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Abstract: The transient stabilization problem of a synchronous generator in a multimachine power system is ad-
dressed. A robust adaptive nonlinear feedback control algorithm is designed on the basis of a third order model
of the synchronous machine in a multimachine power network which takes into account the effect of transfer con-
ductances and of the remote network dynamics: it does not require the machine internal voltage measurement and
relies on the knowledge of only three model parameters and of upper and lower bounds on the uncertain ones.
Sufficient conditions to be satisfied by the remaining part of the network forguaranteeingL2 andL∞ disturbance
attenuation and relative speed regulation are derived which are more general than those required by the single
machine-infinite bus approximation.
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1 Introduction

The transient stabilization problem of power net-
works, which are large-scale interconnected nonlinear
systems, consists in the design of a suitable excita-
tion feedback control keeping each generator close to
the synchronous speed when mechanical and electri-
cal perturbations, such as load shedding, generation
tripping or short circuits, occur. The standard linear
controllers which are designed on the basis of linear
approximations around operating conditions may not
be able to handle the severe disturbances and contin-
gencies typically occurring in power systems so that,
in the recent years, several nonlinear control algo-
rithms have been proposed, leading to significant ad-
vances in power system control ([6], [8], [11], [12],
[4], [9]).
In this paper we extend the analysis presented in [9]
by taking into account the effects of transfer conduc-
tances and of remote network dynamics: the resulting
control for the transient stabilization of a synchronous
generator in a multimachine power network, does not
assume the availability of the machine internal voltage
measurement as well as the knowledge of the model
parameters excepting for machine damping and in-
ertia constants and synchronous speed.L2 andL∞

disturbance attenuation and relative speed regulation
are guaranteed under certain assumptions on the net-
work dynamics which are more general than those re-
quired by the single machine-infinite bus approxima-
tion. Simulation results with reference to a 3-machine,
9-bus system illustrate the closed loop performance.

2 Problem Statement and Nonlinear
Control Design

A large-scale power system consisting ofn genera-
tors interconnected through a transmission network is
described by the nonlinear third order model in [10]
[1 ≤ i ≤ n]
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in which (for thei-th generator):δi(rad) is the power
angle,ωi(rad/s) is the relative angular speed,E′

qi(p.u.)
is the transient EMF in the quadrature axis,Pei(p.u.)
is the active electrical power,Pmi(p.u.) is the mechan-
ical input power,Qei(p.u.) is the reactive electrical
power, Idi(p.u.) is the direct axis current,Iqi(p.u.)
is the quadrature axis current,Vti(p.u.) is the termi-
nal voltage,ufi(p.u.) is the input to the SCR ampli-
fier, ω0(rad/s) is the synchronous speed,Di(p.u.) is
the damping constant,Hi(s) is the inertia constant,
T ′

d0i(s) is the direct axis transient open circuit time
constant,xdi(p.u.) is the direct axis reactance,kci

is the gain of the excitation amplifier,Gij(p.u.) and
Bij(p.u.) are thei-th row and thej-th column ele-
ment of nodal conductance and susceptance matrixes,
respectively, at the internal nodes after eliminating all
physical buses, which depend on the direct axis tran-
sient reactancex′di(p.u.), on the transformer reactance
xT i(p.u.), on the loads and on the transmission line
reactancexij(p.u.) between thei-th generator and
thej-th generator. Direct computation ofPei(t) time
derivative [Gij andBij , 1 ≤ j ≤ n, are assumed to be
constant] allows us to rewrite the dynamic model (1)
as [Iqi ≥ cIi > 0 ([7])]
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in which δi, ωi, Pei are the state variables,ufi is the
control input and the term
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represents the effect of the network remote dynamics
on thei-th generator.
In this paper, we restrict our analysis to a particular
power systemPS, which consists of a groupGM of
n− 1 generators [tied together by a strong network of
transmission lines] which is linked to a single gener-
atorgm (referred to asr-th generator) by a compara-
tively weak set of tie lines: the transient stabilization
problem of the synchronous generatorgm in the multi-
machine power networkPS is addressed. Let us state
the theoretical result of the paper (the proof is omit-
ted).
Theorem: Consider ther-th generator dynamics.
Denote byδrs the pre-fault constant value for the
power angleδr and assume that for allt ≥ 0

i) for each j 6= r, δj(t) and E′
qj(t) are continu-

ous functions of timet and boundedness ofδr(t),
ωr(t), Per(t) implies boundedness ofE′

qj(t);

ii)a) there existµr, νr, ρr non-negative reals,ψµr(·),
ψνr(·), ψρr(·) K∞ functions andgr(t) bounded
non-negative real-valued function of timet such
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vi) |Ṗmr(t)| ≤ ṖMr with knownṖMr.

Then the nonlinear adaptive feedback control algo-
rithm [kδr, kωr, kpr, kper, kωpr, kr, kRr, βjr, βxr,
βBr, εjr, εxr, εBr (1 ≤ j ≤ 6) are positive control
parameters]
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then controller (3) guarantees the additional prop-
erty:

(S3) asymptotic convergence, i.e.

lim
t→∞

∥

∥

∥[δr(t) − δrs, ωr(t), Per(t) − Pmr]
∥

∥

∥ = 0.

Remark 1:The proposed control algorithm (3) re-
lies on the locally measured signals:δr, ωr, Per, Idr,
Iqr, Qer (the method for measuring the power angle
δr can be found in [3], [2] and [5]).

Remark 2: Let Σr(yr1, yr2, yr3, Rr) be the sys-
tem consisting of thej-th generators (j 6= r) with in-
puts theyr(t) vector componentsyr1(t), yr2(t), yr3(t)
and output the functionRr(t). Less restrictive condi-
tions than those required in the single machine-infinite
bus approximation are to be satisfied by the remain-
ing part of the network: assumption ii)a) is satisfied if
systemΣr(yr1, yr2, yr3, Rr) is Input to Output Stable
with gain functionsψµr(·), ψνr(·), ψρr(·); assump-
tion ii)b) requires the knowledge of suitable functions
ϕ̄µr(·), ϕ̄νr(·), ϕ̄ρr(·) which majorize the gain func-
tionsψµr(·), ψνr(·), ψρr(·); assumption viii) is satis-
fied if systemΣr(yr1, yr2, yr3, Rr) has finiteL2 gains,
bounded from above by the positive numbers

√

γδr/3,
√

γωr/3,
√

γpr/3.

3 Simulation Results
In this section we will test by simulation the con-
trol algorithm (3) with reference to each generator
of the popular Western System Coordinating Council
(WSCC) 3-machine, 9-bus system described in [10]
and [1] [Di = 0, 1 ≤ i ≤ 3], with the aim of nu-
merically checking the conservativeness of the condi-
tions provided by the theorem, of testing the perfor-
mance and of verifying the robustness of the proposed
control law with respect to unmodelled dynamics: the
simulation is carried out by using the two-axis model
(see [10]) from which the model (1) has been derived.
The initial conditions for the state variables are com-
puted by systematically solving the load-flow equa-
tions of the network and by computing the values of
the algebraic variables. For1 ≤ i ≤ 3, the func-
tions ϕ̄µi(·), ϕ̄νi(·), ϕ̄ρi(·) are set equal toid(·)|[0,∞)

[id(·) is the identity function], the control parame-
ters are chosen askδi = kωi = 0.01, kpi = 720,
kpei = kωpi = 1, ki = 0.001, kRi = 0.1, β1i = β2i =
β3i = β4i = β5i = β6i = βxi = βBi = 48000,
ε1i = ε2i = ε3i = ε4i = ε5i = ε6i = εxi =
εBi = 0.00001, while ṖMi = 1 and the known upper
and lower bounds on the model parameters values are
kc1m = 0.6, kc1M = 1.4, xd1m = 0.1, xd1M = 0.2,
x′d1m = 0.05 p.u.,x′d1M = 0.07 p.u.,T ′

d01m = 6 p.u.,

T ′
d01M = 12 p.u.,G11m = 0.5 p.u.,G11M = 1.5 p.u.,
Pm1m = 0.3 p.u.,Pm1M = 1.1 p.u.,B11m = −6 p.u.,
B11M = −1 p.u.,kc2m = 0.6, kc2M = 1.4, xd2m =
0.7, xd2M = 1.1, x′d2m = 0.09 p.u., x′d2M = 0.14
p.u.,T ′

d02m = 4 p.u.,T ′
d02M = 8 p.u.,G22m = 0.3

p.u.,G22M = 0.6 p.u.,Pm2m = 1.2 p.u.,Pm2M = 2
p.u.,B22m = −6 p.u.,B22M = −1 p.u.,kc3m = 0.6,
kc3M = 1.4, xd3m = 1.2, xd3M = 1.5, x′d3m = 0.1
p.u.,x′d3M = 0.3 p.u.,T ′

d03m = 4 p.u.,T ′
d03M = 8

p.u.,G33m = 0.1 p.u.,G33M = 0.4 p.u.,Pm3m = 0.4
p.u.,Pm3M = 1.2 p.u.,B33m = −6 p.u.,B33M = −1
p.u.. The goal of the simulation is to verify the effect
of a three-phase fault occurring near bus 7 at the end
of line 5-7 att = 0.001 s, which is cleared in five
cycles (0.083 s) by opening line 5-7. The same sim-
ulation is performed by testing separately (with refer-
ence to each generator of WSCC) the proposed con-
troller and both the IEEE-Type I and the fast exciters
with PSS (the exciter data are taken from [10], while
K0 = τ0 = 24, τ1 = τ3 = 0.5, τ2 = τ4 = 0.05
and the saturating limits are±0.1 in the PSS diagram
in [1]). The results are reported in Figures 1-3: the
proposed controller restores the synchronous speeds,
while the linear controllers either cannot survive the
severe fault or can only mantain the system stable.

Figure 1: Proposed control [Generator 1 (solid), Gen-
erator 2 (dot), Generator 3 (dashed)]; a)Pmi b) δi−δis
c) ωi d) Pei e)Vti f) ufi

4 Conclusions
A robust adaptive nonlinear feedback control (3) has
been designed on the basis of a third order model



Figure 2: IEEE-Type I exciter with PSS [Generator 1
(solid), Generator 2 (dot), Generator 3 (dashed)]; a)
Pmi b) δi − δis c) ωi d) Pei e)Vti f) ufi

(1) of a synchronous generator in a multimachine
power network with nontrivial conductances. Only
three model parameters and upper and lower bounds
on the uncertain ones are required to be known.L2

andL∞ disturbance attenuation and asymptotic regu-
lation properties(S1)-(S3)are guaranteed under suit-
able conditions to be satisfied by the network dy-
namics which generalize those required by the single
machine-infinite bus approximation.
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