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2 DESTOUCHES

ABSTRACT

Kilometric scale Numerical Weather Prediction addresses the challenge of forecasting accurately
clouds and precipitations. Ensemble-based data assimilation methods make use of background error
covariances that are sampled from an ensemble of forecasts. These methods can be considered in order
to include hydrometeor variables and their flow-dependent error covariances in the data assimilation
system. Yet, because of limited ensemble size, rank deficiency of the resulting covariances and
sampling noise occur, which can be mitigated by a localization procedure. In order to optimally localize
covariances for hydrometeor variables, a previous work by the authors has been extended. This approach
estimates localization as a linear filtering on covariances, optimal in the sense of minimizing sampling
noise. The zero-variance and the high spatial variability issues met with hydrometeor variables are
addressed by using an improved method for spatial sampling, based on geographical masks. Diagnosed
optimal horizontal localization lengths appear to be much shorter for hydrometeors than for other
classical thermodynamic variables. Conversely, we report optimal vertical localization to be very broad
for precipitating species. Great variability between different meteorological situations has also been
noticed, which reflects the high flow dependency of hydrometeor forecast errors. This suggests that
ensemble-based data assimilation schemes that consider hydrometeors as control variables shall adopt
more refined localization schemes than the common "one-size-fits-all" approach.

Keywords — Hydrometeor, background error covariances, optimal localization, ensemble data assimi-
lation

1 | INTRODUCTION

Cloud cover and rainfall forecasting benefits from the development of convective-scale numerical
weather prediction models with dedicated microphysics schemes, which describe the time evolution
of three-dimensional hydrometeor contents. As other prognostic variables, hydrometeors require an
appropriate initialization.
Optimal initial conditions are usually determined through the data assimilation (DA) process. Op-
erationally, most convective-scale models include dynamic and thermodynamic variables such as
horizontal winds, surface pressure, temperature and specific humidity (hereafter conventional variables)
in the control variable of the DA process (Gustafsson et al., 2018). Hydrometeors, on the other hand, are
usually not analyzed and simply kept unchanged through the DA process. This difference of treatment
can lead to physical imbalances in the initial state, and spurious microphysical adjustments in the first
time steps of the model integration.

Recently, a lot of research focused on the benefit of adding hydrometeor fields in the control
variable of different DA systems. Snyder and Zhang (2003) used a rainwater control variable to
assimilate simulated radar data, followed by Dowell et al. (2004) with real radar observations. Zhang
et al. (2013) added five hydrometeor species in the control variable of the Maximum Likelihood
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Ensemble Filter to assimilate precipitation-affected satellite data. A positive impact on the prediction
skill was observed, especially for rainfall location and intensity. Meng et al. (2019) showed a similar
improvement in forecasting skill for precipitation when adding four hydrometeor variables in an hybrid
ensemble-variational (EnVar) DA system.

Despite these results, the initialisation of hydrometeor fields remains a difficult task, both in theory
and in practice (Bannister et al., 2019). Hydrometeor assimilation involves complex and highly non-
linear processes, in microphysics schemes and in observation operators (Errico et al., 2007; Auligné
et al., 2011). Besides, hydrometeor mixing ratios should always remain positive. Non-Gaussian
statistics naturally arise from these non-linearities and boundedness. Yet, almost all attempts to include
hydrometeors in the control variable are based on Gaussian and near-linear frameworks. This article
is no exception to the rule. The perspective of this work is to optimize the usual Gaussian-based DA
methods to better handle hydrometeors, without fundamentally changing the algorithms.

In this context, unbiased forecast errors are fully described by their second-order moments, i.e.
background error covariance matrices. The role of forecast errors, in particular their representation in
the background error covariances, is prominent in DA (Bannister, 2008). As a matter of fact, an adequate
description of forecast errors is required to properly weigh observations against the background state
and to propagate the information spatially and among physical variables.

Hydrometeor forecast errors are especially flow dependent, due to the intrinsically heterogeneous
and variable nature of hydrometeor fields (see for instance Michel et al., 2011). Part of this flow
dependency can be described using a Monte-Carlo approach applied on an ensemble of forecasts, in
order to sample the forecast error distribution at each run time. Time- and space-dependent background
error covariances are then directly deduced from the ensemble. For hydrometeor assimilation, studies
based on EnVar and ensemble Kalman filters (EnKFs) methods proved to outperform variational
methods with static background error covariances (Johnson et al., 2015; Kong et al., 2018) and cloud
analysis methods (Duda et al., 2019), thanks to the flow dependent retrieved increments. However, no
operational applications have been reported yet.

1.1 | Localization of background error covariances

The computational cost of ensemble methods for systems with large state vectors limits the number of
members in the ensemble. This limitation results in sampling noise, evidenced by spurious long-distance
correlations in the estimated covariances. Filtering techniques are commonly used to remove these
spurious correlations. The focus here is on the localization technique (Houtekamer and Mitchell, 2001;
Hamill et al., 2001), which is used in both EnKF or EnVar systems. In practice though, localization
is studied here for error auto-covariances in model space only, to be used e.g. in EnVar systems. In
particular, domain localization is left out, as well as localization of covariances in observation space or
in the cross-product of observation space and model space (as is done in many EnKF systems, see for
instance Houtekamer and Zhang, 2016).

The main idea of localization in model space is to multiply the background error covariances
by a localization factor, generally depending on the horizontal and vertical distances between the
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considered grid points (hereafter horizontal and vertical separations). The localization factor generally
decreases from one at zero separation to zero for large separations. The signal is thus attenuated where
the covariances and the signal-to-noise ratio are expected to be low. Note that in some cases, the
localization factor does not depend solely on horizontal and vertical separations, for example when
applying localization to covariances between different variables, or between different time steps.

A variety of methods have been proposed to diagnose optimal localization functions. Some can
determine the whole shape of the function (e.g. Anderson, 2012; Flowerdew, 2015; Ménétrier et al.,
2015a). Other methods rely on Gaussian-like localization functions and focus only on the optimal
width of the Gaussian, the optimal localization length (or radius) (Sobash and Stensrud, 2013; Perianez
et al., 2014; Kong et al., 2018). In most of these methods, localization is optimized for a specific
context, be it the choice of an assimilation method (EnKF or EnVar flavours) or even the design of a full
Observation System Simulation Experiments (OSSEs). The latter are used for instance by Sobash and
Stensrud (2013), Lei et al. (2015), and Kong et al. (2018) with EnKF systems, and by Lorenc (2017)
with a 3DEnVar system.

A different approach has been proposed by Ménétrier et al., 2015a (hereafter M15). The authors of
this article propose a purely statistical method, based on the sampled ensemble only and independent
from any other information about the system configuration. This independence from any operational
system is interesting, as it allows to draw general conclusions that are hopefully not too much affected
by a particular observational configuration or DA system. The methodology of M15 has been employed
by several studies, with applications to operational weather models (Michel et al., 2016; Montmerle et
al., 2018; Caron et al., 2018). This method is chosen here for optimal localization diagnosis.

1.2 | Hydrometeor localization

For hydrometeor background error covariances, shorter horizontal localization lengths are usually
reported (compared to conventional background error covariances). Sobash and Stensrud (2013)
for instance confirmed this result for microphysical variables through an OSSE experiment in an
EnKF setting. Most attempts to include hydrometeor in the DA control variables follow the same
paradigm, with horizontal localization radii of the order of 10 km in EnKF systems (Aksoy et al.,
2009; Dowell et al., 2011; Sobash and Stensrud, 2013; Johnson et al., 2015). At least two reasons
can justify the choice of shorter localization lengths for hydrometeor variables. Firstly, especially in
EnKF systems, the localization radii are related to observations, rather than microphysical variables
only. Tighter localization functions are thus empirically imposed to adapt to dense radar observation
networks. Another reason for shorter localization length, can be found in the high spatial variability
of hydrometeor background error covariances. Michel et al. (2011) for instance have studied the
characteristics of multivariate dynamical and hydrometeor background error covariances. Inter alia,
they showed on two meteorological situations that hydrometeor horizontal correlation length-scales
were shorter than other variables. As localization length scales with correlation length (e.g. Flowerdew,
2015; Bannister et al., 2019), shorter optimal localization lengths should be deduced for hydrometeors.

So far, to the best of our knowledge, no objective localization diagnosis such as the method of
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M15 has been applied to hydrometeor fields in convective-scale models. Does this method confirm the
choice of shorter localization lengths for hydrometeor covariances, compared to conventional ones? If
so, is this result consistent over all microphysical variables, weather types and vertical levels? What
prescriptions can be deduced for localization schemes involving hydrometeor control variables? The
present study addresses these questions. In section 2, the theory of optimal localization from M15
is briefly recalled. The requirements for its extension to hydrometeors are detailed in section 3. The
experimental set-up is then presented in section 4. Results are detailed in section 5 which ends with
consequences for localization schemes involving hydrometeor forecast errors. The study is concluded
in section 6.

2 | THE OPTIMAL LOCALIZATION METHOD: THEORY AND PRACTICE

2.1 | Theory

Let x1, . . . , xN be an ensemble of N mutually independent forecasts of size n , drawn from the same
random process (with N greater than 4). The unbiased sampled covariance matrix B̃ of the ensemble is
given by:

B̃ = 1

N − 1

N∑
k=1

(
xk − x

) (
xk − x

)T (1)

where x is the ensemble mean. A Schur (element-wise) product with a symmetric positive localization
matrix L yields the filtered covariance matrix B̂, commonly used in EnVar.

B̂ = L ◦ B̃ (2)

where B̂i j = Li j B̃i j for all i , j = 1, . . . , n .
By defining the asymptotic matrixB? as the limit of B̃when the ensemble size N goes to infinity, one

can define the optimal localization matrix as the Lopt matrix minimizing the distance Å[| |L ◦ B̃−B? | |2],
where | | · | | denotes the Frobenius norm. Relying on results from linear filtering and centered moment
estimation theories, the optimal localization matrix can be diagnosed from sampled estimates only
(M15, their Equation 62):

L
opt
i j
=
(N − 1)2
N (N − 3) −

N

(N − 2) (N − 3)

Å
[
Ξ̃i j i j

]
Å

[
B̃2
i j

]
+

N − 1
N (N − 2) (N − 3)

Å
[
B̃i i B̃ j j

]
Å

[
B̃2
i j

] (3)
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where Ξ̃ is the sampled fourth-order centered moment of the ensemble and 1 ≤ i , j ≤ n .
As outlined by Lorenc (2017), the diagnosed localizations are optimal in the sense of minimizing

the distance between localized and asymptotic background error covariances. Hence, the method only
addresses the problem of sampling noise, independently of the optimality of the resulting analysis.
Optimal localization in terms of optimal analysis may differ from localization diagnosed here, depending
on the relative weights given to observation and forecast errors, or on the quality of the ensemble
(Lorenc, 2017).

This article focuses on optimal localization for auto-covariances of hydrometeors and of conven-
tional variables. In particular, localization of inter-variable covariances is not studied there, though
cross-covariances could also (at least theoretically) be studied with the M15 method.

2.2 | Ergodicity assumptions

2.2.1 | Use of spatial averaging

The expectation operators Å[·] in Equation 3 apply to both (independent) processes of asymptotic
statistics generation and drawing N members consistent with these asymptotic statistics (see M15 for
details). Given that only one ensemble of N members is available at a time, these expectations cannot be
estimated directly. To approximate these operators, M15 formulate an ergodicity assumption by replac-
ing the statistical expectations by horizontal and angular spatial averages. If the forecasts are discretized
on a three-dimensional grid, all pairs (i , j ) of grid points of coordinates (xi , yi , zi ) and (xj , yj , z j ) can

be partitioned into separation classes of given horizontal separation dh =
√
(xi − xj )2 + (yi − yj )2

and vertical model levels zi and z j (irrespectively of the order of i or j , the problem being symmetric
in i and j ). The horizontal separation distance dh is discretized to ensure there are enough pairs in
each separation class. In order to keep computations affordable, a spatial sub-sampling approach is
employed. A few representative pairs (at least 1000 in practice) are selected in each separation class,
before computing the associated spatial average. Since the considered diagnostic package is conceived
for possibly irregular grids, representative pairs are chosen by random, geographically homogeneous
sampling in each class. The expectation operator is thus approximated as follows:

Lopt (dh, zi , z j ) =
(N − 1)2
N (N − 3) −

N

(N − 2) (N − 3)

µ
[
Ξ̃i j i j

]
µ

[
B̃2
i j

]
+

N − 1
N (N − 2) (N − 3)

µ
[
B̃i i B̃ j j

]
µ

[
B̃2
i j

] (4)

where µ [·] denotes an averaging operator on a random sub-sample from the separation class (dh, zi , z j ),
and Lopt (dh, zi , z j ) is now the diagnosed localization function defined on the three-dimensional discrete
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F I G U R E 1 Raw (a) and fit analytical (b) localization functions for specific humidity. The localization is shown here when
the horizontal separation dh is zero. It is diagnosed from an ensemble of 50 forecasts from the AROME EDA (cf. section 4),
valid on November 15th, 2018 at 06 UTC. Missing values in white.

space of separation classes. For illustration purpose, figure 1(a) shows a diagnosed localization function
in (zi , z j ) coordinates and for dh = 0, for specific humidity. Each color pixel represents an independent
localization diagnosis. Equivalently, a different choice of coordinates to represent separation classes is
given by vertical level z = zi , vertical separation dz = z j −zi and horizontal separation dh . Localization
in figure 2(a) is shown in (dh, dz ) coordinates for instance.

2.2.2 | Decomposition into ergodic sub-classes

The ergodicity assumption may appear as a strong one to some readers. Actually, another interpretation
of the spatial averaging can be given, allowing to relax the ergodicity assumption to the weaker
assumption of ergodic decomposition.

Let us assume that a given separation class C can be divided into K ergodic sub-classes Ck , sampled
with proportion αk (1 ≤ k ≤ K ), and that each subclass is correctly sampled. Then, the diagnosis
Lopt (dh, zi , z j ) given by spatial averaging can be shown to verify:

Lopt (dh, zi , z j ) ≈

K∑
k=1

αk Åk
[
B?2
i j

]
K∑
k=1

αk Åk
[
B̃2
i j

] . (5)
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F I G U R E 2 Same as figure 1, but localization is shown here in (dh , dz ) coordinates for model level z = 60, that is around
430hPa. The black star indicates the zero separation pair, where localization is close to 1 in both panels.

where Åk [·] denotes expectation over the random process sampled by subclass Ck . The ≈ sign comes
from imperfections in the estimations of expectations, due to limited size of each subclass. To better
understand this formulation, Equations 30c and 57 of M15 can be combined to obtain the optimality
criterion:

Å
[
B?2i j

]
− Lopt

i j
Å

[
B̃2i j

]
= 0, (6)

which implies that

L
opt
i j
=
Å

[
B?2
i j

]
Å

[
B̃2
i j

] . (7)

Hence the right-hand side of Equation 5 is almost an average of sub-diagnoses Åk
[
B?2
i j

]
/Åk

[
B̃2i j

]
.
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Plus, it can be shown that this “average” actually minimizes

K∑
k=1

αk Åk

[(
Li j B̃i j − B?i j

)2]
, (8)

which is the natural cost function to estimate a single optimal value of localization to be applied across
different covariance statistics.

In practice, this interpretation of optimality is useful when diagnosing optimal localization over a
domain where several weather situations co-exist. In this case, each sub-diagnosis correspond to each
local weather situation, and the final diagnosis is the optimal combination of local diagnoses, following
Equation 5.

2.2.3 | Consistency tests

Though these hypotheses of ergodicity are impossible to validate explicitly, a few a posteriori checks
of consistency can be performed. These checks are consistent with both interpretations of the spatial
averaging (sections 2.2.1 and 2.2.2). For the sake of clarity, we limit ourselves to the first interpretation
(ergodicity assumption).

From sampled estimates µ [B̃2i j ], µ [B̃i i B̃ j j ] and µ [Ξ̃i j i j ], and under the assumption that µ [·] = Å[·],
it is possible to retrieve the asymptotic quantities Å[B?2

i j
] and Å[B?

i i
B?
j j
].

The consistency tests consist in verifying a few basic statistical properties that should be true for
these asymptotic statistics. Failures in passing these tests occur when the estimation µ [·] = Å[·] is too
rough. Before issuing a diagnosis, we verify that:

0 ≤ Å
[
B?i iB

?
j j

]
(9)

Å
[
B?i j

]2
≤ Å

[
B?2i j

]
(10)

Å
[
B?2i j

]
≤ Å

[
B̃2i j

]
(11)

Equation 10 is Hölder’s inequality and implies that 0 ≤ Å[B?2
i j
]. This guarantees that Lopt

i j
≥ 0

(cf. Equation 7), but is more constraining than mere positivity of diagnosed localization. Similarly,
Equation 11 comes from sampling theory and guarantees that Lopt

i j
≤ 1.

Missing values of raw localization can be seen in upper model levels in figures 1(a) and 2(a). These
missing values correspond to separation classes where one at least of these inequalities is not verified
(Equations 9 or 10 for most classes). Fortunately, this phenomenon is generally observed in zones of
small sample correlation, where optimal localization is expected to be low. Surrounding separation
classes have weak values of localization, so that the global shape of the localization function is not
affected by these rejections.
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In the experiments presented in this article, the use of these consistency tests, the spatial consistency
of results across separation classes, and the robustness to changes in spatial sampling comforts the idea
that the assumption of ergodicity (or ergodic decomposition) is reasonable.

2.3 | Zero separation localization

Equation 4 does not enforce the localization to be 1 at zero separation, contrary to what could be
expected from common practices in the literature. Even in the case of a Gaussian distributed ensemble,
the theoretical value of localization at zero separation is (N − 1)/(N + 1) (Equation 68 in M15).
As a result, the corresponding estimator of variance differs from the standard unbiased estimator.
This is because the optimal value of Li i minimizes the mean squared error Å[(Li i B̃i i − B?i i )

2] =
Å[Li i B̃i i − B?i i ]

2 + Var(Li i B̃i i − B?i i ) which includes a variance term in addition to the squared bias.
The fact that optimal localization Li i is strictly lower than 1 means that accepting a certain bias can be
more than outweighed by the associated reduction in variance.

Small values of localization (even below 0.5) at zero separation are thus possible. According to the
second term in Equation 4, this behavior indicates high kurtosis in the ensemble. In practice, such high
values of kurtosis only concern hydrometeor distributions, which exhibit a peak at 0 and large tails
evidenced by a few extreme values. As detailed in section 2.4, this hydrometeor specificity does not
prevent from diagnosing localization lengths for hydrometeors. Indeed, applying a localization function
that is strictly less than 1 at zero separation amounts to first reducing the ensemble spread (according to
localization at zero separation), and then applying a normalized localization function. While the optimal
localization at zero separation may still be an interest for future studies, zero separation diagnoses are
not discussed further in the rest of the paper. Indeed, the ensemble spread might be modified anyway
by an inflation scheme later in the DA process, depending on the considered system. Hereafter, the
focus is put on optimal localization lengths.

2.4 | From localization functions to localization lengths

We propose to reduce the information contained in diagnosed localization functions to a length-scale
when convenient:

• In order to easily visualize the results and compare them across different variables, or different
meteorological situations;

• In order to provide relevant information, simple enough to be compatible with predefined localiza-
tion schemes in DA systems.

In sections 2.1 and 2.2, localization is diagnosed as a function of vertical level z , vertical separation
dz and horizontal separation dh . This section explains how horizontal and vertical localization length
profiles, rh (z ) and rv (z ) respectively, can be extracted from the diagnosed localization function.

rh and rv profiles are chosen to minimize the distance between diagnosed localization (hereafter
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raw localization) and an analytical Gaussian-like localization described by rh and rv . In order to fit
precisely the raw localization function, the analytical localization function is not constrained to be 1 at
zero separation. A normalization factor α (z ) is introduced to adjust this zero separation value.

The Gaspari and Cohn correlation profile (from Gaspari and Cohn, 1999) is chosen for the analytical
localization, both in vertical and horizontal directions. This function approximates a Gaussian correla-
tion function by a piece-wise fifth-order polynomial function of compact support, and is commonly
used for localization purposes (e.g. Buehner, 2005). Therein, localization lengths refer to the Daley
length LD of functions (Daley, 1993).

It should be noted that preserving the symmetry property of the analytical localization function is
not straightforward if the localization lengths rh , rv and the normalization factor α vary with model
level z . A few details on the computation of the analytical localization function are given in appendix
A. Besides, a penalty term for sharp profiles is added in the fit process, to avoid over-fitting the raw
localization function. More details are given in appendix B. Note also that diagnosed localizations
are generally not positive definite, which motivates their empirical fit by analytical functions. The fit
step increases the robustness of the diagnoses by aggregating them, and is generally non-sensitive to
large-separation missing values evoked in section 2.2.

Typical localization length profiles are shown in figure 3. The corresponding analytical localization
function is shown in figure 1 and 2, side by side with raw localization. The analytical localization
correctly reproduces the features observed in raw localization, at least for short separation distances.
The symmetry of both raw and analytical localization functions is clearly visible in figure 1.
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F I G U R E 3 Diagnosed localization lengths as a function of vertical level, for specific humidity, same case as figure 1. (a)
Horizontal and (b) vertical localization lengths.

3 | EXTENSION TO HYDROMETEOR VARIABLES

3.1 | The issue of zero variances

Applying the method of M15 to hydrometeor fields requires a few adaptations. By nature, hydrometeor
fields are heterogeneous. As a matter of fact, hydrometeor mixing ratios are frequently zero where
thermodynamic conditions below saturation prevail. When such a zero value is found at grid point i in
every ensemble member, the associated sampled variance B̃i i is zero. Hence, sampled covariances B̃i j
are zero, and possibly the expectation of squared sampled covariances Å

[
B̃2i j

]
as well. Yet, Equation 3

requires that the expectation Å
[
B̃2i j

]
be non-zero, otherwise the fractions in the expression of optimal

localization are undefined.

To better understand this limitation, one can refer to the optimality criterion of Equation 6. When
Å

[
B̃2i j

]
is zero, the value of the expression does not depend on Li j . Since there is no covariance to

be localized, Li j can indeed take any possible value without impacting the filtered covariances. This
reasoning can be applied to the resulting analysis increments as well: if all ensemble members are
equal on a given grid point, the increment at this grid point is necessarily zero (in a pure ensemble
scheme), independently of the chosen localization. Consequently, there is no optimal localization Lopt

i j
,
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and concerned pairs (i , j ) of grid points can just be excluded from the diagnosis.

3.2 | Sampling hydrometeor fields more efficiently

The discussion in previous section is essentially theoretical, since a statement such as Å
[
B̃2i j

]
= 0

cannot be evaluated in practice. The actual problem to be answered is what to do with separation classes
where the expectations are estimated as zero: Å

[
B̃2i j

]
≈ µ

[
B̃2i j

]
= 0, where µ is the sampling-averaging

operator over the separation class of pair (i , j ) (see Equation 4). A cautious choice is to discard such
separation classes from the diagnosis. This questions in turn the validity of the estimation: what if
we just under-sampled the separation class? What if we missed some non-zero pairs in the separation
class? Then, the separation class would have been wrongly rejected, while a diagnosis might have been
provided. Even then, how much confidence could one have on a diagnosis based on just a few grid
points? To avoid such problems, more robust estimations of the expectations are needed. This section
shows how sampling directly non-zero variance pairs improves the robustness of the estimations.

Let C = (dh, zi , z j ) be a separation class. Let I ⊂ C be a random subset of C . Then the expectation

Å
[
B̃2i j

]
can be estimated by ergodicity:

µ
[
B̃2i j

]
=

1

Card(I)
∑
(i , j ) ∈I

B̃2i j ,

where Card(I) designates the cardinal of set I. In practice, I is sampled so that Card(I) � Card(C ),
in order to enable faster computations and to limit memory usage. The set I can be partitioned into
pairs of zero variances and pairs of non-zero variances: I = I0 ∪ I+ with

I0 =
{
i , j ∈ I | B̃i i = 0 or B̃ j j = 0

}
(12)

I+ = I \ I0 =
{
i , j ∈ I | B̃i i > 0 and B̃ j j > 0

}
(13)

And similarly C = C0 ∪ C+. This partition of I enables to simplify the fractions in Equation 4. For its
second term for instance:

µ
[
Ξ̃i j i j

]
µ

[
B̃2
i j

] =

1

Card(I)
∑

(i , j ) ∈I
Ξ̃i j i j

1

Card(I)
∑

(i , j ) ∈I
B̃2
i j

=

∑
(i , j ) ∈I+

Ξ̃i j i j∑
(i , j ) ∈I+

B̃2
i j

, (14)

since zero variances imply zero fourth-order moments. A similar result is obtained for the third term of
Equation 4. As a consequence, localization diagnosed from set I is the same as localization diagnosed
from set I+. This argues in favour of rejecting zero-variance pairs (in I0) from the sampling step. By
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sampling pairs directly in C+ while keeping the same number of sampled pairs, the effective sample
size is increased by a factor Card(C )/Card(C+) on average, which can be quite important if only a
small part of the geographical domain has a non-zero hydrometeor content. The diagnosis is thus made
more robust, by sampling more densely the separation class. Note however that the increase in effective
sample size obtained by sampling more densely is partly mitigated by higher spatial correlations among
the sampled pair. The given increase factor Card(C )/Card(C+) may thus be an upper bound.

3.3 | Excluding zero variances in practice

A rather straightforward way of sampling only non-zero variance pairs consists in excluding zero
variance points individually, before forming pairs. Yet, due to rounding errors in the different computa-
tions, a significant part of variances may not be exactly zero, but still be exceedingly small and non
physically significant. A threshold has to be chosen, below which standard deviation are considered to
be zero, leading to rejection of the grid points. A threshold value of 10−12 kg kg−1 in ensemble standard
deviation is chosen. Several arguments are given below to support this choice.

1. A 10−12 standard deviation corresponds to a variance of 10−24, which is below the accuracy of
double precision computations.

2. Figure 4 shows that the accepted grid points gather around high concentration zones, which should
not be the case for numerical noise.

3. This choice is confirmed by looking at the implied geographical three-dimensional masks on
variances. As shown in figure 5, the chosen threshold is located in a range of values (from 10−11 to
10−17) where the mask is almost non sensitive to the choice of threshold .

4. This threshold is relevant across all hydrometeor types, all levels and all considered weather
situations.
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F I G U R E 5 Empirical cumulative distribution function of hydrometeor sampled variances in ensemble for case 7 and across
all vertical levels. The horizontal scale is logarithmic.

F I G U R E 4 Standard deviations of cloud water (q l ) content at model level 62 (around 850 hPa) over the AROME domain.
The standard deviations are sampled from a 50 member ensemble from the AROME EDA system, valid at 6UTC in November
15th, 2018. Standard deviations are masked below the threshold value 10−12 kg kg−1.
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3.4 | Acceptance tests for localization lengths

Once the diagnosis is performed, a test of acceptance is carried out level by level on rh and rv profiles.
Indeed, the fit of the analytical function is performed globally, so that rh (z ) and rv (z ) are defined across
all levels. The acceptance test aims at rejecting levels where the raw localization was not correctly fitted
by the analytical localization function. This typically happens when the shape of the raw localization
function strongly differs from a Gaussian, when the raw localization diagnosis is very noisy, with no
sign of decay with increasing separation distance, or when the diagnosis could simply not be performed
because of absence of hydrometeor. The former cases are evidenced by unusually high residuals of
the fit. The latter is evidenced when too few localization diagnoses are available to describe the raw
localization function at a given level. More details on the acceptance tests are given in appendix C.

Even though this quality control step only affects hydrometeor variables in practice, the whole
localization diagnosis is performed identically for hydrometeor variables and conventional variables.

4 | EXPERIMENTAL SET-UP

4.1 | The AROME EDA

Given that localization diagnoses only require information from an ensemble of forecasts, ensemble
generation deserves a specific attention. All ensembles used in this study are generated by the AROME
Ensemble Data Assimilation (EDA) system, which evolves 50 members through 3 hour cycles of
DA and forecast steps. Such a system aims to simulate the error evolution of the AROME-France
DA system (Seity et al., 2011) through the addition and propagation of both observation and model
perturbations during the DA cycling. In addition to what is classically done at global scale (e.g Berre
and Desroziers, 2010), perturbed lateral boundary conditions provided by the operational EDA at
global scale based on the ARPEGE model are also used (Berre et al., 2015). No inflation is applied to
the ensemble, but the method of Stochastically Perturbed Parametrization Tendencies (SPPT) is used
to simulate model error (Palmer et al., 2009; Bouttier et al., 2012) with a horizontal length-scale of
500 km. The water species are evolved by the single-moment microphysics scheme ICE3 (Lascaux et
al., 2006). Besides mass mixing ratio of water vapour qv , the ICE3 scheme describes the evolution of
five hydrometeor variables: cloud water q l , ice crystals qi , rain qr , snow qs and graupel qg (that also
includes hail as large graupel particles). Compared to the deterministic AROME-France model, which
nowadays runs at 1.3 km horizontal resolution and performs hourly DA cycles (Brousseau et al., 2016),
the same vertical discretization of 90 levels is used, whereas a lower horizontal resolution of 3.2 km
has been preferred to lower computational cost.

As the AROME EDA was not yet in operation at Météo-France, three cycling experiments have
been performed over February 2018, May to October 2018 and November 2018, encompassing eight
meteorological situations of interest. The eight studied ensembles are extracted at least 2 days after the
beginning of each EDA cycled experiment, to make sure the system has reached an equilibrium state
with an appropriate dispersion.
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As displayed in Equation 3, the absolute value of the diagnosed localization length depends of
the ensemble size. Yet, the ratio of the retrieved lengths between hydrometeors and conventional
variables should be less sensitive to such size, which keeps the results relevant for application to
different ensemble-based DA systems.

4.2 | Meteorological situations

# Validity date Weather type
1 2018/02/11 03h Weather disturbance
2 2018/02/13 03h Little rain winter case
3 2018/05/21 15h Barometric swamp thunderstorms
4 2018/05/28 15h Locally intense thunderstorms
5 2018/08/09 12h Thunderstorms.
6 2018/10/15 03h High Precipitation Event in South-Eastern France
7 2018/11/15 06h Fog over northern France
8 2018/11/16 06h Fog over northern France

TA B L E 1 Studied meteorological situations. Hours are given in UTC.

Eight cases are studied, and listed in table 1. The meteorological situations were chosen to be
representative of different weather patterns implying different hydrometeor species over the AROME
domain in 2018. Cases have been selected both in winter (two in February), in summer (one in August)
and in mid-seasons (two in May, one in October, two in November). Half of the cases are mostly
convective, for instance in the end of May, where intense thunderstorms developed over France. The
August case has been chosen for being the most active in the month, in terms of number of detected
lightning flashes. Finally, the October case is a High Precipitation Event in South France, with local
rainfall reaching about 260 mm in 12 h, which caused 14 casualties in the Aude department from the
resulting flooding. More stratiform cloud cases were selected in November, with two situations of
wide-spread fog over the North of France. The two winter cases are more common, with the passage of a
weather disturbance with scattered showers over France, and a more dry but cloudy typical mid-latitude
winter atmosphere.

4.3 | Implementation of the localization diagnoses

The localization diagnoses have been performed using the BUMP package developped by Benjamin
Ménétrier (see acknowledgment section for details). A few technical details are given here.

As mentioned in section 2.2, separation classes are divided according to a discretized horizontal
separation distance, inter alia. The horizontal resolution ∆d should be fine enough to properly inform
on the decay of localization with horizontal separation. On the other hand, it should be consistent with
the horizontal resolution of the ensemble (3.2km), to make sure that there are enough pairs in a given
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separation class. Otherwise, estimation of expectations in Equation 4 might suffer from under-sampling.
The horizontal class width is chosen as ∆d =5 km in these experiments, with horizontal separations
ranging from 0 km to 300 km.

Vertically, separation classes are naturally discretized by all possible pairs of levels.
For the sampling step, up to 10 000 pairs are sampled and averaged for each separation class.

4.4 | Confidence

To have an idea of the robustness of the diagnoses, the whole process of localization profile estimation
is performed ten times per variables, with different seeds of the random number generator. Changing
the seed changes the random selection of geographical pairs (i , j ) that are used in each separation class,
and finally changes the localization diagnosis. The variability of the results gives a coarse idea of the
uncertainty due to spatial sampling. These uncertainty ranges are shaded in figure 6. If less than half
of the 10 diagnoses pass the acceptance tests at a given vertical level (section 3.4 and appendix C),
the remaining diagnosed localization lengths at this level are screened out, and the result is regarded
as not robust enough to be considered. Otherwise, the median value of the level is kept as diagnosed
localization length, to get rid of potential outliers.

5 | RESULTS: LOCALIZATION DIAGNOSES

5.1 | Horizontal localization

Diagnosed horizontal localization lengths (rh) for November 15th (first fog case) are presented in
figure 6. At first, rh uncertainty ranges look wider for hydrometeors: around 30%, against 10% for
conventional variables. Yet, the absolute width of the uncertainty range is similar, around 15 km for
every variable and for most levels. The uncertainty range is omitted for the sake of clarity in figure 7,
where rh profiles from all meteorological cases are gathered for a selection of variables.

5.1.1 | Dependence to vertical level

Diagnosed horizontal localization lengths rh are strongly dependent on vertical level. This dependence
is especially clear for hydrometeor variables, for which localization can be diagnosed for a fraction of
vertical levels only. Different hydrometeor variables in the ensemble are gathered in different portions
of the atmosphere: lower levels for cloud water and rain, upper levels for snow and ice crystals, all
levels for graupels that gather a mix of melted particles essentially present in convective towers.

Where the diagnoses can be performed, rh values for hydrometeor remain level dependent. For q l
for instance, in figure 6, a peak is displayed around 850 hPa with values greater than 200 km, which is
roughly 4 times the value below (around 1000 hPa) and above (around 750 hPa). We hypothesize that
the diagnosed peak in rh is due to the passage of a linear cloud structure in the north-western part of the
domain. This structure leaves its imprint on the map of sampled standard deviations in figure 4). This
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F I G U R E 6 Diagnosed horizontal localization lengths diagnosed for November 15th, 2018 6UTC case. Shaded areas show
the interval between the 10th and 90th percentiles of a 10 run ensemble. Horizontal scales differ from one panel to another.

hypothesis is confirmed by performing separate diagnoses for the southern and northern halves of the
domain. Only the northern diagnosis reproduces this peak in rh (not shown), associated with larger
correlation lengths on average. So the diagnosis on the whole domain is the optimal combination of
southern and northern diagnoses, as described in section 2.2.2.

Profiles of rh diagnosed for the other weather situations reveal similar vertical variability. Figure 7
shows that for each hydrometeor variable, at least one day exhibits a significantly vertical-dependent
profile. This variability can be simply quantified for each profile by computing the ratio of maximum
over minimum localization lengths (max over min ratio). This max over min ratio is almost always
higher than 2, across all variables and times. Cloud water rh profiles in particular are often peaky, with
a max over min ratio above 9.0 in 7 cases out of 8. Other hydrometeor variables can be quite uniform,
especially for rain, but frequently present a peak in localization at some altitude. This uniformity might
be related to their precipitating nature, which implies similar error structures across vertical levels, and
hence similar rh .

For conventional variables, rh values rapidly increase from 100 – 300 km in the troposphere to 400 –
700 km in the stratosphere. This phenomenon has already been noticed by Ménétrier et al. (2015b) and
Montmerle et al. (2018). This could be partly a specific feature of the AROME-EDA, maybe related
to coupling to a large scale model on the top of the atmosphere. It could also be related to the usual
increase of correlation length scales with height (see for instance Caron and Buehner, 2018).
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F I G U R E 7 Diagnoses of horizontal localization lengths for 8 studied ensembles and 6 variables. Each profile is the median
value from 10 runs. Data is not shown where more than half of the 10 runs fail to issue a diagnosis. Some days are enhanced by
specific color and line style, see text for details. Horizontal scales differ between panels.
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F I G U R E 8 Range of values for rh for different variables, aggregated from all 8 studied days and vertical levels below
190 hPa. Localization lengths above 190 hPa are discarded, since there is no hydrometeor diagnosis for comparison with
conventional variables at these levels. The boxes extend from first quartile Q1 to third quartile Q3. The median value is shown
in between. The whiskers extend on each side to the furthest points within d km of box ends, where d is 1.5 times the
inter-quartile range Q3 − Q1. Points farther away are marked with crosses.

5.1.2 | Dependence to weather situation

As shown in figure 7, the localization diagnosis depends on the considered meteorological situation.
For instance, diagnosed rh are generally larger for winter cases (cases 1 and 2) than for the convective
May cases (cases 3 and 4), for all considered variables. This difference is probably linked to similar
differences in the correlation structures, more flattened in stratified winter situations. Hence, the
variability of correlation structures with weather types, already noted by Brousseau et al. (2012) and
Ménétrier et al. (2014) for instance, is reflected in the variability of the diagnosed localizations.

The daily variability of rh is comparable to, and maybe even greater than the seasonal variability.
Two diagnoses can clearly differ from one day to the next, as shown by the two November profiles
(fog cases 7 and 8) for cloud water in figure 7(c). The diagnosed profiles are similar in the first bottom
layers of the atmosphere, where fog conditions are similar. However, the profiles rapidly diverge above
the first few layers, due to the passage of the linear cloud structure previously mentioned in case 7,
which is absent of the domain in case 8.

5.1.3 | Range of values for horizontal localization

Figure 8 summarizes the differences of diagnosed rh for all levels, cases and variables, by displaying
on one figure the range of diagnosed values. Clearly, shorter rh (mainly 20 km to 90 km) have been
obtained for hydrometeors, compared to conventional variables (mostly 90 km to 220 km, except in
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F I G U R E 9 Horizontal section of mean sample correlation and optimal localization functions. The sections are extracted at
two different altitudes and correspond to cloud water on figure 6 (b).

the stratosphere). The shortest values are consistently displayed for liquid rain and graupel, that are
the condensate with the largest fall speed, whereas values for liquid cloud are more variable and
can be larger. These results are quite consistent when compared day by day and level by level, with
values for hydrometeors that are smaller compared to conventional variables by a factor 2 to 6 (not
shown). Surface pressure diagnoses have been performed for comparison purposes and show a median
value for rh around 940 km, making surface pressure the conventional variable with largest horizontal
localization length.

5.1.4 | Relationship to correlation lengths

The ambiguous relationship between correlation and localization is illustrated in figure 9, where sections
of correlation and localization functions are displayed together. This figure evidences that broader
mean sample correlation functions are not always associated to broader localization functions.

More generally, even though correlation structures can help to understand localization diagnoses,
the vertical variability of rh cannot be fully explained by the underlying correlation functions. For
instance, a peak of diagnosed rh is observed for cloud water in case 2 (February 13th), while no such
feature can be observed in the sample correlation function around this altitude (not shown).

Similar results show that optimal vertical localization lengths cannot always be related to correlation
length-scales (not shown).
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F I G U R E 1 0 Matrices of raw localization at zero horizontal separation for case 7 (November 15th). The values shown here
are the median of the 10 runs, where half at least of these runs give a non-missing value. This explains why (b) differs from
figure 1(a).

5.2 | Vertical localization

5.2.1 | Raw localization functions

Figure 10 presents raw localization functions for conventional and hydrometeor variables, for case 7
(first November fog case).

A first interesting feature is the significantly lower localization Li i at zero separation (on the
diagonals) for rain and graupel. Maximum value for these variables is around 0.77, while it is
0.90 – 0.95 for other hydrometeor variables, and around 0.96 (the value for Gaussian ensembles) for
conventional variables. As mentioned in section 2.3, these rather low values may reflect heavy tails of
graupel and rain distributions in the ensemble.

Another specificity of rain and graupel is the quasi uniform values in the vertical localization
matrices. For both cases, raw localization decays only very slowly with increasing vertical separation,
and drops suddenly to zero just before reaching the zone of non-definiteness (levels without hydrometeor
content). The same phenomenon, to a lesser extent, is observed for snow. We suggest that these broad
vertical localization structures are linked to the precipitating nature of these particular variables. This
result is consistent with the large vertical correlation structures found for liquid rain by Michel et al.
(2011).

These vertical uniformities of localization values are observed for all other cases as well, especially
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F I G U R E 1 1 As figure 7 for vertical localization lengths.

for rain (not shown). Day-to-day variability mainly resides in the altitude of the transition level from
high to zero localization values, which varies depending on the vertical stratification of the considered
weather situation and on the considered hydrometeor.

5.2.2 | Localization lengths

Diagnosed profiles of rv are shown in figure 11 for all studied cases. No estimation is performed
for precipitating variables, since their raw localization shapes differ too strongly from the analytical
Gaussian shape.

Similarly to rh , rv values depend on the vertical level, on the variable and on the weather situation.
Most profiles present one or two peaks, in all displayed variables. For qi especially, one peak of
maximum values is always observed between 550 hPa and 300 hPa. These peaks correspond to the
levels of maximum qi content. The two winter profiles for ice crystal almost reach surface level, while
no diagnosis can be performed below 800 hPa for summer and mid-season cases.

Contrary to rh , no clear connection can be established between rv and convective activity. Case 2
(February 13th) profile exhibits especially large values for temperature, q l , and to a lesser extent specific
humidity. Yet, values do not seem to be especially larger for May convective cases, nor shorter for
November stratified cases.

Another important difference with rh is the similarity of profiles for conventional variables and
cloud variables (qi and q l ), at least in terms of range of values. No significant difference can be shown
here from one variable to another. From the surface to 600 hPa, rv values for qi and q l are gathered
just below 0.2 (in ln(Pa) in this section), with extreme values above 0.4, consistently with qv values.
Above 600 hPa, vertical lengths for qi extend from 0.2 to 0.8, rather like temperature lengths.
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5.3 | Consequences for localization schemes

Here follows a list of possible localization schemes accounting for the results of this study, from the
simplest to the most elaborate. All of them apply to convective-scale models that consider hydrometeor
in their control variables.

1. Single localization scheme. This is one of the cheapest possible localization schemes in terms of
computational cost: one value of rh and rv , common for all variables, all levels, all days.

2. Variable-dependent localization scheme. The idea of such a scheme is not new, and has recently
been advocated by Necker et al. (2020) for instance. This scheme is more expensive in terms
of computer power, but the cost can be limited if some variables have a common localization.
Typically, control variables could be divided into three sets: conventional variables, cloud variables
and precipitating variables. The latter two (hydrometeors variables) should have shorter rh compared
to conventional variables, by a factor 2 to 6. On the other hand, precipitating hydrometeors could
be only slightly localized in the vertical, with a large rv compared to other hydrometeors and
conventional variables.

3. Variable-, level- and day-dependent localization scheme. Such an increase in complexity is required
to significantly refine the localization scheme. This implies that an estimation of optimal localization
should be performed every day, ideally before every DA cycle.

4. Flow-dependent localization. If the geographical domain of the convective-scale model is large
enough, optimal localization may vary spatially, even within one model level. For instance,
correlation structures of conventional variables are known to vary between precipitating and non-
precipitating zones (Montmerle and Berre, 2010), so that localization may be thought to vary
accordingly.

Rapid implementations of the last two schemes are likely to have prohibitive numerical costs.
Furthermore, variable-dependent scheme should give a specific attention to localization of cross-
covariances between variables from two different sets.

An alternative solution would consist in using a kind of adaptive localization. Among existing
schemes, an interesting possibility would be the use of a scale-dependent localization scheme (SDL,
Buehner and Shlyaeva, 2015), that has been recently implemented in the experimental 3D-EnVar of
AROME-France (Caron et al., 2018). Indeed, optimal localization lengths might be correlated with the
spatial scale of error covariance structures, both horizontally and vertically. Hence, a scale-dependent
localization would indirectly be a kind of variable-dependent, day-dependent and level-dependent
localization, as shown by Caron and Buehner, 2018. Yet, SDL schemes would remain computationally
expensive compared to single-length localization schemes, the cost being multiplied by the number
of spectral bands chosen in the algorithm. With three bands, the cost of SDL is likely to be similar to
the cost of a variable-dependent localization scheme with three sets of variables. Besides, we are not
aware of an SDL scheme that could simultaneously filter horizontal and vertical scales, though this
perspective is mentioned by Caron and Buehner, 2018.
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6 | CONCLUSION AND PERSPECTIVES

The method of Ménétrier et al. (2015a) diagnoses localization lengths for ensemble-based covariances,
based on the ensemble of forecast only. This method has been extended to positive and highly
heterogeneous variables such as hydrometeors. To deal with the problem of zero-variance grid points,
we have recourse to geographical masks based on sample variances. The effect of these masks is twofold.
First, model levels and separations where all covariances are zero (and thus where no localization
is needed) are directly rejected from the diagnosis. Then, the step of spatial sampling related to the
ergodicity assumption is made more efficient by sampling directly among the non-zero variance pairs of
each separation class. Both modifications make the diagnoses more robust. A simple quality criterion
for the diagnoses is also implemented, based on the agreement of raw diagnosed localization and its fit
by an analytical localization function.

Horizontal localization lengths in model space are then diagnosed for hydrometeor variables from
eight ensembles describing forecast error for different weather situations in 2018. For 50-member
ensembles, hydrometeor localization lengths are mainly diagnosed between 20–80 km, with large
values (around 100 km) for cloud water and some extreme values on one day near the tropopause for
ice crystals and snow. In line with previous studies, larger typical values (from 100 km to 300 km) are
found for conventional variables, with higher values in the stratosphere. Though localization profiles
are highly dependent on vertical level and weather situation, a level-by-level and day-by-day ratio
shows that horizontal localization lengths diagnosed for hydrometeors are constantly shorter by a factor
2 to 6 compared to conventional variables.

Vertical localization lengths are also dependent on level and weather situation. Similar ranges of
values are found for conventional variables, cloud water and ice crystals. Precipitating hydrometeors
exhibit larger vertical localization structures and more abrupt transitions to zero values than other
variables.

The absolute values of localization lengths given here can be extrapolated to different ensemble
sizes: shorter lengths for smaller ensembles, larger ones for bigger ensembles. It should be noted though
that the choice of ensemble size is not supposed to affect the main results of this study: day-to-day
variability, dependence to vertical level, comparisons from variable to variable. Similarly, these results
can reasonably be thought to extend to any convective scale model with a single-moment microphysics
scheme.

Logarithm transforms or Gaussian anamorphosis are sometimes invoked as a workaround to deal
with the non-Gaussian behavior of hydrometeors (Bocquet et al., 2010). The method used herein
could be straightforwardly applied to such transformed ensembles, to see how our results extend to
transformed hydrometeor fields.

Following the recommendations of this study about localization schemes for hydrometeor variables,
cycling experiments are currently being performed at Météo-France to compare a single-localization,
a variable-dependent localization and a scale-dependent localization schemes. The potential gain in
skill will be weighed against the higher cost in computation power and time. In such assimilation
experiments, hydrometeor increments can be produced even without hydrometeor observations, by
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projecting conventional increments to hydrometeor variables through cross-covariances of the B matrix.
Hence, localization diagnoses for cross-covariances between hydrometeors and conventional variables
would be worth studying in future research.
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A | COMPUTING THE ANALYTICAL LOCALIZATION FUNCTION

A few precisions are given about the computation of the analytical localization from rh , rv and α
profiles. For the sake of clarity, we first omit the normalization factors α (z ).

For a given separation class (z , dz , dh), how is the analytical localization Lana (z , dz , dh) computed?
An intuitive choice would be:

Lana (z , dz , dh) = exp
(
−∆(z , dz , dh)

2

2

)
(A.1)

where (∆ (z , dz , dh) is the normalized distance associated to the separation class:

∆ (z , dz , dh) =

√(
dh
rh (z )

)2
+

(
dz
rv (z )

)2
. (A.2)

The associated approximation using the correlation function from Gaspari and Cohn (1999) would be
Lana (z , dz , dh) = GC99 (∆ (z , dz , dh)), where GC99 denotes the approximation of a Gaussian with a
unit Daley length-scale. The problem with this formulation comes from its asymmetry: why choosing
rv (z ) and not rv (z + dz ) to normalize vertical separation? Lana (z , dz , dh) and Lana (z + dz ,−dz , dh)
would differ here, making the underlying localization matrix non-symmetric: localization between
levels z and z + dz would be different from localization between levels z + dz and z .

Another candidate ensuring symmetry of the localization function shall be found for ∆. Plus, we
require that the distance between points at different levels zi and z j , i ≤ j , accounts for all intermediate

https://github.com/jcsda/saber
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values rh (zk ) and rv (zk ), i ≤ k ≤ j , and not only for extreme values at levels zi and z j .

To do so, at a given level z , we associate to each possible values of dh and dz a point on the 2D
plane of possible horizontal and vertical separations. This plane is discretized has explained in section
2.2.

We first define a locally normalized distance δ between two neighboring points
(
d h1 , d

z
1

)
and(

d h2 , d
z
2

)
, i.e. points that are horizontally, vertically or diagonally neighbors on the discrete 2D plane.

We naturally have:

δ
((
d h1 , d

z
1

)
,
(
d h2 , d

z
2

))
=

√√√( ��d h1 − d h2 ��
rh (z12)

)2
+

( ��d z1 − d z2 ��
rv (z12)

)2
(A.3)

where rh (z12) is the mean of rh at levels z + d z1 and z + d z2 , and similarly for rv (z12).

Then, we define as path any sequence of points
( (
d hi , d

z
i

) )
0≤i ≤p such that two consecutive points

are neighbors on the grid. The length of a path is naturally defined as the sum of locally normalized
distances:

∑p−1
i=0 δ

( (
d ih, d

i
z

)
,
(
d i+1h , d

i+1
z

) )
.

We now choose as normalized distance ∆(z , dz , dh) for separation class (z , dz , dh) the length of
the shortest path from zero separation to (dh, dz ), "shortest" meaning "of minimal length".

Finally, the obtained localization function is normalized by the factor α (z ), still taking care of
preserving the symmetry property: Lana (zi , z j , dh) ← Lana (zi , z j , dh) ×

√
α (zi )α (z j ).

B | FITTING THE ANALYTICAL LOCALIZATION FUNCTION

In practice, a simple implementation of the fit process leads to rh and rv profiles that exhibit sharp,
high-frequency features. The non reproducibility from one run to another suggest that these 2-level
frequency features are numerical noise, resulting from an over-fitting of the raw localization function.
To prevent this behavior, to make the diagnoses more robust and to remain close to smooth profiles and
Gaussian shapes of the analytical function, two elements are added to the fit step.

1. Penalty terms are included in the cost function, penalizing high-curvature profiles. The penalty
terms are sums of discrete normalized second order derivatives along the vertical direction, and are
zero if the profiles are linear.

2. The control variables rh , rv and α of the minimization are shortened by controlling the profiles
only one level out of two. The missing intermediate levels are found by linear interpolation before
computation of Lana.

Both modifications are necessary in practice. The cost function being minimized to obtain rh and rv is
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J (r ′h, r
′
v , α

′) = ‖Lana (rh, rv , α) − Lr aw ‖22
+ J curv (rh) + J curv (rv ) + J curv (α)

(B.1)

where the norm is computed over all values of z , dz and dh . This approach allows to extract localization
length profiles while exploiting the full information of the raw localization function, which is more
robust than deducing them from raw localization at zero horizontal or vertical separation. The rh
profile is linearly interpolated from the twice shorter r ′h , rv is interpolated from r ′v and α from α ′.
If an excessive weight is given to the penalty terms J curv, fit profiles tend towards linear profiles.
Obtaining peaked profiles in section 5 shows that the penalty terms are correctly balanced relative to
the first term. Plus, sharper localization profiles would be useless compared to the current difficulties in
applying localization schemes with varying lengths (vertically constant localization lengths were used
in Montmerle et al., 2018 for instance).

C | ACCEPTANCE TESTS FOR PROFILES OF LOCALIZATION LENGTHS

As explained in section 3.4, for a given level z , rh (z ) and rv (z ) are simultaneously accepted or rejected,
based on the confidence we have on the fit step.

1. The agreement between raw localization and analytical localization is assessed by computing a
signal-to-noise ratio (SNR). Since the fit process is important only in the decaying zone of the
function, the SNR is computed only "near the zero separation class" (within a one bin distance
of the zero separation class, in the dh, dz plane) and where the fit localization is above half its
maximum value. Noise is estimated by the root mean square difference of raw and analytical
localization functions, and signal is estimated by the mean value of raw localization in the decaying
zone. Levels where the SNR is lower than 1 are rejected.

2. Insufficient hydrometeor contents are declared when there are not enough diagnosed points in the
raw localization function at level z to correctly fit the analytical function. Separation classes "near
the zero separation class" (cf. point 1) should all have a valid localization value, diagnosed from at
least 1000 pairs. Otherwise, rh (z ) and rv (z ) are rejected.
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