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The transient stabilization problem of a synchronous generator in a multimachine power system is addressed. A robust adaptive nonlinear feedback control algorithm is designed on the basis of a third order model of the synchronous machine in a multimachine power network which takes into account the effect of transfer conductances and of the remote network dynamics: it does not require the machine internal voltage measurement and relies on the knowledge of only three model parameters and of upper and lower bounds on the uncertain ones. Sufficient conditions to be satisfied by the remaining part of the network for guaranteeing L 2 and L ∞ disturbance attenuation and relative speed regulation are derived which are more general than those required by the single machine-infinite bus approximation.

Introduction

The transient stabilization problem of power networks, which are large-scale interconnected nonlinear systems, consists in the design of a suitable excitation feedback control keeping each generator close to the synchronous speed when mechanical and electrical perturbations, such as load shedding, generation tripping or short circuits, occur. The standard linear controllers which are designed on the basis of linear approximations around operating conditions may not be able to handle the severe disturbances and contingencies typically occurring in power systems so that, in the recent years, several nonlinear control algorithms have been proposed, leading to significant advances in power system control ( [START_REF] Gao | A nonlinear control design for power systems[END_REF], [START_REF] Marino | An example of nonlinear regulator[END_REF], [START_REF] Wang | Robust nonlinear coordinated control of power systems[END_REF], [START_REF] Wang | Transient stabilization of power systems with an adaptive control law[END_REF], [4], [START_REF] Marino | Robust adaptive transient stabilization of a synchronous generator with parameter uncertainty[END_REF]). In this paper we extend the analysis presented in [START_REF] Marino | Robust adaptive transient stabilization of a synchronous generator with parameter uncertainty[END_REF] by taking into account the effects of transfer conductances and of remote network dynamics: the resulting control for the transient stabilization of a synchronous generator in a multimachine power network, does not assume the availability of the machine internal voltage measurement as well as the knowledge of the model parameters excepting for machine damping and inertia constants and synchronous speed. L 2 and L ∞ disturbance attenuation and relative speed regulation are guaranteed under certain assumptions on the network dynamics which are more general than those required by the single machine-infinite bus approximation. Simulation results with reference to a 3-machine, 9-bus system illustrate the closed loop performance.

Problem Statement and Nonlinear Control Design

A large-scale power system consisting of n generators interconnected through a transmission network is described by the nonlinear third order model in [START_REF] Sauer | Power system dynamics and stability[END_REF] [

1 ≤ i ≤ n] δi = ω i ωi = - D i 2H i ω i + ω 0 2H i P mi - ω 0 2H i P ei (1) 
Ė′ qi = k ci T ′ d0i u f i - E ′ qi T ′ d0i - (x di -x ′ di ) T ′ d0i I di P ei = E ′2 qi G ii + E ′ qi n j=1,j =i E ′ qj G ij cos (δ ij ) +E ′ qj B ij sin (δ ij ) Q ei = -E ′2 qi B ii + E ′ qi n j=1,j =i E ′ qj G ij sin (δ ij ) -E ′ qj B ij cos (δ ij ) -x ′ di I 2 di + I 2 qi I di = -E ′ qi B ii + n j=1,j =i E ′ qj G ij sin (δ ij ) -E ′ qj B ij cos (δ ij ) I qi = E ′ qi G ii + n j=1,j =i E ′ qj G ij cos (δ ij ) +E ′ qj B ij sin (δ ij ) δ ij = δ i -δ j V ti = v 2 di + v 2 qi = (x ′ di I qi ) 2 + (E ′ qi -x ′ di I di ) 2
in which (for the i-th generator): δ i (rad) is the power angle, ω i (rad/s) is the relative angular speed, E ′ qi (p.u.) is the transient EMF in the quadrature axis, P ei (p.u.) is the active electrical power, P mi (p.u.) is the mechanical input power, Q ei (p.u.) is the reactive electrical power, I di (p.u.) is the direct axis current, I qi (p.u.) is the quadrature axis current, V ti (p.u.) is the terminal voltage, u f i (p.u.) is the input to the SCR amplifier, ω 0 (rad/s) is the synchronous speed, D i (p.u.) is the damping constant, H i (s) is the inertia constant, T ′ d0i (s) is the direct axis transient open circuit time constant, x di (p.u.) is the direct axis reactance, k ci is the gain of the excitation amplifier, G ij (p.u.) and B ij (p.u.) are the i-th row and the j-th column element of nodal conductance and susceptance matrixes, respectively, at the internal nodes after eliminating all physical buses, which depend on the direct axis transient reactance x ′ di (p.u.), on the transformer reactance x T i (p.u.), on the loads and on the transmission line reactance x ij (p.u.) between the i-th generator and the j-th generator. Direct computation of P ei (t) time derivative [G ij and B ij , 1 ≤ j ≤ n, are assumed to be constant] allows us to rewrite the dynamic model [START_REF] Anderson | Power system control and stability[END_REF] as

[I qi ≥ c Ii > 0 ([7])] δi = ω i ωi = - D i 2H i ω i + ω 0 2H i P mi - ω 0 2H i P ei (2) Ṗei = k ci T ′ d0i I 2 qi + P ei G ii I qi u f i - P ei T ′ d0i - G ii T ′ d0i P 2 ei I 2 qi - (x di -x ′ di ) T ′ d0i I di I qi - G ii (x di -x ′ di ) T ′ d0i I di P ei I qi -Q ei ω i -B ii P 2 ei I 2 qi ω i -x ′ di I 2 di + I 2 qi ω i + P ei I qi R i
in which δ i , ω i , P ei are the state variables, u f i is the control input and the term

R i = n j=1,j =i Ė′ qj G ij cos (δ ij ) + B ij sin (δ ij ) +ω j E ′ qj G ij sin (δ ij ) -E ′ qj B ij cos (δ ij )
represents the effect of the network remote dynamics on the i-th generator.

In this paper, we restrict our analysis to a particular power system PS, which consists of a group G M of n -1 generators [tied together by a strong network of transmission lines] which is linked to a single generator g m (referred to as r-th generator) by a comparatively weak set of tie lines: the transient stabilization problem of the synchronous generator g m in the multimachine power network PS is addressed. Let us state the theoretical result of the paper (the proof is omitted).

Theorem: Consider the r-th generator dynamics. Denote by δ rs the pre-fault constant value for the power angle δ r and assume that for all t ≥ 0 i) for each j = r, δ j (t) and E ′ qj (t) are continuous functions of time t and boundedness of δ r (t), ω r (t), P er (t) implies boundedness of E ′ qj (t);

ii) a) there exist µ r , ν r , ρ r non-negative reals, ψ µr (•), 

ψ νr (•), ψ ρr (•) K ∞ functions
ω r + Q er ω r - 5k δr 4ω 0 D r ω r -ω 0 ( Pmr -P er ) - 2H r ω 0 5 4 k ωr + 1 k ωpr 5 4 k ωr + D r 2H r (ω r -ω * r ) + (δ r -δ rs ) + ω 0 2H r (P er -P * er ) + 1 k ωpr (ω r -ω * r ) - k r 4I 2 
{[ω r (τ ) -ω * r (τ )]} + 2H r ω 0 1 + 25 16 k 2 δr + 5D r k δr 4ω 0 • • max 0≤τ ≤t {[δ r (τ ) -δ rs ]} + 1 ω * r = - 5 4 k δr (δ r -δ rs ) (3) 
P * er = 2H r ω 0 5 4 k ωr (ω r -ω * r ) + 5 4 k δr ω r - D r 2H r ω * r + (δ r -δ rs ) + 1 k ωpr (ω r -ω * r ) + Pmr Pmr = φ r + 2H r ω 0 5 4 k per + k r 4 + 1 k r + ω 2 0 16H 2 r k ωpr ω r φr = 5 4 k per + k r 4 + 1 k r + ω 2 0 16H 2 r k ωpr -φ r + D r ω 0 ω r + P er - 2H r ω 0 5 4 k per + k r 4 + 1 k r + ω 2 0 16H 2 r k ωpr ω r φ r (0) = Pmr (0) - 2H r ω 0 5 4 k per + k r 4 + 1 k r + ω 2 0 16H
θ 1rm = 1 T ′ d0rM , θ 1rM = 1 T ′ d0rm θ 2rm = (x drm -x ′ drM ) T ′ d0rM θ 2rM = (x drM -x ′ drm ) T ′ d0rm θ 3rm = G rrm (x drm -x ′ drM ) T ′ d0rM θ 3rM = G rrM (x drM -x ′ drm ) T ′ d0rm θ 4rm = G rrm T ′ d0rM , θ 4rM = G rrM T ′ d0rm θ 5rm = k crm T ′ d0rM , θ 5rM = k crM T ′ d0rm θ 6rm = G rrm k crm T ′ d0rM , θ 6rM = G rrM k crM T ′ d0rm Proj[ζ, ẑr , z rm , z rM , ε zr ] =    ζζ p1 if C a ζζ p2 if C b ζ otherwise ζ p1 = 1 - z 2 rm -ẑ2 r z 2 rm -(z rm -ε zr ) 2 ζ p2 = 1 - ẑ2 r -z 2 rM (z rM + ε zr ) 2 -z 2 rM 0 ≤ z rm (z rm -ε zr ), 0 ≤ z rM (z rM + ε zr ) C a : ẑr < z rm & ζ < 0, C b : ẑr > z rM & ζ > 0
is bounded and guarantees the closed loop system ( 2)-( 3) to satisfy, in terms of y r (t) = [δ r (t)δ rs , ω r (t), P er (t) [δ r (t) -δ rs , ω r (t), P er (t) -P mr ] = 0.

-P mr (t)] T , x r (t) = [y r (t) T , P mr (t)-Pmr (t)] T , w dr (t) = [ Ṗmr (t), θ 1rM -θ 1rm + ε 1r ,θ 2rM -θ 2rm + ε 2r ,θ 3rM -θ 3rm + ε 3r , θ 4rM - θ 4rm + ε 4r , max{θ 5rM -θ 5rm +ε 5r , θ 6rM -θ 6rm +ε 6r }, x ′ drM -x ′ drm +ε xr , B rrM -B rrm +ε Br , sup 0≤τ ≤t {g r (τ )},µ r , ν r , ρ r ] T ,
Remark 1: The proposed control algorithm (3) relies on the locally measured signals: δ r , ω r , P er , I dr , I qr , Q er (the method for measuring the power angle δ r can be found in [START_REF] Chen | A new approach to real time measurement of power angles of generators at different locations for stability control[END_REF], [START_REF] Barrera-Cardiel | Microcontroller-based power-angle instrument for a power systems laboratory[END_REF] and [START_REF] De Mello | Measurement of synchronous machine rotor angle from analysis of zero sequence harmonic components of machine terminal voltage[END_REF]).

Remark 2: Let Σ r (y r1 , y r2 , y r3 , R r ) be the system consisting of the j-th generators (j = r) with inputs the y r (t) vector components y r1 (t), y r2 (t), y r3 (t) and output the function R r (t). Less restrictive conditions than those required in the single machine-infinite bus approximation are to be satisfied by the remaining part of the network: assumption ii) a) is satisfied if system Σ r (y r1 , y r2 , y r3 , R r ) is Input to Output Stable with gain functions ψ µr (•), ψ νr (•), ψ ρr (•); assumption ii) b) requires the knowledge of suitable functions φµr (•), φνr (•), φρr (•) which majorize the gain functions ψ µr (•), ψ νr (•), ψ ρr (•); assumption viii) is satisfied if system Σ r (y r1 , y r2 , y r3 , R r ) has finite L 2 gains, bounded from above by the positive numbers γ δr /3, γ ωr /3, γ pr /3.

Simulation Results

In this section we will test by simulation the control algorithm (3) with reference to each generator of the popular Western System Coordinating Council (WSCC) 3-machine, 9-bus system described in [START_REF] Sauer | Power system dynamics and stability[END_REF] and [START_REF] Anderson | Power system control and stability[END_REF] [D i = 0, 1 ≤ i ≤ 3], with the aim of numerically checking the conservativeness of the conditions provided by the theorem, of testing the performance and of verifying the robustness of the proposed control law with respect to unmodelled dynamics: the simulation is carried out by using the two-axis model (see [START_REF] Sauer | Power system dynamics and stability[END_REF]) from which the model ( 1 [START_REF] Anderson | Power system control and stability[END_REF]). The results are reported in Figures 123: the proposed controller restores the synchronous speeds, while the linear controllers either cannot survive the severe fault or can only mantain the system stable. 

k pei = k ωpi = 1, k i = 0.001, k Ri = 0.1, β 1i = β 2i = β 3i = β 4i = β 5i = β 6i = β xi = β Bi = 48000, ε 1i = ε 2i = ε 3i = ε 4i = ε 5i = ε 6i = ε xi = ε Bi = 0.

  ) has been derived. The initial conditions for the state variables are computed by systematically solving the load-flow equations of the network and by computing the values of the algebraic variables. For 1 ≤ i ≤ 3, the functions φµi (•), φνi (•), φρi (•) are set equal to id(•) |[0,∞) [id(•) is the identity function], the control parameters are chosen as k δi = k ωi = 0.01, k pi = 720,

  00001, while ṖMi = 1 and the known upper and lower bounds on the model parameters values are k c1m = 0.6, k c1M = 1.4, x d1m = 0.1, x d1M = 0.2, x ′ d1m = 0.05 p.u., x ′ d1M = 0.07 p.u., T ′ d01m = 6 p.u., T ′ d01M = 12 p.u., G 11m = 0.5 p.u., G 11M = 1.5 p.u., P m1m = 0.3 p.u., P m1M = 1.1 p.u., B 11m = -6 p.u., B 11M = -1 p.u., k c2m = 0.6, k c2M = 1.4, x d2m = 0.7, x d2M = 1.1, x ′ d2m = 0.09 p.u., x ′ d2M = 0.14 p.u., T ′ d02m = 4 p.u., T ′ d02M = 8 p.u., G 22m = 0.3 p.u., G 22M = 0.6 p.u., P m2m = 1.2 p.u., P m2M = 2 p.u., B 22m = -6 p.u., B 22M = -1 p.u., k c3m = 0.6, k c3M = 1.4, x d3m = 1.2, x d3M = 1.5, x ′ d3m = 0.1 p.u., x ′ d3M = 0.3 p.u., T ′ d03m = 4 p.u., T ′ d03M = 8 p.u., G 33m = 0.1 p.u., G 33M = 0.4 p.u., P m3m = 0.4 p.u., P m3M = 1.2 p.u., B 33m = -6 p.u., B 33M = -1 p.u.. The goal of the simulation is to verify the effect of a three-phase fault occurring near bus 7 at the end of line 5-7 at t = 0.001 s, which is cleared in five cycles (0.083 s) by opening line 5-7. The same simulation is performed by testing separately (with reference to each generator of WSCC) the proposed controller and both the IEEE-Type I and the fast exciters with PSS (the exciter data are taken from [10], while K 0 = τ 0 = 24, τ 1 = τ 3 = 0.5, τ 2 = τ 4 = 0.05 and the saturating limits are ±0.1 in the PSS diagram in

Figure 1 :

 1 Figure 1: Proposed control [Generator 1 (solid), Generator 2 (dot), Generator 3 (dashed)]; a) P mi b)δ i -δ is c) ω i d) P ei e) V ti f) u f i

Figure 2 :

 2 Figure 2: IEEE-Type I exciter with PSS [Generator 1 (solid), Generator 2 (dot), Generator 3 (dashed)]; a)P mi b) δ i -δ is c) ω i d) P ei e) V ti f) u f i

  Then the nonlinear adaptive feedback control algorithm [k δr , k ωr , k pr , k per , k ωpr , k r , k Rr , β jr , β xr , β Br , ε jr , ε xr , ε Br (1 ≤ j ≤ 6) are positive control parameters]

	u f r =	I qr qr + θ6r P er θ5r I 2	v r
		-	k r I qr 2I 4 qr + 2P 2 er qr + θ6r P er 4 θ5r I 2 θ 5rm I 2 qr + θ 6rm P er 2	•
		•v 2 r (P er -P * er )
	v r = -	5 4	k pr (P er -P * er ) +	ω 0 2H r	(ω r -ω * r )
		-	k Rr 4	P 2 er I 2 qr	(P er -P * er ) +	5D r k δr 4ω 0	ω r +	2H r ω 0	ω r
		-	k r 4	(P er -P * er ) P 2 er + I 2 dr I 2 qr +	I 2 dr P 2 er I 2 qr
		+	P 4 er qr I 4	1 + ω 2 r + ω 2 r I 2 dr + I 2 qr	2
		-	k r 4			5 4	k ωr +	5 4	k δr +	5 4	k per
		+	k r 4		+	1 k r	+	ω 2 0 16H 2 r	k ωpr
		+	1 k ωpr	2	(P er -P * er ) + θ1r P er + θ2r I dr I qr
		+ θ3r	I dr P er I qr	+ θ4r	P 2 er I 2 qr	+ Brr	P 2 er qr I 2	ω r
		+x ′ dr I 2 dr + I 2 qr
									= φlr (•)
									iii) P er (t) ≥ c P r > 0;
									iv) the unknown (possibly time-varying) parame-
									ters T ′ d0r (t), x dr (t), x ′ dr (t), k cr (t) and the un-known constant parameter G rr are within the
									corresponding known positive physical bounds
									(T ′

and g r (t) bounded non-negative real-valued function of time t such that |R r (t)| ≤ sup 0≤τ ≤t {g r (τ )} + µ r ψ µr max 0≤τ ≤t {|δ r (τ ) -δ rs |} + ν r ψ νr max 0≤τ ≤t {|ω r (τ )|} +ρ r ψ ρr max 0≤τ ≤t {|P er (τ ) -P mr (τ )|} ;

ii) b) there exist α lr known non-negative reals and

ϕ lr (•) known K ∞ functions such that for l = µ, ν, ρ ψ lr (•) ≤ α lr + ϕ lr (•) . d0rm , T ′ d0rM ), (x drm , x drM ), (x ′ drm , x ′ drM ), (k crm , k crM ), (G rrm , G rrM ); v)

the unknown constant parameter B rr is within the corresponding known physical bounds (B rrm , B rrM ); vi) | Ṗmr (t)| ≤ ṖMr with known ṖMr .
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