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Multitask Metamodel for Keypoint Visibility Prediction in Human Pose Estimation

The task of human pose estimation (HPE) aims to predict the coordinates of body keypoints in images. Even if nowadays, we achieve high performance on HPE, some difficulties remain to be fully overcome. For instance, a strong occlusion can deceive the methods and make them predict false-positive keypoints with high confidence. This can be problematic in applications that require reliable detection, such as posture analysis in car-safety applications. Despite this difficulty, actual HPE solutions are designed to always predict coordinates for each keypoint. To answer this problem, we propose a new metamodel that predicts both keypoints coordinates and their visibility. Visibility is an attribute that indicates if a keypoint is visible, non-visible, or not labeled. Our model is composed of three modules: the feature extraction, the coordinate estimation, and the visibility prediction modules. We study in this paper the performance of the visibility predictions and the impact of this task on the coordinate estimation. Baseline results are provided on the COCO dataset. Moreover, to measure the performance of this method in a more occluded context, we also use the driver dataset DriPE. Finally, we implement the proposed metamodel on several base models to demonstrate the general aspect of our metamodel. point. A labeled keypoint can be visible, or non-36 visible when the keypoint is lightly occluded but with 37 enough information to be located. If the keypoint is 38 heavily occluded or out of the field of view, it is not 39 labeled. However, state-of-the-art networks do not 40 consider these visibility labels. Furthermore, the few 41 existing methods using visibility only consider binary 42 visibility, i.e., labeled or non-labeled keypoints (Stoffl 43

INTRODUCTION

Human Pose Estimation (HPE) is the task that aims to locate body keypoints on images. These keypoints can be body joints (shoulders, elbows, hips, ankles, etc.) or facial markers (eyes, ears, nose). Additional keypoints on the face, hands or feet are sometimes used [START_REF] Hidalgo | Single-network whole-body pose estimation[END_REF][START_REF] Cao | Openpose: realtime multi-person 2d pose esti-521 mation using part affinity fields[END_REF].

One of the difficulties of HPE is handling keypoints occlusion. Even if recent solutions have been able to reach high performance, state-of-the-art datasets depict many pictures with few occlusion, especially in pictures presenting one person [START_REF] Andriluka | 2d human pose estimation: New benchmark 504 and state of the art analysis[END_REF][START_REF] Lin | Microsoft coco: Common objects in context[END_REF]. In contrast, in some specific contexts like crowds or narrow spaces, body parts have a high probability of being occluded or getting out of the field of view.

Strong occlusion can lead the network to predict with high confidence keypoints that are not annotated, as we can see in Figure 1. Furthermore, the networks may predict many false-positive keypoints [START_REF] Guesdon | 550 Dripe: A dataset for human pose estimation in 551 real-world driving settings[END_REF], which can be problematic in applications where reliable predictions with significant precision are required, e.g., for action recognition or driver's posture analysis [START_REF] Das | Action recognition based on a mixture of rgb 546 and depth based skeleton[END_REF]Zhao State-of-the-art datasets provide visibility labels, 34 an attribute that depicts the perceptibility of each key-1 Source code is publicly available on: https://gitlab.liris. cnrs.fr/aura autobehave/vis-pred pixel represents the probability for a joint to be lo-83 cated here. The work of [START_REF] Newell | Stacked Hourglass Networks for Human Pose Estimation[END_REF] pro-84 posed an hourglass module that can be stacked to pre-85 dict and refine features at several scales, which has in-86 spired many other works [START_REF] Chu | Multi-context attention for human 541 pose estimation[END_REF]Ke et al., 87 2018;Tang and Wu, 2019;Tang et al., 2018). Besides et al., 2018;[START_REF] Li | Rethinking on multi-stage networks for human pose estimation[END_REF]Lin et al., 106 2017; [START_REF] Cai | Learning delicate local representations for 515 multi-person pose estimation[END_REF][START_REF] Li | Rethinking on multi-stage networks for human pose estimation[END_REF]. Conversely, 107 the bottom-up approaches first detect every keypoints 108 in the image before associating them to form people 109 instances [START_REF] Newell | Associative embedding: End-to-end learning for joint detection and grouping[END_REF][START_REF] Cao | Real-525 time multi-person 2d pose estimation using part affin-526 ity fields[END_REF] 

Feature Vector

Base model (x 1 ; y 1 ) (x 2 ; y 2 ) (x 3 ; y 3 ) (x 4 ; y 4 ) (x 5 ; y 5 ) (x 6 ; y 6 ) ... In addition to these two regular modules, we add a 173 visibility branch (Figure 3). This module takes as in- The global cost function used to train the network is defined as follows:

L = (1 -α).L H + α.L V (1)
where L H is an L2 distance between the predicted However, in S3, only the visibility predictor is trained during this step, while the remaining weights (feature extractor and coordinate estimator) are frozen.

Base models

We implemented for the experiments three base models with our method, besides Simple Baseline. We first used EfficientNet as a feature extractor (Tan and Le, 2019), which is more recent than ResNet. We employed two different sizes: B0 (the smallest) and B6

(the second largest). We followed the same training strategy and reused the heatmap generator from the Simple Baseline model.

We also set up our metamodel with the MSPN network [START_REF] Li | Rethinking on multi-stage networks for human pose estimation[END_REF], as a feature extractor and a heatmap generator. Because MSPN uses a multi-stage architecture, we extracted the feature vector from the output of the last encoder to feed the visibility module. We initialized the model with the weights already trained on COCO for human pose estimation.

Evaluation

The performance of the coordinate prediction module was measured using two metrics. First, we used the regular metric for the COCO dataset called AP OKS [START_REF] Lin | Microsoft coco: Common objects in context[END_REF]. This metric computes the average precision and recall using a score called OKS. However, this metric is person-centered and does not provide information on the model performance of each keypoint detection. Furthermore, this metric only considers labeled keypoints, i.e., visible and non-visible keypoints, which puts aside falsepositive predictions. Therefore, we also evaluated the models with the mAPK metric [START_REF] Guesdon | 550 Dripe: A dataset for human pose estimation in 551 real-world driving settings[END_REF].

This metric provides an evaluation at a keypoint level and allows to measure the performance of the model 319 on each body part separately. 320 5 RESULTS

321

In this section, we present and discuss the perfor- We present qualitative results in Figure 7. As we observed in Tables 3 and4, the gain in precision comes mostly from face keypoints. This is illustrated by face keypoints which were predicted even with the strong occlusion and the lack of information (Fig- 

Other base models

We evaluated our metamodel with different HPE architectures: EfficientNet B0 and B6, and MSPN. The performance of these implementations can be found in Tables 5 and7. The two tasks were trained successively while freezing the feature extractor during the visibility task training.

As we can observe, the models achieve good performance on pose estimation while reaching performance on visibility prediction similar to the one pre- 6 and8). The models still 

Figure 1 :

 1 Figure 1: HPE prediction. Red points represent false positives, i.e., keypoints that were predicted even if not annotated due to strong occlusion. Confidence scores are provided in the boxes (maximum score = 1.0). et al., 2020b). Despite the difficulty caused by oc-25
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  hourglass architectures, other detection-based meth-89 ods have been proposed. The architecture in (Chen 90 et al., 2017) combines a heatmap generator with two 91 discriminators. Simple Baseline (Xiao et al., 2018), 92 is an architecture based on the ResNet network (He 93 et al., 2016) with a deconvolution stage to generate 94 the final heatmaps. Finally, Unipose (Artacho and 95 Savakis, 2020) combines atrous and cascade convo-96 lutions to produce a multi-scale representation. 97 In addition to finding the keypoints in the picture, 98 multiperson HPE brings a new difficulty: to associate 99 the different persons to the detected keypoints. State-100 of-the-art performance is achieved by methods called 101 top-down approaches that first detect the subjects in 102 the picture and then locate the keypoints for each per-103 son individually. These methods usually combine a 104 person detector with a single-person HPE architec-105 ture (Xiao

  ; Nie 110 et al., 2018). Top-down approaches tend to outper-111 form the bottom-up methods while taking advantage 112 of both state-of-the-art person detectors and HPE ar-113 chitectures. 114 Among top-down methods, the Simple Baseline 115 (SBl) network (Xiao et al., 2018) presents competi-116 tive performance while preserving a small size, which 117 makes it practical for modifications and tests. In addi-118 tion, it can be used for multiperson HPE by combin-119 ing it with a person detector. 120 Recent work on human pose estimation has mainly 121 focused on improving the prediction of the keypoints' 122 coordinates. Therefore, methods which estimate the 123 visibility of HPE keypoints are scarce. In (Zhao et al., 124 2020a), visibility prediction is used to propose a new 125 evaluation method for multiperson pose estimation in 126 heavily occluded contexts. Visibility is predicted as 127 an occlusion score and is used to compute a metric 128 that highlights the performance of the evaluated net-129 works on occluded points. The multi-instance HPE 130 network in (Stoffl et al., 2021) uses transformers to 131 predict keypoint visibility, which serves as a sec-132 ondary task for end-to-end training. Besides, keypoint 133 visibility is predicted in (Kumar et al., 2017; Kumar 134 et al., 2020) as an annex task for face detection.

Figure 2 :

 2 Figure 2: Architecture of our multitask metamodel for keypoint and visibility estimations.

  visibility prediction problem as a classi-180 fication task. We follow the COCO dataset formalism 181 and define the visibility using integer labels: 0 when 182 the keypoint is not labeled, 1 when it is labeled but 183 not visible, and 2 when it is fully visible. Therefore, 184 we associate to each keypoint one of the three labels. 185 The visibility module takes as input the feature vector 186 computed by the feature extraction module. It is com-187 posed of a convolutional module, followed by a fully 188 connected network (FCN) that generates the final vis-189 ibility predictions. 190 More precisely, a residual block (He et al., 2016) 191 first processes the input features. This block is com-192 posed of three successive convolution layers with re-193 spective kernel sizes of 3x3, 1x1, and 3x3, which 194 form a bottleneck. An additional skip connection en-195 ables the features to be directly propagated to the next 196 layer. We use this block in our branch since it has 197 shown good results in feature computation for HPE 198 ((Newell et al., 2016; Tang and Wu, 2019)). Then, 199 a convolutional layer of kernel size 1x1 with Batch-200 Norm and 2x2 max pooling reduces the size and the 201 number of channels of the features. Finally, features 202 are flattened and a fully connected network with three

Figure 3 :

 3 Figure 3: Architecture of our visibility predictor module. hidden layers (4096, 2048, and 1024 neurons) fol-204

  212 heatmaps and the ground-truth. The ground-truth 213 heatmaps are generated using Gaussian centered 214 around the location of the keypoint, with a standard 215 deviation of 1px. 216 The function L V is the cross-entropy loss applied 217 to the predictions of the visibility classes. Weighted 218 cross-entropy is used to compensate for the imbal-219 anced distribution of keypoints within the three vis-220 ibility classes. Therefore, the weights are computed 221 as the size of the biggest class divided by the size of 222 each class. Finally, α is the parameter used to balance 223 the ratio between the loss functions associated with 224 the two tasks. This regulates the impact of each tasks 225 on the training of the feature extractor weights. 226 4 EXPERIMENTS 227 In this section, we provide details about how the 228 experiments have been carried out, such as used 229 datasets, training, network base models, and evalua-230 tion procedure.

232

  We adopted two datasets for the experiments. First, 233 the COCO dataset[START_REF] Lin | Microsoft coco: Common objects in context[END_REF], which is one 234 of the largest and most used datasets for 2D human 235 pose estimation in a general context. It is composed of 236 118k pictures for training and 5k for validation. How-237 ever, because of the high number of pictures in this 238 dataset, the visibility annotations present some incon-239 sistencies. Also, the non-visible keypoints are weakly 240 represented in the COCO dataset, with only 7% of 241 the total keypoints. Therefore, we evaluated our ar-242 chitecture on a second dataset called DriPE (Guesdon 243 et al., 2021). Figure 4 illustrates some samples. This 244 dataset possesses 10k manually annotated images of 245 drivers in consumer vehicles (7.4k images for train-246 ing, 1.3k images each for training and testing). The 247 car environment and the side view-angle of the cam-248 eras produce strong occlusion which induces 19% of 249 non-visible keypoints.

Figure 4 :

 4 Figure 4: Image samples from DriPE dataset. Faces on the figure have been blurred for anonymity purpose.

4. 3

 3 Multitask TrainingWe tested in our experiments three strategies for multitask training. As detailed in the previous section, weights of the feature extractor are initialized on Ima-geNet and the visibility predictor's weights are initialized randomly. For the first strategy (S1), we train the keypoint estimation and the visibility prediction tasks jointly with a fixed α set to 0.25 (value chosen empirically). For the second and third strategies (S2 and S3), we pre-train the feature extraction and coordinate prediction modules on COCO dataset, in the same way as regular HPE networks are trained. Then, we resume the training for 80 epochs, while incrementing α by 0.1 every 20 epochs, starting from α=0. In S2, the whole model is updated during these 80 epochs.

Figure 5 :Figure 6 :

 56 Figure 5: Distribution of the keypoint visibility labels in the COCO dataset.To study the impact of the distribution of examples

407

  Secondly, the non-0 strategy slightly improves the 408 average precision of the keypoint detection, which 409 denotes a decrease in the number of false positives. 410 However, this precision increase comes with a nega-411 tive trade-off regarding the average recall, caused by 412 an increase of the false negatives. The decrease of the 413 recall is significant for the keypoints on the head, el-414 bow, and ankles. Prediction of the visibility on the 415 face is a delicate task since almost none of these key-416 points are labeled as non-visible due to the COCO an-417 notation style. Ankles are also difficult keypoints to

  ure 7-A,B). However, the precision of other parts prediction has also been improved, such as knees (Figure7-C). Finally, the negative trade-off regarding the recall is caused by keypoints that were correctly predicted by the coordinate estimator but predicted as non-labeled by the visibility predictor (Figure7-D).

  precision and recall on the keypoint es-456 timation. We can notice that the performance of the 457 MSPN network is below what we could expect for 458 such a large number of parameters. An adjustment 459 of the training and finetuning parameters could im-460 prove performance, especially considering the size of 461 the network. Also, because of the multiscale and mul-462 tistage architecture of MSPN, concatenating several 463 scale levels to extract the feature vector from the net-464 work could improve the results. , we have presented a new metamodel for 467 human pose estimation and visibility prediction. This 468 method achieves good performance on visibility pre-469 diction while preserving the performance of the key-470 point estimation of the base model. We demonstrated 471 that these results can be achieved using different base 472 models. We also showed that the metamodel performs 473 well on two public datasets regarding the visibility 474 prediction: the COCO dataset, a general and state-of-475 the-art dataset, and the DriPE dataset which contains 476 images with stronger occlusion. Finally, we used the 477 predicted visibility to improve the keypoint detection, 478 by discarding the keypoints predicted as non-labeled.

Figure 7 :

 7 Figure 7: Qualitative comparison of keypoints prediction filtered with a confidence threshold (top row) and with the visibility predicted by our metamodel (bottom row). Red dots represent the false-positive keypoints.
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Table 1 :

 1 F1-score of the network for visibility prediction on COCO 2017 val set with different training strategies.

	322				
	323	mance of the proposed metamodel. More precisely,
	324	we first study the quality of the visibility predictions
	325	using different strategies to train the models. Then,
	326	we study the impact of the visibility prediction on
	327	the keypoint detection task using both AP OKS and
	328	mAPK metrics. Finally, we discuss the performance
	329	of the proposed solution with different base models.
		5.1 Visibility prediction	
		Strategy non-labeled non-visible visible total
		S1	0.72	0.21	0.76	0.71
		S2	0.75	0.34	0.79	0.74
		S3	0.77	0.37	0.80	0.76
	334	First, we can observe in Table 1 that pre-training
	335	the network on the keypoint estimation task (S2 and
	336	S3) outperforms the joint training of the three mod-
	337	ules (S1). Indeed, we can notice an increase of 5% of
		the total F1-score between S1 and S3. This improve-
	347				
	348	trained HPE networks can be used with our meta-
	349	model and reach optimal performance. This allows
	350	saving time and computing power, especially with a
	351	large dataset like COCO.		
	352	Regarding the performance of visibility predic-
	353	tion, results in Table 1 show that we are able to predict
	354	keypoint visibility with a total F1-score up to 76%.
	355	However, we can notice that the model has difficul-
	356	ties to predict the "non-visible" class, with a maxi-
		mum F1-score of 37%. Two reasons can explain this

330

We tried out several strategies to train the model, de-331 scribed in Section 4.3. The performance of the three 332 resulting networks is presented in Table 1. 333 338 ment is mostly perceptible in the non-visible class 339 (gain of 16%). However, training on the visibility task 340 while freezing the rest of the network (S3) does not 341 impact the overall performance. Indeed, we trained 342 several models and present in Table 1 the model for 343 each strategy with the best performance. Neverthe-344 less, we observed little performance differences be-345 tween the networks trained with and without freezing. 346 In the end, this experiment demonstrates that already 357 gap. First, non-visible keypoint is a subjective notion, 358 since it corresponds to the keypoints which are oc-cluded but where we have enough information in the

Table 2 :

 2 Performance of the network for visibility prediction on DriPE dataset before and after finetuning.

		F1-score	non-labeled non-visible visible total
		COCO baseline	0.71	0.34	0.64 0.60
		Finetuned on DriPE	0.81	0.70	0.76 0.76
	375	As we can see in Table 2, after finetuning, the
	376	model achieves an F1-score of 70% for the non-
	377	visible keypoints. These results demonstrate that with
	378	a better distribution of the visibility classes and more
		homogeneous images, our metamodel is able to bet-
	381			

379

ter estimate the visibility of keypoints, in particular 380 for non-visible classes. 402

Table 3 :

 3 HPE on the COCO 2017 validation set with mAPK.

		configuration	Head Sho. Elb. Wri. Hip Knee Ank. Mean
		SBl	0.66 0.76 0.73 0.70 0.74 0.74 0.74 0.72
	AP	SBl + visibility	0.66 0.76 0.72 0.70 0.73 0.73 0.73 0.72
		SBl + visibility + non-0 0.71 0.78 0.77 0.73 0.73 0.76 0.74 0.75
		SBl	0.73 0.77 0.73 0.70 0.70 0.72 0.72 0.72
	AR	SBl + visibility	0.73 0.76 0.73 0.69 0.70 0.72 0.72 0.72
		SBl + visibility + non-0 0.43 0.72 0.58 0.68 0.68 0.66 0.35 0.59

Table 4 :

 4 HPE on the DriPE test set with mAPK.

			configuration	Head Sho. Elb. Wri. Hip Knee Ank. Mean
			SBl	0.85 0.90 0.94 0.96 0.98 0.95 0.68 0.89
		AP	SBl + visibility	0.84 0.90 0.94 0.96 0.98 0.95 0.68 0.89
			SBl + visibility + non-0 0.86 0.90 0.94 0.97 0.98 0.96 0.72 0.90
			SBl	0.87 0.96 0.96 0.97 0.98 0.95 0.80 0.93
		AR	SBl + visibility	0.87 0.96 0.96 0.97 0.98 0.95 0.80 0.93
			SBl + visibility + non-0 0.44 0.96 0.85 0.97 0.98 0.93 0.77 0.84
	403		Firstly, we can observe that our metamodel
	404	(SBl + visibility) achieves performance similar to the
	405	SBl baseline on keypoint detection. It indicates that
	406	adding the visibility task has no negative impact on
		the primary task, regardless of the dataset used.

Table 5 :

 5 Performance of the network for keypoint detection on COCO 2017 with different base models. Base model parameters AP AP 50 AP 75 AP M AP L AR AR 50 AR 75 AR M AR L

	SBl	71.2M 71.9 91.5 79.0 69.2 76.4 75.3 92.8 81.8 72.1 80.1
	EfficientNet B0 55.6M 67.1 90.4 74.9 63.9 71.7 70.3 91.1 77.0 66.8 75.5
	EfficientNet B6 95.5M 72.5 92.4 80.1 69.8 76.9 75.8 93.0 82.7 72.6 80.7
	MSPN 2-stg	104.6M 71.8 92.5 81.4 69.0 76.1 75.3 93.5 83.8 71.9 80.3

Table 6 :

 6 Performance of the network for keypoint detection on DriPE with different base models.Base model parameters AP AP 50 AP 75 AP M AP L AR AR 50 AR 75 AR M AR L

	SBl	71.2M 96.5 99.9 99.9	-96.5 97.5 99.9 99.9	-97.5
	EfficientNet B0 55.6M 91.8 99.0 99.0	-91.8 94.7 99.9 99.6	-94.7
	EfficientNet B6 95.5M 99.4 99.0 99.0	-94.4 96.5 99.9 99.6	-96.5
	MSPN 2-stg	104.6M 97.8 99.0 99.0	-97.8 99.0 99.9 99.9	-99.0
	predict in a general context, even if it is less observ-		
	able in the DriPE dataset due to the lower number of		
	labeled ankles. In the end, an increase of precision		
	can be useful in applications that require high confi-		
	dence in the predicted keypoints.			

Table 7 :

 7 Performance of the network for visibility prediction on COCO 2017 with different base models.

	Base model parameters non-labeled non-visible visible total
	SBl	71.2M	0.77	0.37	0.80 0.76
	EfficientNet B0 55.6M	0.74	0.32	0.77 0.73
	EfficientNet B6 95.5M	0.75	0.34	0.80 0.76
	MSPN 2-stg	104.6M	0.69	0.34	0.69 0.67

Table 8 :

 8 Performance of the network for visibility prediction on DriPE with different base models.

	sented in Table 1. These results intend to demon-
	strate that our metamodel can be deployed with net-
	works of varied sizes and architectures while preserv-
	ing the performance on both tasks. Please note that we
	trained each network only once except SBl which is

452 453 on DriPE dataset (Tables
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