visibility classes. Weighted218

cross-entropy is used to compensate for the imbal-219

anced distribution of keypoints within the three vis-220

ibility classes. Therefore, the weights are computed221

as the size of the biggest class divided by the size of222

each class. Finally, α is the parameter used to balance223

the ratio between the loss functions associated with224

the two tasks. This regulates the impact of each tasks225

on the training of the feature extractor weights.226

4 EXPERIMENTS227

In this section, we provide details about how the228

experiments have been carried out, such as used229

datasets, training, network base models, and evalua-230

tion procedure.231

4.1 Datasets232

We adopted two datasets for the experiments. First,233

the COCO dataset (Lin et al., 2015), which is one234

of the largest and most used datasets for 2D human235

pose estimation in a general context. It is composed of236

118k pictures for training and 5k for validation. How-237

ever, because of the high number of pictures in this238

dataset, the visibility annotations present some incon-239

sistencies. Also, the non-visible keypoints are weakly240

represented in the COCO dataset, with only 7% of241

the total keypoints. Therefore, we evaluated our ar-242

chitecture on a second dataset called DriPE (Guesdon243

et al., 2021). Figure 4 illustrates some samples. This244

dataset possesses 10k manually annotated images of245

drivers in consumer vehicles (7.4k images for train-246

ing, 1.3k images each for training and testing). The247

car environment and the side view-angle of the cam-248

eras produce strong occlusion which induces 19% of249

non-visible keypoints.250

4.2 Basic Training251

Most of the results on our architecture are provided252

using the Simple Baseline (SBl) network as the base253

model (Xiao et al., 2018). This network combines254

ResNet50 as feature extractor with a deconvolution255

stage (as coordinate estimator) to generate the final256

heatmaps. The feature extractor is initialized with257

weights pre-trained on ImageNet. The networks are258

trained on the COCO dataset for 140 epochs with a259

learning rate of 1E-3, decreased by a factor of 10 at260

epochs 90 and 120.261

Finetuning on DriPE is done during 10 epochs262

with a learning rate of 1E-4. We use data augmen-263

tation operations (rotation, flipping, etc.) for both264

datasets. Following the state of the art, the input265

images are cropped around the subjects using the266

ground-truth, for both training and evaluation. Train-267

ing is performed on a computer with an Nvidia GTX268

1080 graphic card, an Intel Core i990k processor, and269

32 GB of RAM.270

Figure 4: Image samples from DriPE dataset. Faces on the
figure have been blurred for anonymity purpose.



4.3 Multitask Training271

We tested in our experiments three strategies for mul-272

titask training. As detailed in the previous section,273

weights of the feature extractor are initialized on Ima-274

geNet and the visibility predictor’s weights are initial-275

ized randomly. For the first strategy (S1), we train the276

keypoint estimation and the visibility prediction tasks277

jointly with a fixed α set to 0.25 (value chosen empiri-278

cally). For the second and third strategies (S2 and S3),279

we pre-train the feature extraction and coordinate pre-280

diction modules on COCO dataset, in the same way281

as regular HPE networks are trained. Then, we re-282

sume the training for 80 epochs, while incrementing283

α by 0.1 every 20 epochs, starting from α=0. In S2,284

the whole model is updated during these 80 epochs.285

However, in S3, only the visibility predictor is trained286

during this step, while the remaining weights (feature287

extractor and coordinate estimator) are frozen.288

4.4 Base models289

We implemented for the experiments three base mod-290

els with our method, besides Simple Baseline. We291

first used EfficientNet as a feature extractor (Tan and292

Le, 2019), which is more recent than ResNet. We em-293

ployed two different sizes: B0 (the smallest) and B6294

(the second largest). We followed the same training295

strategy and reused the heatmap generator from the296

Simple Baseline model.297

We also set up our metamodel with the MSPN net-298

work (Li et al., 2019), as a feature extractor and a299

heatmap generator. Because MSPN uses a multi-stage300

architecture, we extracted the feature vector from the301

output of the last encoder to feed the visibility mod-302

ule. We initialized the model with the weights already303

trained on COCO for human pose estimation.304

4.5 Evaluation305

The performance of the coordinate prediction mod-306

ule was measured using two metrics. First, we307

used the regular metric for the COCO dataset called308

AP OKS (Lin et al., 2015). This metric computes309

the average precision and recall using a score called310

OKS. However, this metric is person-centered and311

does not provide information on the model perfor-312

mance of each keypoint detection. Furthermore, this313

metric only considers labeled keypoints, i.e., visible314

and non-visible keypoints, which puts aside false-315

positive predictions. Therefore, we also evaluated the316

models with the mAPK metric (Guesdon et al., 2021).317

This metric provides an evaluation at a keypoint level318

and allows to measure the performance of the model319

on each body part separately.320

5 RESULTS321

In this section, we present and discuss the perfor-322

mance of the proposed metamodel. More precisely,323

we first study the quality of the visibility predictions324

using different strategies to train the models. Then,325

we study the impact of the visibility prediction on326

the keypoint detection task using both AP OKS and327

mAPK metrics. Finally, we discuss the performance328

of the proposed solution with different base models.329

5.1 Visibility prediction330

We tried out several strategies to train the model, de-331

scribed in Section 4.3. The performance of the three332

resulting networks is presented in Table 1.333

Table 1: F1-score of the network for visibility prediction on
COCO 2017 val set with different training strategies.

Strategy non-labeled non-visible visible total
S1 0.72 0.21 0.76 0.71
S2 0.75 0.34 0.79 0.74
S3 0.77 0.37 0.80 0.76

First, we can observe in Table 1 that pre-training334

the network on the keypoint estimation task (S2 and335

S3) outperforms the joint training of the three mod-336

ules (S1). Indeed, we can notice an increase of 5% of337

the total F1-score between S1 and S3. This improve-338

ment is mostly perceptible in the non-visible class339

(gain of 16%). However, training on the visibility task340

while freezing the rest of the network (S3) does not341

impact the overall performance. Indeed, we trained342

several models and present in Table 1 the model for343

each strategy with the best performance. Neverthe-344

less, we observed little performance differences be-345

tween the networks trained with and without freezing.346

In the end, this experiment demonstrates that already347

trained HPE networks can be used with our meta-348

model and reach optimal performance. This allows349

saving time and computing power, especially with a350

large dataset like COCO.351

Regarding the performance of visibility predic-352

tion, results in Table 1 show that we are able to predict353

keypoint visibility with a total F1-score up to 76%.354

However, we can notice that the model has difficul-355

ties to predict the ”non-visible” class, with a maxi-356

mum F1-score of 37%. Two reasons can explain this357

gap. First, non-visible keypoint is a subjective notion,358

since it corresponds to the keypoints which are oc-359



cluded but where we have enough information in the360

image to deduce the location of the keypoint. Because361

the assessment of the ”enough information” is left to362

the annotator, it leads to inconsistency in the annota-363

tions. Secondly, the keypoints labeled as non-visible364

represent only 7% of the COCO keypoints (Figure 5).365

Even if this distribution gap is taken into considera-366

tion in the computation of the weighted cross-entropy367

cost function Lv, it still has a negative impact on the368

learning process.369
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Figure 5: Distribution of the keypoint visibility labels in the
COCO dataset.

To study the impact of the distribution of examples370

of the three visibility classes, we finetuned our net-371

work on DriPE dataset (Guesdon et al., 2021). This372

dataset presents a more homogeneous keypoints class373

distribution, as shown in Figure 6.374
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Figure 6: Distribution of the keypoint visibility labels in the
DriPE dataset.

Table 2: Performance of the network for visibility predic-
tion on DriPE dataset before and after finetuning.

F1-score non-labeled non-visible visible total
COCO baseline 0.71 0.34 0.64 0.60

Finetuned on DriPE 0.81 0.70 0.76 0.76

As we can see in Table 2, after finetuning, the375

model achieves an F1-score of 70% for the non-376

visible keypoints. These results demonstrate that with377

a better distribution of the visibility classes and more378

homogeneous images, our metamodel is able to bet-379

ter estimate the visibility of keypoints, in particular380

for non-visible classes.381

5.2 Keypoint estimation382

We now study the impact of the addition of the383

visibility module on the performance of the key-384

point detection. We use for this study the mAPK385

metric (Guesdon et al., 2021), which provides a386

more keypoint-centered performance measurement387

than AP OKS (Lin et al., 2015). Similar to AP OKS,388

mAPK measures both average precision (AP) and av-389

erage recall (AR). We provide results for both COCO390

(Table 3) and DriPE (Table 4) datasets. The ”SBl +391

visibility” network refers to the implementation of our392

metamodel with the Simple Baseline network. The393

”non-0” term defines the experiment where all key-394

point coordinates predicted by the visibility module as395

”non-labeled” are considered as not predicted for the396

computation of the mAPK metric. This strategy aims397

to improve the precision on scenes where some key-398

points are outside the image or strongly occluded of399

the keypoint prediction module, which is classically400

designed to predict coordinates for each type of key-401

point during inference.402

Table 3: HPE on the COCO 2017 validation set with
mAPK.

configuration Head Sho. Elb. Wri. Hip Knee Ank. Mean

AP
SBl 0.66 0.76 0.73 0.70 0.74 0.74 0.74 0.72

SBl + visibility 0.66 0.76 0.72 0.70 0.73 0.73 0.73 0.72
SBl + visibility + non-0 0.71 0.78 0.77 0.73 0.73 0.76 0.74 0.75

AR
SBl 0.73 0.77 0.73 0.70 0.70 0.72 0.72 0.72

SBl + visibility 0.73 0.76 0.73 0.69 0.70 0.72 0.72 0.72
SBl + visibility + non-0 0.43 0.72 0.58 0.68 0.68 0.66 0.35 0.59

Table 4: HPE on the DriPE test set with mAPK.
configuration Head Sho. Elb. Wri. Hip Knee Ank. Mean

AP
SBl 0.85 0.90 0.94 0.96 0.98 0.95 0.68 0.89

SBl + visibility 0.84 0.90 0.94 0.96 0.98 0.95 0.68 0.89
SBl + visibility + non-0 0.86 0.90 0.94 0.97 0.98 0.96 0.72 0.90

AR
SBl 0.87 0.96 0.96 0.97 0.98 0.95 0.80 0.93

SBl + visibility 0.87 0.96 0.96 0.97 0.98 0.95 0.80 0.93
SBl + visibility + non-0 0.44 0.96 0.85 0.97 0.98 0.93 0.77 0.84

Firstly, we can observe that our metamodel403

(SBl + visibility) achieves performance similar to the404

SBl baseline on keypoint detection. It indicates that405

adding the visibility task has no negative impact on406

the primary task, regardless of the dataset used.407

Secondly, the non-0 strategy slightly improves the408

average precision of the keypoint detection, which409

denotes a decrease in the number of false positives.410

However, this precision increase comes with a nega-411

tive trade-off regarding the average recall, caused by412

an increase of the false negatives. The decrease of the413

recall is significant for the keypoints on the head, el-414

bow, and ankles. Prediction of the visibility on the415

face is a delicate task since almost none of these key-416

points are labeled as non-visible due to the COCO an-417

notation style. Ankles are also difficult keypoints to418



Table 5: Performance of the network for keypoint detection on COCO 2017 with different base models.

Base model parameters AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

SBl 71.2M 71.9 91.5 79.0 69.2 76.4 75.3 92.8 81.8 72.1 80.1
EfficientNet B0 55.6M 67.1 90.4 74.9 63.9 71.7 70.3 91.1 77.0 66.8 75.5
EfficientNet B6 95.5M 72.5 92.4 80.1 69.8 76.9 75.8 93.0 82.7 72.6 80.7

MSPN 2-stg 104.6M 71.8 92.5 81.4 69.0 76.1 75.3 93.5 83.8 71.9 80.3

Table 6: Performance of the network for keypoint detection on DriPE with different base models.
Base model parameters AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

SBl 71.2M 96.5 99.9 99.9 - 96.5 97.5 99.9 99.9 - 97.5
EfficientNet B0 55.6M 91.8 99.0 99.0 - 91.8 94.7 99.9 99.6 - 94.7
EfficientNet B6 95.5M 99.4 99.0 99.0 - 94.4 96.5 99.9 99.6 - 96.5

MSPN 2-stg 104.6M 97.8 99.0 99.0 - 97.8 99.0 99.9 99.9 - 99.0

predict in a general context, even if it is less observ-419

able in the DriPE dataset due to the lower number of420

labeled ankles. In the end, an increase of precision421

can be useful in applications that require high confi-422

dence in the predicted keypoints.423

Table 7: Performance of the network for visibility predic-
tion on COCO 2017 with different base models.

Base model parameters non-labeled non-visible visible total
SBl 71.2M 0.77 0.37 0.80 0.76

EfficientNet B0 55.6M 0.74 0.32 0.77 0.73
EfficientNet B6 95.5M 0.75 0.34 0.80 0.76

MSPN 2-stg 104.6M 0.69 0.34 0.69 0.67

We present qualitative results in Figure 7. As424

we observed in Tables 3 and 4, the gain in precision425

comes mostly from face keypoints. This is illustrated426

by face keypoints which were predicted even with427

the strong occlusion and the lack of information (Fig-428

ure 7-A,B). However, the precision of other parts pre-429

diction has also been improved, such as knees (Fig-430

ure 7-C). Finally, the negative trade-off regarding the431

recall is caused by keypoints that were correctly pre-432

dicted by the coordinate estimator but predicted as433

non-labeled by the visibility predictor (Figure 7-D).434

5.3 Other base models435

We evaluated our metamodel with different HPE ar-436

chitectures: EfficientNet B0 and B6, and MSPN. The437

performance of these implementations can be found438

in Tables 5 and 7. The two tasks were trained succes-439

sively while freezing the feature extractor during the440

visibility task training.441

As we can observe, the models achieve good per-442

formance on pose estimation while reaching perfor-443

mance on visibility prediction similar to the one pre-444

sented in Table 1. These results intend to demon-445

strate that our metamodel can be deployed with net-446

works of varied sizes and architectures while preserv-447

ing the performance on both tasks. Please note that we448

trained each network only once except SBl which is449

used as the baseline for our study. Therefore, these re-450

sults may not reflect the optimal performance of each451

network.452

Table 8: Performance of the network for visibility predic-
tion on DriPE with different base models.

Base model parameters non-labeled non-visible visible total
SBl 71.2M 0.81 0.70 0.76 0.76

EfficientNet B0 55.6M 0.72 0.54 0.72 0.69
EfficientNet B6 95.5M 0.78 0.58 0.63 0.67

MSPN 2-stg 104.6M 0.57 0.55 0.46 0.51

Finally, we finetuned and evaluated the networks453

on DriPE dataset (Tables 6 and 8). The models still454

achieve 60% of visibility prediction while reaching455

over 90% of precision and recall on the keypoint es-456

timation. We can notice that the performance of the457

MSPN network is below what we could expect for458

such a large number of parameters. An adjustment459

of the training and finetuning parameters could im-460

prove performance, especially considering the size of461

the network. Also, because of the multiscale and mul-462

tistage architecture of MSPN, concatenating several463

scale levels to extract the feature vector from the net-464

work could improve the results.465

6 CONCLUSIONS466

In this paper, we have presented a new metamodel for467

human pose estimation and visibility prediction. This468

method achieves good performance on visibility pre-469

diction while preserving the performance of the key-470

point estimation of the base model. We demonstrated471

that these results can be achieved using different base472

models. We also showed that the metamodel performs473

well on two public datasets regarding the visibility474

prediction: the COCO dataset, a general and state-of-475

the-art dataset, and the DriPE dataset which contains476

images with stronger occlusion. Finally, we used the477

predicted visibility to improve the keypoint detection,478

by discarding the keypoints predicted as non-labeled.479



Figure 7: Qualitative comparison of keypoints prediction filtered with a confidence threshold (top row) and with the visibility
predicted by our metamodel (bottom row). Red dots represent the false-positive keypoints.

Our results show that this strategy can improve the480

precision of the detection, even though it may reduce481

the recall, especially for head and ankles keypoints.482

Future work will investigate strategies to improve483

the precision of keypoint coordinates estimation using484

visibility prediction with a lesser negative trade-off on485

recall. For instance, we could combine the predicted486

confidence of the two tasks for a final prediction. Fur-487

thermore, it would be interesting to study the integra-488

tion of the proposed metamodel to multi-scale archi-489

tectures, like MSPN architecture. These architectures490

present a higher performance on keypoint estimation,491

but the proposed integration still does not take full ad-492

vantage of the multiscale features available. Finally, it493

would be interesting to study the influence of the gain494

of keypoint estimation accuracy in practical applica-495

tions, such as action recognition or posture analysis in496

car-safety applications.497
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