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Highlights  9 

 Facilitates the improvement of understanding the analysis of topographic data  10 

 A single roughness parameter is inadequate for describing patch-scale roughness  11 

 A DEM size exceeding 16 x D50A is appropriate to characterise grain-roughness  12 

 Grid spacing should reflect the scale of research  13 

 This analysis can be used on a variety of applications using topographic data 14 

 15 

Abstract 16 

Surface roughness is a term used in fluvial research without an unanimousdefinition, and 17 

clarification of the term and improved parameterisation is needed in future research. 18 

Improvements to the collection of topographic data, using photogrammetry, have provided 19 

accurate digital elevation models (DEMs) of field and laboratory gravel-bed patches. In this 20 

study, we use a moving-window process for analysing spatial variability within DEMs. Using 21 

this information, and in unison, we consider the effect of DEM size and grid spacing on an 22 

extensive range of roughness parameters, in order to provide insights for obtaining grain-23 

mailto:jgro800@aucklanduni.ac.nz
mailto:s.bertin@ymail.com
mailto:h.friedrich@auckland.ac.nz


 

2 

 

roughness statistics. We show that DEM size influences the calculated roughness statistics, 24 

and the observation of plateaus in statistics for DEM window sizes above 16 × D50A in both 25 

directions (where D50A is the median grain size of the bed-surface material) suggests this as a 26 

minimum DEM size for grain-scale roughness analysis. We further find that the DEM grid 27 

spacing should be 1 mm or below, in order to adequately capture grain roughness, as coarser 28 

resolutions failed to detect particle imbrication. Finally, variability in roughness parameters 29 

was evident due to the natural spatial variation in gravel-bed microtopography, suggesting 30 

using a single roughness parameter is not appropriate to holistically describe the roughness of 31 

a gravel patch.  32 

Key Words 33 

Grain-roughness; DEM; parameterisation; close-range photogrammetry 34 

Introduction   35 

Calls to re-evaluate the term for roughness and improve parameterisation in future research 36 

have been made (Lane, 2005; Rice et al., 2014; Martinez-Agirre et al., 2016), due to the term 37 

being used frequently, albeit with little definition (Morvan et al., 2008; Jia and Hu, 2015). 38 

Surface roughness in fluvial environments such as gravel-bed rivers influences the dynamic 39 

interactions between flow, sediment transport and ecology (Aberle and Nikora, 2006; Hodge 40 

et al., 2009a; Baewert et al., 2014; Curran and Waters, 2014). Previous parameterisation of 41 

roughness included subjective estimations of coefficients or the use of roughness heights 42 

based on grain size and velocity profiles (Wilcock, 1996, Smart et al., 2004). However there 43 

has been a recent move to obtaining quantitative roughness parameters including bed-44 

elevation moments such as standard deviation, skewness and kurtosis determined from 45 

transects or digital elevation models (DEMs) (Aberle and Nikora, 2006).  46 
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Research on gravel-bed rivers now gathers information collected from ‘patch-scale’ DEMs 47 

for roughness parameterisation, although studies differ in data collection (e.g., the size and 48 

resolution of measurements) and analysis methods (e.g., detrending method and roughness 49 

parameters used). Therefore, explicit definitions of a gravel patch and patch-scale DEMs are 50 

still lacking; yet, it is understood the size and resolution of measurements should allow for 51 

adequate representation of the surface character (Hodge et al., 2009a). Roughness parameters 52 

are used as inputs for both hydraulic and morphodynamic models, such as for determining 53 

flow resistance (Aberle and Smart, 2003; Tuijnder and Ribberink, 2012). Measurements of 54 

bed topography (e.g., the standard deviation of bed elevations) are also helpful for obtaining 55 

estimates of sediment size on the bed surface (see Pearson et al., 2017 for a review). 56 

Therefore, accurate parameterisation of roughness is required to avoid error propagation in 57 

several applications of fluvial science and modelling (Smart et al., 2002; Lane, 2005; Morvan 58 

et al., 2008). One step towards achieving accurate roughness parameterisation is to provide 59 

guidance to researchers on how to work with topographic datasets.  60 

This analytical paper aims to provide insights into patch-scale gravel-bed DEM analysis for 61 

obtaining roughness information. A combination of laboratory and field data is used, with the 62 

application of an analytical process for fluvial gravel-bed DEMs and the consideration of an 63 

extensive range of roughness parameters. Firstly, this study considers roughness spatial 64 

variability.Previous research considered the small-scale spatial variability in grain size 65 

(Crowder and Diplas, 1997), with applications to evaluate the effect of sampling area on the 66 

accuracy of image-based grain size measurements (Graham et al. 2010), and to explain 67 

spatial differences in grain entrainment (Piedra et al. 2012). We recently presented new 68 

results on the spatial variability and scaling of surface structure (i.e., topography) in gravel-69 

bed rivers, allowing the isolation of roughness scales from DEMs (Bertin et al., 2017). This 70 

paper continues on this emerging avenue of research, with a wider selection of roughness 71 
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parameters assessed. Secondly, this paper assesses the combined effect of DEM size and grid 72 

spacing on output roughness parameters. The current scope of literature in relation to each of 73 

these objectives is discussed in more detail in the background section following. 74 

Background 75 

An overview of the procedure for analytical processes considered throughout this study is 76 

provided in Figure 1. This visually presents the different analytical steps investigated, 77 

including the effect of DEM size (i.e., the spatial extent of the DEM or measured patch, Step 78 

1) and grid spacing (equivalent to DEM resolution, Step 3). Step 1 is specific to the technique 79 

of digital photogrammetry in the generation of point clouds, but the subsequent steps are 80 

applicable to all researchers, from a broad range of disciplines, analysing topographic 81 

datasets. Complete details of the processes will be outlined in the methodology section. 82 

DEM size 83 

Roughness values are dependent on a suitable DEM size, as this determines the scale over 84 

which the roughness is calculated (Florinsky and Kuryakova, 2000; Smith, 2014). Research 85 

on grain roughness suggests that the size of the gravel patch measured needs to be large 86 

enough to capture a range of sediment sizes, including several large grains (Hodge et al., 87 

2009a). However, a more quantitative guideline for the size of a DEM is required (Step 1, 88 

Figure 1), as patch-scale research has used DEM sizes ranging from 0.1 m
2
 to 1 m

2
 (Hodge et 89 

al., 2009a; Mao et al., 2011; Ockelford and Haynes, 2013; Rice et al., 2014). Recent literature 90 

deemed patch sizes, which equate to 21 × D50 in both directions, suitable for analysis of grain 91 

roughness changes for flows below entrainment threshold (Ockelford and Haynes, 2013). 92 

Unfortunately, reasons behind this decision were not presented and it is not clear if D50 refers 93 

to the bulk mixture or bed surface sediment, which is problematic when grain size varies 94 

greatly between surface and subsurface, such as for armoured beds.  95 
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Figure 1. Overview diagram of the generation of topographic data using digital 97 

photogrammetry and analytical processes discussed further, including interpolation using 98 

varying grid spacingand a moving window technique.  99 

A moving-window approach (Step 4, Figure 1) was used to determine the grain-size 100 

variability of a river reach (Crowder and Diplas, 1997), and to evaluate DEM error spatial 101 

distribution for various survey strategies and interpolation methods (Heritage et al., 2009; 102 

Milan et al., 2011). Further, studies in different applications, including large scale floodplain 103 

analysis, have altered the DEM size (using a moving window technique with a window radius 104 

ranging from 1 m to 1000 m), which allowed for the identification of threshold sizes for 105 

DEMs to produce topographic metrics (Florinsky and Kuryakova, 2000; Scown et al., 2015). 106 

These papers highlight the importance of establishing the scale of interest and using this 107 

choice to select a suitable DEM size. 108 

Recent use of moving windows of different sizes on gravel patches distinguished roughness 109 

signatures of grains and bedforms (Bertin et al., 2017). Contrasting with grain roughness, 110 

measures of bedform roughness did not always reach stable values with window-size 111 

increases, suggesting that patch-scale DEMs may be limited in use to the analysis of grain 112 

roughness (Bertin et al., 2017, Powell et al., 2016). Just like Graham et al. (2010) using grain-113 

size spatial variability for examining the effect of sampling area on the accuracy of grain size 114 

measurements, previous research suggests that  knowledge on roughness spatial variability 115 

can provide guidance towards an appropriate DEM size for analysis of surface roughness, 116 

which will be evaluated in this study.  117 
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In reporting our experiments, we therefore use the term DEM size to refer to two things, 118 

which is worthy of clarification: (i) DEM size efers to the size of the gravel patch measured, 119 

which is a ‘constant’ for each patch and is presented in Table I; (ii) DEM size is then altered 120 

using moving windows, and we use our measurements of roughness spatial variability for 121 

different window sizes to identify a minimum DEM size for roughness analysis. 122 

DEM grid spacing 123 

Future research using high resolution data needs to consider the level of detail required for 124 

the application (Smith, 2014). For example, the grid spacing (i.e., DEM resolution) used 125 

when converting a point cloud to a DEM (Step 3, Figure 1) also determines the scale over 126 

which roughness is calculated, with previous studies stating patch-scale investigations require 127 

higher resolution and precision (Smith et al., 2012; Smith, 2014). Studies on various scales 128 

from soil properties, gravel surfaces and catchment landscapes, have found that changes in 129 

measurement resolution influence the obtained roughness values or topographic parameters 130 

and affect DEM accuracy (Zhang and Montgomery, 1994; Smith, 2014; Trevisani and 131 

Cavalli, 2016; Grieve et al., 2016; Bertin and Friedrich, 2014; Lane et al., 2000; Gao, 1998; 132 

Erskine et al., 2007; Milenković et al., 2015; Barber et al., 2016). Thus the scale of the 133 

process investigated should influence grid spacing choice 134 

Studies on gravel beds have used grid spacing including 0.1 mm, 1 mm and 5 mm, regardless 135 

of sediment size on the patch (Buffin‐ Bélanger et al., 2006; Ockelford and Haynes, 2013; 136 

Hodge et al., 2009a; Bertin and Friedrich, 2014; Curran and Waters, 2014). Due to this range, 137 

it is important to investigate the effect of a resolution below, and above, the 1 mm resolution 138 

commonly used for gravel patches, in order to provide an indication to the optimal grid 139 

spacing for use in grain roughness analysis.  140 
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Methodology 141 

Gravel-bed patches and digital elevation models (DEMs) 142 

DEMs representing the microtopography of five gravel-bed patches from different 143 

geomorphic settings (i.e. collected from both the field and a laboratory flume) were used for 144 

the study (Figure 2).  145 

Three DEMs collected in August 2014 from the Whakatiwai River, a small gravel-bed stream 146 

located in New Zealand North Island, and presented in Bertin and Friedrich (2016), form the 147 

field surfaces. Patches from three exposed and vegetation-free gravel bars (labelled “Field 1” 148 

to “Field 3”, with numbers increasing upstream) were selected for measurements, covering a 149 

range of sediment size and surface structure (Table I). Each patch was selected at the bar 150 

head close to the water edge, for both consistency in the measurements, and ensuring the 151 

surfaces are regularly water-worked under similar hydraulic conditions.  152 

Two armoured gravel beds called “Lab 1” and “Lab 2” formed in a non-recirculating tilting 153 

flume with glass side-walls (19 m long, 0.45 m wide and 0.5 m deep), with a flume slope set 154 

at 0.5 %, are also examined. The experimental beds were obtained from water-working two 155 

distinct sediment mixtures. A constant flow rate of 84 L/s (mean flow velocity = 0.82 m/s, 156 

shear velocity = 0.077 m/s and uniform water depth = 0.225 m) was applied until the rate of 157 

sediment transport dropped to less than 1% of the initial transport rate. Both sediment 158 

mixtures were prepared from distinct but slightly bimodal alluvial sediments (15% sand and 159 

85% gravel, and 9% sand and 91% gravel, respectively), with size ranging from 0.7 to 35 mm 160 

(Table I). The tests were performed under condition of sediment starvation (i.e., no sediment 161 

feeding). 162 
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163 
Figure 2. Digital elevation models (DEMs) displaying the gravel-bed surfaces around the 164 

mean bed level, after flat-surface detrending, by removing the combined effect of bed slope 165 

and setup misalignment: (a) Field 1; (b) Field 2; (c) Field 3; (d) Lab 1 and (e) Lab 2. The 166 

surface forming flow direction is right to left. 167 

To allow the accurate measurement of the bed-surface topography and grain structure with 168 

digital photogrammetry for the five patches, a pair of Nikon D5100 cameras (16.4 Mpixel, 169 

23.6 x 15.6 mm
2 

sensor size) with Nikkor 20 mm lenses, was installed in stereo (horizontal 170 

baseline distance between cameras between 0.25 and 0.3 m) vertically (i.e., both cameras 171 

looking down, minimising occluded points which cannot be seen in one or the two images) 172 

above the gravel beds. Presently, a variety of image-based DEM reconstruction techniques 173 

are available, from the now conventional digital stereo (i.e. two-camera) photogrammetry, 174 

using either commercial or non-proprietary calibration and stereo-matching engines, to novel 175 

structure-from-motion (SfM) or multi-view stereo (MVS) photogrammetry (James and 176 

Robson, 2012; Fonstad et al., 2013; Javernick et al., 2014) which does not need calibration. 177 

However, a current drawback of SfM/MVS that may cause problems in recording a gravel 178 



 

10 

 

patch at fine scales is the likely presence of large non-linear distortions in the DEMs, due to 179 

inadequate lens distortion calibration (Fonstad et al., 2013; Ouédraogo et al., 2014), an issue 180 

that has been resolved in traditional stereo photogrammetry (Wackrow and Chandler, 2008; 181 

Bertin et al., 2015). Furthermore, as James and Robson (2012) show in their 3D measurement 182 

of a volcanic bomb (surface ~0.008 m
2
), a large number of photographs (~200, of which ~90 183 

were processed for DEM reconstruction) are required to obtain a DEM with density 184 

comparable to the DEMs obtained in the present study, which requires only two photographs. 185 

The processing time to obtain one fine-scale DEM with SfM/MVS (12 hours) is thus very 186 

long compared to the 15 minutes (stereo matching time) required by our approach. 187 

The photogrammetric technique employed herein to obtain DEMs from stereo photographs 188 

(i.e., two overlapping images as shown in Step 1, Figure 1) consists of (i) in-situ calibration, 189 

using the method of Zhang (2000), included in Bouguet’s (2010) open-access calibration 190 

toolbox for Matlab®, which requires several stereo photographs of a planar chequerboard to 191 

be recorded to determine both intrinsic (i.e., camera) and extrinsic (i.e., setup) calibration 192 

parameters; (ii) using the calibration data to accurately rectify (mean rectification error < 0.5 193 

pixel and maximum error < 1 pixel throughout the imaging area) stereo photographs of the 194 

gravel beds to epipolar geometry, whereby corresponding pixels between overlapping images 195 

are ideally on a same scanline (i.e., corresponding pixels have the same y-coordinate); (iii) 196 

scanline-based pixel-to-pixel stereo matching using Gimel’farb’s (2002) symmetric dynamic 197 

programming stereo (SDPS) algorithm, providing both point cloud data and ortho-images 198 

(Step 2, Figure 1). Using the SDPS, occluded points are interpolated based on the assumption 199 

of a continuous surface, leaving no voids. The careful design of the measurement setup (e.g., 200 

adjusting the baseline and the camera height to the relief of the surface) helps to minimise 201 

occlusions (Lane et al., 2000; Bertin et al., 2015); yet determining the proportion of occluded 202 

points is not possible. To fulfil analytical requirements of regularly-spaced data (e.g., to 203 
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measure bed-elevation structure functions) and to avoid bias introduced by non-uniform data 204 

when calculating the standard deviation of bed elevation σz (Hodge et al., 2009a), point 205 

clouds were interpolated (using the triangle interpolation method in Matlab) onto regular 206 

grids (i.e., raster DEMs as shown in Step 3, Figure 1) with spacing 1 mm (the reference grid 207 

spacing against which other grids are compared, see Section 3). Each DEM underwent 208 

rigorous quality assurance testing (readers can refer to Bertin et al., (2015) and Bertin and 209 

Friedrich (2016) where detailed evaluations of the laboratory and the field DEMs are 210 

presented, respectively), to ensure surface metrics derived from the DEMs had minimum 211 

effect due to DEM errors. Outliers, which accounted for less than 1% of the DEM points, 212 

were identified using the mean elevation difference parameter by comparing each DEM point 213 

with its direct neighbours (Hodge et al., 2009b), and replaced using bi-cubic spline 214 

interpolation. All DEMs were finally normalised to have a mean bed level equal to zero, and 215 

rotated to be aligned with the surface-forming flow direction. Whilst flow direction 216 

identification is straightforward for laboratory surfaces, the flow direction for field data was 217 

determined by eye from observations of channel shape and grain imbrication (Laronne and 218 

Carson, 1976; Millane et al., 2006; Bertin and Friedrich, 2016). Finally, using a least-squares 219 

fit, flat-surface detrending was undertaken to remove the influence of both the bed slope and 220 

experimental setup misalignments from the DEMs (e.g., Aberle and Nikora, 2006; Bertin and 221 

Friedrich, 2016).  222 

As shown in Table I, camera height could not be set constant throughout both the field and 223 

the laboratory applications. The DEM characteristics therefore varied slightly between 224 

applications; although DEM resolution and vertical error remained small compared to 225 

sediment size (cf. Table I), a precondition for grain roughness characterisation (Hodge et al., 226 

2009b). One can note that the laboratory DEMs have larger coverage, yet smaller pixel size 227 

and theoretical vertical error. This is because the laboratory DEMs were obtained by merging 228 
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three smaller overlapping DEMs, allowing shorter camera distance. We note that other 229 

measurement techniques such as laser scanning (Hodge et al., 2009a, 2009b; Aberle and 230 

Nikora, 2006) have been used by others to produce gravel-bed DEMs similar to the ones used 231 

in this study.  232 

Table I. Summary of the GSD information (both surface and subsurface where applicable) 233 

and DEM characteristics, for the five gravel-bed patches. The subscript ‘A’ indicates surface 234 

sediment from the armour layer, rather than the bulk sediment. The best DEM horizontal 235 

resolution is the average pixel size on the gravel beds, which is also the average point spacing 236 

in point clouds. The theoretical vertical error is estimated using classical photogrammetric 237 

equations and depends on camera and lens specifications (i.e., sensor size, number of pixels 238 

and focal length), as well as setup characteristics (i.e., baseline and camera distance). True 239 

DEM accuracy (here the mean unsigned error) was estimated using a 3D-printed gravel-bed 240 

model to be 0.43 mm and 0.67 mm in the laboratory and the field, respectively (cf. Bertin and 241 

Friedrich, 2016). 242 

 FIELD 1 FIELD 2 FIELD 3 LAB 1 LAB 2 

D50 (mm) N.A. N.A. N.A. 8.4 9.2 

σG = 1684 DD  N.A. N.A. N.A. 3.0 2.6 

D50A (mm) 18.7 47.2 19.4 18.9 18.5 

D90A (mm) 27.3 104.7 47.7 27.1 28.1 

σGA = 16A84A DD  1.4 2.2 2.3 1.4 1.4 

Patch size (mm) 

(downstream × 

transverse)  

600 × 500 630 × 630 500 × 500 850 × 350 850 × 350 
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Normalised patch 

size by D50A 

(downstream x 

transverse) 

32 x 26 13 x 13 25 x 25 45 x 18 45 x 18 

Best DEM 

horizontal 

resolution (mm) 

0.20 0.22 0.19 0.17 0.16 

Theoretical vertical 

error (mm) 

0.55 0.59 0.47 0.36 0.36 

Approximate 

camera distance 

(mm) 

825 860 765 675 670 

Grain-size distributions (GSDs) 243 

To complement topographic information derived from DEMs and to allow comparison with 244 

sediment size, the bed-surface composition based on the sediment grains’ intermediate  axis 245 

was  determined for each gravel patch using a single vertical photograph (number of detected 246 

grains > 400) and the image-analysis tool Basegrain®. The latter allows for automatic grain 247 

separation in digital images of gravel beds and applies the Fehr’s (1987) line-sampling 248 

method for results’ analysis (Detert and Weitbrecht, 2012). Independent measurements were 249 

obtained by measuring surface sediment along lines with a digital calliper (with results 250 

presented in Stähly et al., (2017)), which allowed us to calibrate the results obtained with 251 

Basegrain.   252 
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In addition to surface composition determined with Basegrain, the experimental sediment 253 

mixtures used in the laboratory were sieved to determine the sediment grading curves (Table 254 

I), particle shape and specific gravity. To distinguish GSDs of the bed surface from those of 255 

the bulk mixtures, percentiles derived from GSDs were indexed with “A” to represent 256 

characteristics of the armoured surface.  257 

Grid spacing and the effect of DEM horizontal resolution 258 

To quantify the effect of DEM resolution or grid spacing on the roughness information 259 

derived, point clouds of the five patches were transformed into DEMs of varying resolution 260 

by interpolating the raw elevation data (using triangle interpolation in Matlab) from point 261 

clouds on regular grids (Step 3, Figure 1) with spacing: 0.35 mm, 0.5 mm, 1 mm (the 262 

reference grid spacing), 3 mm, 10 mm, D50A and 2 × D50A (i.e., spacing equal to the surface 263 

median grain size and two times the surface median grain size, respectively). The decision on 264 

the grid spacings used herein was guided by grid spacings used in the literature (as presented 265 

in the background section), as well as to enable investigation of a threshold grid size 266 

decoupled from sediment size (here D50A, as this is the property most commonly reported). .    267 

Surface metrics and the moving-window analysis 268 

To quantify the character and surface variability of the five patches, six surface metrics (see 269 

Table II) were calculated for each DEM within moving windows of different sizes. In 270 

reporting our results on moving windows, we distinguish the term DEM size from the size of 271 

the gravel patch measured (Table I); in that DEM size is varied by adjusting the size of the 272 

moving windows. The maximum window size tested is necessarily less than the patch size.   273 

Square windows were used (in comparison to circular windows as in Scown et al., 2015), 274 

since recorded DEMs are more often square (or rectangular) in shape. The effect of the 275 
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measurement orientation (in the case of rectangular DEMs) was also examined. For this, the 276 

initially square windows were halved either horizontally or vertically to form rectangular 277 

windows with their long axis aligned either parallel or perpendicular to the flow direction. To 278 

facilitate observations from the graphs and to allow comparison between the five patches 279 

studied, window size in both directions was normalised by D50A (i.e., calculations were made 280 

within windows with an area proportional to the area covered by the surface D50A determined 281 

over the whole DEM). Surface metrics were obtained for each window of the designated size, 282 

whilst windows are moved across the whole surface of the DEM (Step 4, Figure 1), with the 283 

number of windows fitting into the DEM ranging from >2000 (at small window sizes) to <50 284 

(at larger window sizes). An overlap between moving windows of 95% of the window size 285 

was used, except for calculating structure functions, for which a 25% overlap was used due to 286 

the very large computational demand (still, a typical run time was 24 hours per DEM). 287 

Sensitivity analysis of the effect of changing the overlap size to 25% showed no adverse 288 

effect interpreting the findings. However, a 95% overlap was preferred when possible due to 289 

refined visual presentations of the results across window sizes (i.e., smoother graphical lines). 290 

The commonly used surface metrics calculated from bed-elevations used in this study are 291 

presented in Table II. Bed-elevation distribution moments contained in probability 292 

distribution functions (PDFs) include σz, SK and Ku and are classic descriptors of bed 293 

roughness used in a number of studies at scales ranging from grain size to channel shape 294 

(e.g., Aberle and Nikora, 2006; Scown et al., 2015). Surface variability about the mean 295 

elevation within an area is indicated by σz (Eqn. 2) and represents a characteristic vertical 296 

roughness scale of the bed surface, which can be used as a grain-roughness parameter in flow 297 

resistance equations (Aberle and Smart, 2003; Noss and Lorke, 2016). Skewness (SK, Eqn. 3) 298 

describes the degree of asymmetry of the PDF and can be used to assess the general shape of 299 

the bed surface. In this regard for water-worked gravel beds, a positive skewness is attributed 300 
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to finer grains filling depressions and reducing the magnitudes of surface deviations below 301 

mean bed level (Aberle and Nikora, 2006). Kurtosis (Ku, Eqn. 4) provides a measure of the 302 

regularity or intermittency of the bed. A distribution characterised by heavy tails and a 303 

narrow peak has a large kurtosis, with more of the variance due to infrequent extreme 304 

deviations. More uniform and compact distributions, of frequent modestly sized deviations 305 

from the mean, are of lower kurtosis values (Coleman et al., 2011).  306 

Table II. Surface metrics calculated from gravel-bed elevations used in this study. 307 
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z represents the bed elevation at location (x,y) in a DEM, N’ is the total number of DEM 308 

points and < > represents the mean value. Δx = nδx and Δy = mδy; δx and δy are the sampling 309 

intervals (i.e., DEM resolution) in the longitudinal and transverse directions respectively; 310 
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n=1,2,3,…N and m=1,2,3,…M. N and M are the number of DEM points in the same two 311 

directions. n+ and n- are the number of positive and negative slopes between successive DEM 312 

points, respectively, and Ns is the total number of slopes. 313 

Horizontal roughness lengths in both the streamwise and the cross-stream direction (Lx and 314 

Ly, respectively) are scaling characteristics of a surface and are calculated from second-order 315 

structure functions (Eqn. 5).  316 

Structure functions, which are different from semivariograms by a factor two, measure 317 

changes in elevation correlations at different spatial lags and in different directions (Figure 318 

3). Small structure function values represent regions characterised by similar elevations 319 

(because of DEM points located on a same grain or bedform), while large values identify 320 

regions on a surface that are not correlated anymore. A gravel-bed elevation structure 321 

function has three regions: a scaling region with uniform slope at small lags, a saturation 322 

region at large lags, where the slope is zero, with a transition region in between, where the 323 

slope decreases (Nikora et al., 1998; Hodge et al., 2009a). As shown in Figure 3, the scaling 324 

region of the 1D structure function fitted with a power law, provides information about the 325 

horizontal roughness lengths Lx and Ly, which are determined from the slope breakpoint, 326 

located at the intersection between the tangent to the scaling region slope and the saturation 327 

level asymptote, in both x and y directions (Nikora et al., 1998). Hence, Lx and Ly were 328 

calculated from 1D structure functions whereby Δx = 0 and Δy = 0, respectively. The 329 

maximum spatial lag to calculate DG2 (Eqn. 5) in both x and y directions was chosen as half 330 

the window size in the same two directions, and Lx and Ly were determined at the condition 331 

the saturation region was attained for all moving windows of the same size. 332 
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 333 

Figure 3. Typical gravel-bed elevation correlation and structure function graph for different 334 

spatial lags, used to determine horizontal roughness lengths Lx and Ly. Adapted from Smart 335 

et al. (2002).  336 

The inclination index (I0) in the flow direction is calculated using Eqn. 6 (Smart et al. 2004). 337 

It analyses the signs of elevation changes between successive pairs of DEM points on 338 

transects aligned with the flow direction at a lag distance equal to the DEM resolution, where 339 

a positive slope refers to increasing bed elevations downstream. Slopes whose absolute value 340 

is below 0.01 were deemed not reliable (i.e., neither positive nor negative), and were 341 

therefore not counted in the numerator of Eqn. 6 (Millane et al., 2006). A positive inclination 342 

index reflects the dominance of positive slopes and thus particle imbrication, generally 343 

maximum in the flow direction, minimum in the direction opposite to the flow, and 344 

approximately zero in a direction transverse to the flow (Laronne and Carson, 1976; Millane 345 

et al., 2006). Characterising grain imbrication is therefore relevant for determining flow 346 

direction from bed-surface analysis, but also provides insights on bed stability and the history 347 

of the flow that shaped the surface.  348 
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The surface variability for the six surface metrics was also quantified with the coefficient of 349 

variation (CV), calculated as the standard deviation of the property determined over all 350 

moving windows divided by the mean, and expressed as a percentage. To study the effect of 351 

measurement scale on surface variability, CV was calculated for different window sizes.  352 

Results 353 

Because the respective effects of DEM size and grid spacing on roughness parameters cannot 354 

be presented collectively, examination is undertaken step-by-step. We start with the effect of 355 

DEM size and first examine the spatial variability of roughness parameters using moving 356 

windows. Only window size is altered during this first part of the analysis, while generic grid 357 

spacing is maintained (i.e., grid spacing equal to the reference value of 1 mm).  358 

Roughness Spatial Variability 359 

Figure 4 presents the coefficient of variation (CV) for all roughness parameters and gravel 360 

patches considered in this paper with changes in moving-window size. As is common 361 

practice, CV was used at the condition of positive property values only. Here, the surface 362 

metrics SK and I0 sometimes adopt negative values when calculated over small window sizes, 363 

whilst positive values (characteristic of a water-worked and imbricated gravel bed) are 364 

measured for all patches at larger window sizes. Therefore, calculation of CV for SK and I0 365 

required adjustments in the range of window sizes, as shown. Despite this caveat, two 366 

observations can be obtained from Figure 4. Firstly, there are differences in the spatial 367 

variability of certain roughness parameters. Particularly evident are the higher CV values at a 368 

given window size, in both skewness and inclination index, an indication that these two 369 

parameters vary widely spatially within a gravel patch. Across all DEMs, the parameters 370 

which provided the lowest CV values (reaching a minimum of below 5%), were horizontal 371 

roughness lengths Lx and Ly, along with σz (Figure 4). Secondly, spatial variability for the 372 
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majority of roughness parameters declines with increases in moving-window size, until it 373 

plateaus out. This observation suggests the existence of a threshold DEM size, evaluated 374 

hereinafter, above which the surface roughness of the patch is characterised by the parameters 375 

and decision on the location of the DEM within the patch is becoming less important (Scown 376 

et al., 2016).  377 

For the rest of the analysis, not all roughness parameters are presented, but instead horizontal 378 

roughness lengths, σz, and I0 are chosen to exemplify trends representative of all roughness 379 

parameters. The selection comprises roughness parameters commonly used for gravel beds 380 

and as shown in Figure 4, encompasses parameters with a wide range of spatial variability, 381 

therefore maximising the representativeness of the findings.  382 
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383 
Figure 4. Coefficient of variation (CV) for all roughness parameters, for all datasets (Field 384 

DEMs left column, Lab DEMs occupy the right column), calculated at different moving-385 

window sizes normalised in both directions by D50A.. 386 

Effects of DEM size and Orientation on Roughness Parameterisation 387 

Figure 5 displays the coefficient of variation (CV) in σz for all five datasets. Previously, we 388 

observed a consistent decrease in spatial variability with window size increases for all 389 
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roughness parameters studied (Figure 4). Focusing on one parameter now enables 390 

examination of whether a threshold DEM size represented by a plateau in variability exists, 391 

as well as to examine the effect of patch orientation.  392 

Figure 5 confirms a clear effect of window (hence DEM) size on the roughness statistics, for 393 

all patches. The smaller the moving-window size, the larger the variance in results produced 394 

across the patch. Variance reduces and plateaus as the window size increases, between 12 and 395 

18 × D50A across the majority of the patches. However, there are patches showing a further 396 

decrease in variance following this observed plateau (Figures 5a and 5c). Given bedforms 397 

were not filtered from DEMs for this analysis; we believe this observation suggests two 398 

spatial scales of surface roughness present.  399 

Across all patches the size of the window (hence DEM size) has a greater control on 400 

roughness statistics than the orientation of the window. Similarities in statistics exist 401 

regardless of the orientation (shape) of the window, apart from Field 2 (Figure 5b), where 402 

vertical windows result in lower CV, and Lab 1 (Figure 5d), where CV is higher for vertical 403 

windows and lower for horizontal windows compared to the use of square windows. These 404 

differences suggest surface anisotropy in the flow direction for Lab 1, whilst Field 2 is 405 

characterised by higher variability in σz in the transverse direction.  406 
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 407 

Figure 5. Coefficient of variation (CV) in σz for all datasets (Field DEMs left column, Lab 408 

DEMs occupy the right column), calculated at different moving-window sizes normalised in 409 

both directions by D50A. The number of windows generated for the maximum and minimum 410 

sizes are provided on the graphs. 411 
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Boxplots obtained using the moving-window analysis technique are presented in Figure 6, for 412 

σz, which demonstrate trends that are apparent across roughness parameters (Figure 4). 413 

Supplementing the analysis of roughness spatial variability using CV (Figures 4 and 5), 414 

boxplots enable examination of the evolution of the median value of a roughness parameter 415 

with window size increases. For roughness statistics calculated at small window sizes, the 416 

variability was larger than that at larger window sizes (Figure 6), which echoes previous 417 

observations using CV (Figures 4 and 5). Visually both the median values and the variability 418 

in statistics (e.g., boxplot whiskers) plateau between 14 -18 × D50A for all patches (Figure 6). 419 

These plateaus were confirmed statistically using 95% confidence intervals and a paired t-420 

test. The plateaus indicate the window (hence DEM) size is adequately detecting the 421 

topographic information under the scale of interest. Figures 5 and 6 suggest once the DEM 422 

size exceeds between 16-18 × D50A in both directions in the field DEMs, and smaller sizes 423 

between 14-16 × D50A in the laboratory, information derived from DEMs is deemed to 424 

provide a suitable indication of the overall surface roughness with little effect due tosurface 425 

variability. Noticeably, Field 2 (Figures 5b and 6b) began to plateau at smaller window sizes 426 

(10-12 × D50A) than the other two field DEMs. However, Field 2 was the patch examined 427 

with the coarsest sediment and the smallest normalised patch size (Table I), which may 428 

impede effective plateau identification.  429 

 430 
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431 
Figure 6. Standard deviation of bed elevations (σz) for all datasets, (Field DEMs left column, 432 

Lab DEMs occupy the right column), calculated at different moving-window sizes 433 

normalised in both directions by D50A. Horizontal line in the boxplot represents the median 434 

value for each DEM size and whiskers display the variability in results. Dashed lines were 435 

added to help visualise the plateauing in σz with window size increases. 436 
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Effects of Grid spacing on Roughness Parameterisation 437 

Figure 7 presents results of varying DEM grid spacing on two roughness statistics, σz and I0, 438 

which have been chosen to reflect the patterns observed across parameters (Figure 4). For this 439 

analysis, only grid spacing was varied, whilst parameters were calculated over the complete 440 

DEM size (i.e., patch size). 441 

Figure 7 shows minimal differences between using a 0.35 mm and a 1 mm grid spacing, 442 

which was observed across all patches. 1 mm corresponds to the size of the smallest surface 443 

grains identified in this study, which also corresponds to a ratio of between 1 to 20 and 1 to 444 

50 when compared with D50A (cf. Table I). For this reason, it is preferred presenting small 445 

grid sizes in absolute values (i.e., not normalised by D50A). Figure 7a displays stable σz with 446 

changes to grid spacing exceeding 1 mm, up to a grid size equal to D50A, for all patches, apart 447 

from Field 2, which displays differences at a grid spacing equally the D50A value. However, 448 

there are evident differences in inclination index (I0) at the coarser spacing, with grid spacing 449 

exceeding 1 mm providing fluctuating values, generally negative, and therefore unable to 450 

detect surface grain imbrication. This echoes previous observations of I0 (and skewness) 451 

being more variable spatially within a patch than σz (Figure 4), and thus requires smaller grid 452 

spacing for roughness characterisation. 453 
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454 
Figure 7. The effect of grid spacing for all datasets on the (a) standard deviation (σz) and (b) 455 

inclination index in the flow direction (I0). The selection of the two surface metrics was 456 

based on the consideration that σz and I0 encompass the patterns observed over all 457 

parameters. Horizontal lines were added to help visualise the similarities in data points. D50A 458 

values are presented in Table I.  459 
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Discussion 460 

Surface variability and roughness parameters 461 

Previous studies using gravel-bed DEMs for roughness parameterisation often differ in terms 462 

of the DEM size and grid spacing used for analysis. Common to all studies however, is the 463 

assumption that parameters derived from DEMs are reliable measurements of the surface. We 464 

show that accounting for spatial variability of the surface is important, as it has implicit 465 

connections with analytical requirements (e.g., the required DEM size and grid spacing). 466 

In this study, we have quantified spatial variability in roughness parameters to provide deeper 467 

insights into the fundamentals required for DEM analysis. Novel results obtained show that 468 

spatial variability in roughness parameters exists across a gravel patch, as processes shaping 469 

alluvial beds naturally result in surface heterogeneity at all scales (e.g., Graham et al., 2010; 470 

Nelson et al., 2014; Scown et al., 2015). This complements previous observations of spatial 471 

variability in sediment size. Besides, we show that roughness parameters differ greatly on 472 

their degree of spatial variability within a patch (e.g., the vertical shift between roughness 473 

parameters shown in Figure 4).  474 

Roughness parameters with the lowest and most consistent variance over window size 475 

increases (e.g., horizontal roughness lengths and σz) are deemed the parameters adequate to 476 

provide robust measures of  roughness over a patch. However, certain roughness parameters 477 

display high variance (e.g., skewness), with fluctuations in this parameter reflecting spatial 478 

variability in particle arrangement (Aberle and Nikora, 2006). Similarly, large fluctuations in 479 

inclination index for a given window size indicate heterogeneous grain imbrication (Figure 480 

4).  481 
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DEM size 482 

Although differing in their degree of spatial variability, all roughness parameters examined 483 

show a consistent reduction in spatial variability with window size increases (Figure 4). Thus, 484 

one can use measurements of spatial variability to identify a suitable DEM size that ensures 485 

roughness parameters independent of the surface heterogeneity (e.g., Scown et al. 2015, 486 

2016). A similar approach was used by Graham et al. (2010) to determine a suitable 487 

measurement size for maximising the accuracy of image-based grain size measurements. 488 

Figure 5 shows a greater control of window size (hence DEM size) on roughness statistics 489 

than the orientation (shape) of the window. Overall, we deem the orientation of 490 

measurements to not have a clear influence on the roughness statistics, unless the surface is 491 

clearly anisotropic. Therefore we suggest using square moving windows for analysis of 492 

gravel bed spatial variability, in order to reduce the effect of anisotropy.  493 

Our findings of a reduction in CV with increases in window size (Figures 4 and 5) are in line 494 

with a field-based study of roughness length and bed shear stress in a coarse-bed channel, 495 

which found reduced CV with an increase in sample size (i.e., an increased number of 496 

samples collected over an increased spatial coverage) (Cienciala and Hassan, 2016). Once a 497 

certain DEM size is reached, at which grain-roughness information is measured, CV may 498 

reduce again due to the presence of bedforms or larger scale roughness elements (Figure 5). 499 

This supports the theory of gravel patches displaying mixed-fractal behaviour with two scales 500 

of roughness, whereby bedform roughness is represented by a fractal band exceeding the 501 

largest grains (Robson et al., 2002; Aberle and Nikora, 2006; Bergey, 2006; Qin and Ng, 502 

2012; Noss and Lorke, 2016). Although CV reduces following a plateau, gravel patches 503 

display variance continually due to the lack of uniformity in the nature of a gravel-bed 504 

surface. This lack of uniformity leads to topographic variability both within and between 505 
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patches analysed in this study, due to differences in sorting, packing, burial, imbrication, 506 

shape and size of the sediment (Graham et al., 2010).  507 

The plateau in variance observed in the field DEMs occurred at larger sizes, which we 508 

believe is due to poorly sorted sediment (Table I) and the increased prevalence of small-scale 509 

bedforms in the field (seen in Figure 2). Bedforms can contribute to an increased surface 510 

complexity in comparison to the more uniform laboratory DEMs, with variance plateauing at 511 

smaller sizes (Bertin and Friedrich, 2016).  512 

As mentioned previously, plateaus were observed when the median values become stable and 513 

variability remains consistent as window size increases further (Figures 5 and 6). These 514 

observed plateaus were confirmed statistically, using 95% confidence intervals to assess 515 

variability (also used in work by Cienciala and Hassan (2016) to assess spatial variability in 516 

data relating to sample size) and a paired t-test to assess for statistical differences between 517 

mean values for the data at each moving-window size. The statistical confirmation used both 518 

methods, as in some parameters the median values plateaued, however variability fluctuated, 519 

and observed thresholds considered both of these factors to be stable for estimation of an 520 

appropriate DEM size. Therefore, in certain roughness parameters, such as skewness and σz 521 

in Field 2, a plateau was not observed, possibly due to a small DEM size compared to D50A 522 

and high spatial variability across the surface.  523 

Grid spacing 524 

A previous study by Scown et al. (2015), investigating the effect of DEM size on floodplain 525 

topography did not consider the effect of grid spacing on the outputs. In contrast, we find grid 526 

spacing to have an effect on roughness statistics (Figure 7).  527 

The lack of differences between 0.35 mm and 1 mm grid spacing for all roughness 528 

parameters measured in this study (Figure 7), suggests these grid spacings are adequately 529 
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capturing the grain roughness for a range of sediment size (D50A = [19 - 47 mm]) (Hodge et 530 

al., 2009a; Hodge et al., 2009b). Throughout our DEM size analysis a grid spacing of 1 mm 531 

was used, as this is already degraded from a point spacing of ~0.2 mm in point clouds (Table 532 

I) and provided the best DEM quality results we could obtain, with reasonable efficiency. 533 

Furthermore, this is the grid spacing that other researchers have used (Hodge et al., 2009a; 534 

Curran and Waters, 2014; Bertin et al., 2017).  535 

Exceeding the 1 mm grid spacing affects the results, suggesting using these resolutions do not 536 

provide suitable grain-roughness statistics and even induce errors (Milenković et al., 2015). 537 

The differences in values observed at these grid spacings is due to complex surface 538 

topography being lost, or the spatial variability of the surface being non-identifiable 539 

(Buffin‐ Bélanger et al., 2006; Hodge et al., 2009a). Previous studies have found that using a 540 

coarser grid spacing of 5 mm prevented the identification of the spatial variability of a 541 

sediment surface (Buffin‐ Bélanger et al., 2006). For example, coarser grid spacing may pick 542 

up bedform roughness, reflecting the variability between humps and hollows of bedforms, 543 

and warping the grain-scale statistics. These differences at larger grid spacing are particularly 544 

evident in inclination index (Figure 7b) with values of 0 or negative, which indicates there is 545 

no imbrication of sediment grains. This suggests larger grid spacing does not identify grain 546 

imbrications that are observed for resolutions below 3 mm.  547 

Implications of the research 548 

Measurement of roughness spatial variability to explain surface processes  549 

Assessing spatial variability of a gravel-bed surface is of importance to studies investigating 550 

the interactions between sediment and flow, for instance to explain measured spatial 551 

differences in sediment transport (Haschenburger and Wilcock, 2003; Casas et al., 2010). 552 

Using patch-scale DEMs and a moving-window technique, we were able to show that using 553 
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parameters such as σz and roughness lengths from structure functions, although provide stable 554 

measures of roughness, may be inappropriate for spatial-variability characterisation. In 555 

particular, Figure 4 has highlighted the need to holistically represent roughness using a range 556 

of roughness parameters, such as those presented in this study, to gain an understanding of 557 

the surface roughness and its spatial variability. This implication provides a step towards the 558 

improvement to the calculation of flow resistance equations, which formerly used subjective 559 

roughness coefficients, resulting in errors (Powell 2014). Contrasting with σz, we show that 560 

grain imbrication and bed-elevation skewness vary greatly within a patch (Figure 4), which 561 

has important implications when deciding which bed parameters to measure to explain 562 

process heterogeneity, such as sediment transport.  563 

Suitable DEM size for grain-roughness characterisation 564 

We suggest that a DEM size exceeding 16 × D50A in both directions (which is the modal 565 

plateau value from all roughness parameters and DEMs) is required to provide reliable grain-566 

roughness statistics. This recommendation of DEM size is supported by our previous work 567 

(Bertin et al., 2017, Figures 2 and 6), whereby the analysis of roughness spatial variability 568 

was extended to 35 DEMs and included DEMs collected in a laboratory flume by Aberle and 569 

Nikora (2006) and the Waimakariri River (Smart et al, 2004).  570 

At first look, the plateaus obtained appear lower than the value of 21 × D50 deemed 571 

appropriate for patch size in previous literature (Ockelford and Haynes, 2013). A possible 572 

reason is that sediment size in our study is based on the armour (i.e., surface) layer, whilst we 573 

believe Ockelford and Haynes (2013) refer to the subsurface (or bulk mixture) D50 (based on 574 

D50 of 4.8 mm). To allow comparison, the thresholds obtained here need to be converted from 575 

only considering the armour layer, to the subsurface layer too. Assuming an armouring ratio 576 

of 2 (i.e. D50A/D50 = 2), which has been measured for our experimental beds (cf. Table I) and 577 



 

33 

 

observed in gravel-bed rivers in the field (Oldmeadow and Church, 2006), the thresholds in 578 

this paper would be between 28-36 × D50. Therefore these thresholds are actually higher than 579 

the 21 × D50 suggested by Ockelford and Haynes (2013) and our results stress the importance 580 

of sediment sorting and bedform prevalence (i.e., spatial organisation) on these thresholds. 581 

Further, we believe this highlights the importance of a required uniformity within research for 582 

data analysis procedures in order to facilitate comparisons between studies. This statement 583 

supports a view in larger-scale studies, which, in order to delineate different features and 584 

scales of roughness across a floodplain, have stated that research requires an automated 585 

process to extract quantitative data from data of varying quality (Bertoldi et al. 2012). 586 

Recommendations such as those presented here are a step towards achieving this.  587 

Similar to this patch-scale work, Scown et al. (2016) found spatial organisation of a surface 588 

and DEM size to influence measurements of floodplain topography and analytical 589 

requirements. The fact that the same findings have been observed at two vastly different 590 

spatial scales of fluvial surfaces (i.e., from mm to km) is further evidence of a continuum of 591 

roughness scales in the environment. Both studies also support the idea that analysis of 592 

roughness spatial variability is effective in detecting transitions between scales, which is an 593 

avenue of research that could benefit from further exploration.  594 

Suitable grid spacing for grain-roughness characterisation 595 

Our finding that grid spacing exceeding 1 mm is not able to identify grain imbrication has 596 

implications for the collection of high-resolution topographic data. For the goal of grain-597 

roughness parameterisation, it is important to obtain a resolution which can adequately detect 598 

individual grains, yet with the ability to be efficiently computated (e.g., use of a 1 mm grid 599 

spacing rather than 0.2 mm in this study). Therefore the researcher should make a decision in 600 

regards to computation time, and a compromise made between using a sufficient grid size 601 
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(e.g., 1 mm) and data quality desired. A major benefit of high resolution data is that the data 602 

can be resampled at differing spacing required by the analysis (Ockelford and Haynes, 2013). 603 

Future work could explore the effect of grid spacing on larger patches than those presented 604 

here (as well as at floodplain scale, which was not formerly conducted), and determine 605 

requirements for analysing bedform roughness.   606 

Conclusions 607 

In this study, we used an analytical process based on roughness spatial variability, aimed to 608 

improve our understanding of how to analyse topographic data for gravel-bed roughness 609 

parameterisation, which is of increasing relevance for fluvial research. We have found that 610 

the scale of roughness under investigation is a vital pre-analysis decision required by the 611 

researcher, as the surface morphology and structure can influence the analysis required for a 612 

DEM. The study focused on grain-roughness characterisation using gravel-patch DEMs.  613 

Firstly, spatial variability in microtopography across a gravel-bed was adequately quantified 614 

using the moving-window analysis technique. This evident variability suggests that one 615 

single roughness parameter, such as standard deviation, is not sufficient to represent grain-616 

scale roughness; therefore using a combination of roughness parameters, as presented in this 617 

study, provides a more holistic view of surface complexity.  618 

Secondly, the size of DEM influences the calculated roughness statistics, with a plateau in 619 

variance observed between 16-18 × D50A in the field DEMs, and between 14-16 × D50A in the 620 

laboratory, suggesting these DEM sizes provide robust measures of surface roughness. 621 

Differences in the effect of DEM size between laboratory and field were found to be due to 622 

multiple scales of roughness present on a gravel surface and differing sediment sorting.  623 

Minimal differences between grid spacing below 1 mm indicate that the same quality results 624 

can be obtained at less computation time, using the coarser grid spacing. However, it is 625 
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essential for researchers to consider the scale of investigation, as using coarser resolutions 626 

will cause a loss of topographic information and inadequately represent grain roughness, 627 

rather focusing on roughness of larger scales, such as bedform roughness. This was 628 

particularly apparent when quantifying grain imbrication, which failed for grid spacings 629 

exceeding 1 mm.  630 

Based on this study, which considered patches of varying sediment size, surface morphology 631 

and from different environments, we suggest for grain-scale roughness research using a DEM 632 

size and therefore patch size exceeding 16 × D50A in both directions and using a grid spacing 633 

of 1 mm or below. As these insights come from a range of environments and sediment, we 634 

anticipate adequate roughness parameterisation in future research using guidance presented in 635 

this paper, which will also facilitate comparisons between studies.  636 
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