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Abstract 12 

Grain-scale monitoring of fluvial morphology is important for the evaluation of river system 13 

dynamics. Significant progress in Remote Sensing and computer performance allows rapid 14 

high-resolution data acquisition, however, applications in fluvial environments remain 15 

challenging. Even in a controlled environment, such as a laboratory, the extensive acquisition 16 

workflow is prone to the propagation of errors in digital elevation models (DEMs). This is 17 

valid for both of the common surface recording techniques: digital stereo photogrammetry 18 

and terrestrial laser scanning (TLS). The optimisation of the acquisition process, an effective 19 

way to reduce the occurrence of errors, is generally limited by the use of commercial 20 

software. Therefore, the removal of evident blunders during post processing is regarded as 21 

standard practice, although this may introduce new errors. This paper presents a detailed 22 

evaluation of a digital stereo-photogrammetric workflow developed for fluvial hydraulic 23 

applications. The introduced workflow is user-friendly and can be adapted to various close-24 

range measurements: imagery is acquired with two Nikon D5100 cameras and processed 25 

using non-proprietary “on-the-job” calibration and dense scanline-based stereo matching 26 

algorithms. Novel ground truth evaluation studies were designed to identify the DEM errors, 27 

which resulted from a combination of calibration errors, inaccurate image rectifications and 28 

stereo-matching errors. To ensure optimum DEM quality, we show that systematic DEM 29 



errors must be minimised by ensuring a good distribution of control points throughout the 30 

image format during calibration. DEM quality is then largely dependent on the imagery 31 

utilised. We evaluated the open access multi-scale Retinex algorithm to facilitate the stereo 32 

matching, and quantified its influence on DEM quality. Occlusions, inherent to any 33 

roughness element, are still a major limiting factor to DEM accuracy. We show that a careful 34 

selection of the camera-to-object and baseline distance reduces errors in occluded areas and 35 

that realistic ground truths help to quantify those errors.     36 

Keywords: Photogrammetry; digital; application; DEM/DTM; close range; high resolution; 37 

performance; accuracy 38 

1. Introduction 39 

1.1. Fluvial Morphology Remote Sensing 40 

In situ characterisation of grain-scale fluvial morphology is challenging for hydraulic 41 

engineers and fluvial geomorphologists. In a riverine environment, the interactions between 42 

the sediment surface (characterised by the grain size distribution, the particle shapes and the 43 

arrangement of the particles) and the water flow significantly control the riverbed. Hence, an 44 

understanding of the river system dynamics, and associated habitats, relies on the ability to 45 

accurately describe the riverbed morphology.  46 

Using 2.5D digital elevation models (DEMs) is increasingly becoming more common to 47 

represent the grain-scale surface morphology for gravel-bed rivers. This is enabled by the 48 

advent of new measurement techniques and improved PC performances. DEM analysis 49 

reveals the flow history (Mao et al., 2011, Ockelford and Haynes, 2013) and allows the 50 

parameterisation of the surface roughness for flow resistance equations (Smart et al., 2002, 51 

Aberle and Smart, 2003, Smith et al., 2011, Qin and Ng, 2012). DEMs are also essential for 52 

detailed computational fluid dynamics (CFD) simulations (Lane et al., 2002, Hardy, 2008, 53 

Hardy et al., 2009). In future, field collection of DEMs will help improve flood modelling by 54 

reducing the need to calibrate the surface roughness, a key parameter in flow simulations 55 

over rough surfaces.  56 

Whilst both digital stereo photogrammetry and terrestrial laser scanning (TLS) support 57 

high-resolution data aquisition, measurement errors, which can affect data reliability and 58 

subsequent findings (Lane et al., 2005, Hodge et al., 2009), remain a major issue. For this 59 

reason, the majority of previously surveyed close-range fluvial environments are exposed 60 



riverbeds in a controlled environment, such as the laboratory. At present, it is thus important 61 

to identify, quantify and reduce measurement error sources to improve the quality of grain-62 

scale DEMs and allow using the techniques in more sophisticated experiments in future. For 63 

TLS applications, previous users scanned fluvial surfaces repeatedly to average out the errors 64 

(Hodge et al., 2009, Smith et al., 2012). However, there is still the need of significant post-65 

processing in the form of filtering to obtain accurate metrics from exposed gravel beds in the 66 

field. Practical applications have shown that data post-processing should be avoided as it can 67 

introduce other errors (Hodge et al., 2009).  68 

The most viable approach to minimise measurement errors is the optimisation of the data 69 

collection process. Workflow optimisation is of particular concern to stereo-photogrammetric 70 

users, as the DEM collection workflow is long, complex, and the source of various error 71 

types (Lane et al., 2000, Carbonneau et al., 2003, Bouratsis et al., 2013). However, improving 72 

data collection is generally limited by the use of commercial photogrammetric software.  73 

To put the introduced workflow in context, we provide a review of previous hydraulic 74 

stereo-photogrammetric applications in the next Section. Attention is focused on the DEM 75 

collection workflow, the error sources and the solutions previously adopted.  76 

1.2. Stereo Photogrammetry for Hydraulic Experiments 77 

Stereo photogrammetry of fluvial environments covers a wide range of scales. DEM 78 

scales vary from several kilometres for the study of large braided rivers (Westaway et al., 79 

2003), to several metres for mountainous streams (Bird et al., 2010) and to a mere metre for 80 

gravel-bed roughness characterisation (Butler et al., 2001, Bertin and Friedrich, 2014). The 81 

variety of stereo-photogrammetric applications is also reflected in the hardware and 82 

software/workflow selection for DEM reconstruction.  83 

The advent of high-resolution digital cameras has led to the replacement of metric film 84 

cameras, allowing low-cost and versatile surveys (Chandler et al., 2001, Lane et al., 2001). 85 

Metric film cameras are provided with a calibration certificate that includes the parameters of 86 

the interior orientation (also called intrinsic parameters), although regular re-calibrations are 87 

recommended to ensure optimal accuracy (Cooper and Robson, 2001). Off-the-shelf digital 88 

cameras, as used in our experiments, require detailed calibration (see Section 3.4), if accurate 89 

metrics are to be extracted from imagery. In contrast, automatic stereo matching is now 90 

easier, which ensures an efficient DEM collection process and high data resolution. However, 91 

where a human operator previously ensured correct matching, automatic stereo matching now 92 
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relies on image quality, and a lack thereof can result in additional errors (Lane, 2000). Very 95 

recently, multi-view stereo (MVS) and structure-from-motion (SfM) photogrammetry started 96 

to be implemented in medium to large scale experiments (Westoby et al., 2012, Javernick et 97 

al., 2014). Even though these novel methods have the potential to better capture occlusions, 98 

they are not discussed here, as the workflow departs substantially from the more conventional 99 

binocular stereo (also called two-view) photogrammetry. 100 

To date, most environmental and fluvial applications of stereo photogrammetry have 101 

relied on proprietary stereo-photogrammetric products. OrthoMAX module of Erdas 102 

Imagine® (later Leica photogrammetry suite, LPS, now IMAGINE Photogrammetry) is the 103 

most used commercial software, with AICON 3D Systems® a more recent product 104 

(Schmocker, 2011). Other commercial software, such as Trimble Inpho®, Intergraph 105 

ImageStation® and BAE Systems SOCET SET®, enable DEM reconstruction from stereo 106 

images, and have been tested for civil engineering and geomorphic purposes (González-Díez 107 

et al., 2014, Murillo-García et al., 2014, Stoter et al., 2015). As noted by Chandler et al. 108 

(2001), the use of proprietary software constrains the photogrammetric design. OrthoMAX 109 

requires conventional photogrammetric control targets to be placed in the region of interest. 110 

The control targets’ 3D coordinates are recorded separately, using an independent device, and 111 

registered within the stereo model by bundle adjustment. This was shown to be a potential 112 

source of errors (Carbonneau et al., 2003). The tangential distortion is ignored in OrthoMAX 113 

for the calibration, which may be tolerable for high quality lenses and medium accuracy work 114 

(Fraser, 1997, Chandler et al., 2001). Furthermore, OrthoMAX’s DEM reconstruction 115 

algorithm is limited, with substantial surface smoothing and poor results over rough surfaces 116 

and in occlusions (Chandler et al., 2001, Carbonneau et al., 2003), as it relies on area-based 117 

stereo matching. Substantial post-processing is needed when using those proprietary stereo-118 

photogrammetric products for fluvial roughness studies (Carbonneau et al., 2003).  119 

Attempts to optimise the DEM reconstruction process in OrthoMAX were first made by 120 

varying the DEM collection parameters, such as the minimum threshold of normalised cross-121 

correlation and the template size for area-based stereo matching (Butler et al., 1998, Gooch et 122 

al., 1999). Butler et al. (1998, 2002) also changed the camera settings to obtain optimal 123 

exposures with maximum contrast; however, the image quality effect on stereo matching was 124 

not evaluated. As outlined by Aber et al. (2010), low image noise is expected to increase the 125 

DEM accuracy, which has been tested in specific application areas, such as 126 

stereomicroscopy. In Chandler et al. (2001), two different methods to obtain the calibration 127 

parameters were tried: (i) an in situ self-calibration with GAP software and (ii) an “on-the-128 



job” calibration with a 3D test field consisting of 70 retro-reflective targets, both resulting in 129 

similar DEM accuracy. Chandler et al. (2001) concluded that self-calibration is perhaps the 130 

preferable method, since it only requires the measurement of imagery used for the DEM 131 

extraction. However, the number and spatial arrangement of calibration control targets was 132 

found critical, with a need to have numerous (minimum of 15) and well-surveyed control 133 

targets evenly distributed throughout the x, y and z volume of the study site, which enables 134 

the recovery of reliable lens parameters (Chandler et al., 2001, Carbonneau et al., 2003). 135 

More recently, stereo-photogrammetric solutions using non-proprietary algorithms are 136 

implemented in hydraulic experiments (e.g, Bouratsis et al. (2013) for the laboratory study of 137 

bridge pier scouring). The calibration parameters (including the tangential distortion) were 138 

obtained by using the freely accessible camera calibration toolbox for MATLAB® developed 139 

by Bouguet (2010). The stereo matching was performed on rectified images with a self-140 

programmed correlation-based algorithm, using a window size of 35 x 35 pixels. Although a 141 

smooth surface was investigated, three geometrical filters were needed to process the data 142 

and remove blunders in a satisfactory manner. DEM errors were associated with the 143 

inadequate stereo setup design (baseline and the flying-height of cameras), which did result in 144 

substantial occlusions and thus stereo matching errors. Bouratsis et al. (2013) stressed the 145 

importance of image quality for stereo matching and suggested a structured light approach 146 

(whereby patterns are projected on the surface) to improve on the initially poor stereo 147 

matching results based on the riverbed texture only.  148 

1.3. Paper Overview 149 

This paper presents in detail a non-proprietary stereo-photogrammetric workflow 150 

developed for the grain-scale measurement of fluvial surfaces. The workflow is described and 151 

evaluated. Imagery acquired with two consumer-grade DSLRs and processed with non-152 

proprietary algorithms form the basis of the DEM reconstruction. Details of the “on-the-job” 153 

MATLAB® calibration toolbox are presented and discussed. Dense scanline-based stereo 154 

matching is implemented and it is shown that it improves on the traditional area-based 155 

methods in terms of resolution and occlusion suitability. The presented stereo-156 

photogrammetric technique was successfully applied to monitor the morphological changes 157 

of water-worked gravel beds, both in air and through-water (Bertin et al., 2013), with sub-158 

millimetre sampling distances and vertical accuracies. 159 
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In this study, DEM errors resulting from a combination of calibration errors, inaccurate 161 

image rectifications and stereo-mismatches are identified by purposely-designed tests. A 162 

framework to evaluate the calibration and the image rectification accuracy is presented. 163 

Relevant objects of known geometry, ground truths, were designed, produced and tested for 164 

the quantitative DEM quality assessment, enabling the identification of the error propagation. 165 

For this paper, we concentrate on presenting the evaluation of the technique for in-air 166 

measurement, with the presented concepts being valid also for through-water measurements.  167 

This evaluation study will be useful to other researchers using non-proprietary digital 168 

stereo photogrammetry and optimisation for their projects, and for the development of 169 

camera calibration and image matching techniques.  170 

2. Measurement Environment and Instrumentation 171 

The workflow is designed for experiments in a hydraulic flume (Bertin and Friedrich, 172 

2014). The flume in use is 19 m long, 0.45 m wide and 0.5 m deep, with a slope of 0.5%. For 173 

hydraulic experiments, a gravel bed is prepared over a one metre long full-width sediment 174 

recess (called the “test section”), located 14 m downstream from the inlet (Figure 1). During 175 

the experiments, the sediment is water-worked, and the evolving topography is recorded 176 

either through-water, or in air after the flume is drained. The data used for this paper are from 177 

in-air tests. 178 

Two Nikon D5100 cameras with 16.2 Mpixel complementary metal oxide semiconductor 179 

(CMOS) sensors (4928 x 3264 pixels) and Nikkor 20 mm fixed-focus lenses are used for 180 

stereo-photogrammetric measurements. The cameras are rigidly attached above the test 181 

section, using a gantry-mounting system sliding on a rail (Figure 1). Baseline and height can 182 

be adjusted depending on the design needs. Even lighting conditions are ensured (Bertin et 183 

al., 2014). An Alienware laptop with Intel core CPU @ 2.20GHz, 8GB memory and 184 

MATLAB® 2013b allows on-the-spot processing. 185 

3. DEM Reconstruction Workflow with Stereo Photogrammetry 186 

3.1. Stereo-photogrammetric Design 187 

The stereo-photogrammetric design is the first step in a stereo-photogrammetric project. 188 

It defines the theoretical accuracy achievable by the setup, and is thus critical to the 189 

measuring performance (Lane et al., 2001). In this step, the camera placement is optimised 190 



for the application. Three parameters are adjusted: (i) the baseline between the two cameras, 191 

(ii) the orientation of the cameras, and (iii) the distance between the cameras and the gravel-192 

bed. Additionally, a margin can be accounted for around the measurement window and 193 

removed from the DEM during analysis, as it is well known that DEM errors increase near 194 

the edges (Butler et al., 2002, Bertin et al., 2014). Compromises often have to be made when 195 

finalising the stereo-photogrammetric design. For example, increasing the baseline for a fixed 196 

flying height improves the theoretical depth resolution, but also increases the risk of 197 

occlusions. Similarly, increasing the flying height to account for a margin reduces the 198 

theoretical resolution.  199 

 

 

 

Figure 1. Hydraulic flume with stereo photogrammetry installed for gravel-bed monitoring 200 

(main). The inserts on the right show how cameras are mounted onto the bar using cordons to secure 201 

the camera position (top), and the chequerboard with alternating black and white 30 mm squares 202 

used for the calibration and the evaluation of image rectification (bottom). 203 

To simplify image rectification and uniformly account for partial occlusions by gravel 204 

particles protruding and shadowing the surroundings, the camera pair in our experiments is 205 

mounted in canonical configuration, where the two optical axes are parallel with each other 206 

and perpendicular to the baseline (Figure 1). The standard central perspective projection 207 
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equations (pin-hole camera model) are used to determine the optimal flying height for the 208 

targeted measurement window size. Experimental heuristics are used to determine the 209 

optimal baseline. Not knowing the exact morphology of the studied area, such as encountered 210 

when recording a gravel bed, it is not possible to design the baseline in the same way as if 211 

one would know the occlusion structure. 212 

The setup evaluated in this study was designed for a measurement window of size 450 x 213 

450 mm, which is suited to study gravel-bed roughness (Mao et al., 2011, Ockelford and 214 

Haynes, 2013, Bertin and Friedrich, 2014). No margin was accounted for in this evaluation 215 

study, to enable the identification of the spatial distribution of stereo-photogrammetric errors. 216 

The baseline was set experimentally to 200 mm, requiring a distance between the cameras 217 

and the gravel-bed of 575 mm to cover the measurement window. The resulting common 218 

field of view (CFoV) between the two cameras, where 3D information can be extracted, is 219 

478 x 450 mm in the object space, which results in a theoretical sampling distance of 220 

approximately 0.14 mm, which equals 1 pixel in the image domain. A theoretical depth 221 

resolution (distance between two disparity layers) of 0.39 mm can be achieved (Table I).  222 

TABLE I. Summary of the stereo-photogrammetric setup used (desired measurement window of size 223 

450 x 450 mm). Computed values were determined using the pin-hole camera model and the rounded 224 

flying height.  225 

Rounded flying height (mm) 575 

Baseline (mm) 200 

CFoV (mm) 478 x 450 

Range of disparity for 50 mm elevation range (pixels) [1396-1523] 

Overlap (%) 70 

Pixel size (mm) / resolution (pixel/mm2) 0.14 / 53 

Sampling distance in DEM (mm) 0.25 

Theoretical depth resolution or minimum measurable depth (mm) 0.39 

Number of pixels in the 450 x 450 mm measurement window (-) ≃ 10,300,000 

3.2. Setup Preparation  226 

The cameras are connected to a computer, allowing remote control and live view using 227 

Nikon’s Camera Control Pro 2 software, which is helpful to manually focus on the measured 228 

surface and to mechanically align the cameras. The latter is important to minimise the effect 229 

of image warping during image rectification to epipolar geometry. Easily identifiable feature 230 

points (e.g. chequerboard corners) are used to adjust the alignment until the corresponding 231 



points are approximately on the same scanline. Once cameras are correctly focused and 232 

mechanically aligned, it is necessary to ensure no modification is made to the physical setup 233 

for the duration of the experiment. 234 

3.3. Image Acquisition 235 

Adequate selection of the camera settings for the application is important, as the crucial 236 

element to a successful close-range stereo-photogrammetric process is attaining “good 237 

images” (Matthews, 2008), where the term “good” refers to sharp images that have uniform 238 

exposure with high contrast. Since the lighting environment constrains the cameras’ settings, 239 

it is important that both the lighting environment and the exposure settings are optimised 240 

interdependently. To obtain the best quality images, the cameras are operated in manual 241 

mode. We found that for our environment, using Nikkor 20 mm lenses, a combination of f/8 242 

aperture (increased to f/10 or f/11 for selected tests) with a generic sensitivity value such as 243 

ISO 200, ensures a good depth of field, a reduced vignette effect and uniform sharpness 244 

across the image. Once the aperture and ISO are set, these settings should remain constant 245 

throughout the acquisition of all images. For evaluation purposes we changed the shutter 246 

speed, as presented later.  247 

3.4. Calibration and Image Rectification 248 

The calibration method of Zhang (1999), implemented in the calibration toolbox for 249 

MATLAB® (Bouguet, 2010), is used to compute the camera calibration and pose parameters 250 

(also called intrinsic and extrinsic parameters, respectively) from a series of stereo images 251 

(called the “calibration images”) of a planar chequerboard in different orientations (Figure 2). 252 

Radial distortion (up to the fourth-order) and tangential distortion are also modelled during 253 

calibration for each camera. For simplicity, “calibration parameters” hereafter refer to the 254 

ensemble of the camera calibration parameters, the pose parameters and the distortion 255 

coefficients. The chequerboard used in this study consists in alternating black and white 30 256 

mm squares, prepared on a flat and rigid perspex plate (Figure 1), providing 40 (8 x 5) 257 

control points (i.e. the chequerboard corners) per calibration image. A sufficiently accurate 258 

checkerboard can be produced from off-the-shelf printers and other materials (Zhang, 1999).   259 

Assuming a standard central perspective projection by the cameras, the calibration 260 

toolbox extracts the chequerboard’s corners, with distances between corners precisely known, 261 

to compute a closed form solution for the calibration parameters and provide separately the 262 



intrinsic and the extrinsic parameters of each camera, not including any lens distortion. The 263 

closed-form estimation of intrinsic parameters explicitly uses a constraint based on the 264 

orthogonality of vanishing points (Bouguet, 2010). Lens distortion is accounted for during the 265 

non-linear optimisation step, which minimises the total re-projection error (in the least 266 

squares sense) over all other calibration parameters, and solved with the Levenberg-267 

Marquardt algorithm. The re-projection error (residuals between image measurements) is the 268 

difference in (x,y) pixel coordinates between the re-projected corners of the chequerboard, 269 

using the calibration results, and their measured locations with sub-pixel accurate corner 270 

detection. (x,y) represent the horizontal and vertical directions in an image, respectively. 271 

  
Figure 2. Independent sets of (left) 40 “calibration images”, the “parent” set in this research; and 272 

(right) 15 “rectification-check” images. The chequerboard corners are alternatively used as control 273 

points in calibration images, and as check points for image rectification in rectification-check images. 274 

 A common procedure to refine the calibration data for each camera separately is to re-275 

compute the chequerboard corners until a minimum re-projection error is attained (Bouguet, 276 

2010, Bouratsis et al., 2013). This can be done manually for images where corner detection is 277 

initially poor, or automatically on all images. For the automatic re-computation, used 278 

thereafter, the toolbox re-computes the positions of every corner by using the re-projected 279 

grid as the initial guess locations for the corners.  280 

Ultimately, during the stereo calibration step, all calibration parameters are re-evaluated 281 

based on the calibration image presenting the minimum re-projection error on both cameras 282 

to provide a single set of extrinsic parameters for the stereo setup (Bradley and Heidrich, 283 

2010). 284 

Once the calibration parameters are known, all stereo images obtained with the setup in 285 

the calibrated configuration can be rectified to epipolar geometry to minimise y-parallax in 286 



the rectified images. This way, the 2D search of corresponding pixels is reduced to 1D, which 287 

assists stereo matching efficiency. Image rectification (Fusiello et al., 2000) is included in the 288 

calibration toolbox. It should be noted that the toolbox transforms images to greyscale 289 

equivalents during rectification. The code is herewith modified to obtain rectified images in 290 

red/green/blue (RGB) format. 291 

3.5. Stereo Matching and DEM Reconstruction  292 

Stereo matching is performed on rectified images using the conventional and well-293 

established computer stereovision algorithm called symmetric dynamic programming stereo 294 

(SDPS) (Gimel'farb, 2002), providing both dense disparity maps and ortho-images of the 295 

region covered by the CFoV. The disparity map is then transformed into the depth map using 296 

projective geometry and the calibration parameters (the so-called depth triangulation).  297 

For each conjugate pair of epipolar lines across a stereo pair, the SDPS algorithm 298 

exhausts all continuous epipolar profiles of a single continuous surface to find the profile 299 

minimising the total mismatch between both the lines. Individual mismatches between the 300 

corresponding pixels, which represent binocularly visible surface points, are measured by the 301 

total absolute or squared difference between the pixel intensities. The pixel intensity is 302 

defined as the maximum tonal value between the red, green and blue channels, expressed on 303 

an 8-bit (0-255) scale. Individual partial occlusions, such that the surface points are observed 304 

only in a single image, are taken into account by a special additive penalty. In other words, if 305 

a pixel has no counterpart in the other image because of partial occlusion, the latter is 306 

penalised in order to regularise the overall matching score, the depth at this point being 307 

computed based on the assumption of a single continuous surface.  308 

The total line-to-line mismatch is a linear combination of the total intensity mismatch 309 

between the corresponding points and a weighted total occlusion penalty for the binocularly 310 

observed and partially occluded surface points along the profile, respectively. Compared with 311 

previous stereo-photogrammetric applications in hydraulic experiments (see Section 1.2), the 312 

SDPS performs pixel-to-pixel signal matching, rather than a “feature-based” or “area-based” 313 

one. Hence, the obtained DEM is dense, contrary to the feature-based matching; the DEM’s 314 

smoothing will be lesser than in the area-based matching, and the sampling distance can be 315 

chosen, if necessary, as small as the pixel size at the object’s distance.  316 

In application to a gravel surface, the more conventional feature-based stereo matchers 317 

cannot produce a dense depth map and also may be inaccurate due to the absence of easily 318 



detectable and discriminable visual features. The gravel surfaces are highly textured with 319 

relatively small occluded areas at borders, ensuring a sufficiently high accuracy of the dense 320 

SDPS matcher. However, the employed line-to-line stereo matching needs the more accurate 321 

image rectification, as otherwise true correspondences between the pixels may not be found.  322 

Post-processing by median filtering, a common practice in stereo-photogrammetric 323 

surveys (Carbonneau et al., 2003), is implemented in the SDPS algorithm and is 324 

automatically applied to eliminate blunders in the depth maps. Using the default filter width 325 

of 3 pixels and height of 11 pixels, each given pixel elevation is replaced by the median value 326 

over a 3 x 11 neighbourhood around the corresponding pixel position in the input image. The 327 

filter size is such that it is able to smooth the horizontal streaks of disparity error that may 328 

result from scanline-based stereo matching. It should be noted that one can opt for this post-329 

processing filter to be skipped and thus true pixel size resolution depth information can be 330 

obtained.  331 

In terms of matching accuracy, the SDPS algorithm is able to distinguish disparity layers 332 

up to 1 pixel. Since the disparity at a distance Z from the cameras is equal to  the 333 

setup’s theoretical depth resolution dz in metric units (also called minimum measurable 334 

depth; Table I) can be expressed using the following formula (only valid in case of canonical 335 

configuration): 336 

                                                           [1] 337 

where (b, f, p and Z) are the baseline, focal length, pixel size in the sensor plane and camera-338 

to-object distance (in mm), respectively.  339 

To reconstruct the DEM, all pixels in a depth map are triangulated using projective 340 

geometry and the calibration results. A point cloud, containing the (x,y,z) coordinates of all 341 

points in metric units, is obtained. The points in the point cloud are not regularly spaced, as 342 

they are assigned to different disparity levels. Using the function ‘gridfit’ in MATLAB®, the 343 

point cloud is finally interpolated (using the default triangle interpolation method) onto 344 

regular grids with adjustable sampling distance, and represented as 2.5D DEMs. Previous 345 

tests showed that the interpolation scheme to transform a point cloud into a regular DEM has 346 

very little impact on the data accuracy and that the selection of the sampling distance is 347 

critical (Bertin et al., 2014). DEM quality is best preserved when the raw point cloud is 348 

interpolated onto a grid with spacing close to the sampling distance of the point cloud (Hodge 349 

et al., 2009, Bertin et al., 2014). In this study, raw point clouds were interpolated onto 350 
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orthogonal grids with 0.25 mm sampling distance (Table I). Our available computer 352 

performance for subsequent analysis was the limiting factor for choosing this resolution.  353 

4. Errors in Digital Stereo Photogrammetry 354 

4.1. Identification and Quantification  355 

An overview of error causes is provided in Table II. The paper focuses on errors that 356 

arise from the stereo-photogrammetric processing steps, i.e. the calibration, the image 357 

rectification and the stereo matching. Table II also summarises the identification methods and 358 

the implemented solutions to reduce or even eliminate the errors. The error sources and the 359 

identification methods are discussed in detail below.  360 

4.1.1. Calibration Error  361 

The calibration toolbox allows evaluating the quality of the calibration based on the 362 

numerical uncertainties of the estimated parameters and the re-projection error for each 363 

camera. The numerical uncertainties are approximately three times the standard deviation of 364 

the parameters after optimisation and are thus equivalent to the precisions of the parameters 365 

from the calibration. The toolbox provides the standard deviation of estimated re-projection 366 

error over all calibration images along the x and y directions, for both the left and right 367 

cameras (four parameters).  368 

4.1.2. Rectification Error 369 

For image rectification, the essential parameters to consider are the relative translation 370 

and rotation between the two cameras, as well as the calibrated principal distances and the 371 

positions of the principal points for each camera. Any calibration error on the above 372 

parameters will prevent a correct image rectification and will result in residual y-parallax in 373 

the rectified images, called rectification error. Although the two steps should be regarded as 374 

separate, the removal of image distortion is performed simultaneously with the image 375 

rectification.  376 

To compute the rectification error, an independent set of calibration images, called the 377 

“rectification check” images (Figure 2), is recorded, providing check points (i.e. the 378 

chequerboard corners, 40 per images) covering the whole CFoV. Per definition, the 379 

rectification error is the absolute difference in vertical (y) pixel coordinates between the 380 

measured check points of the left-hand and right-hand rectification-check images after image 381 

rectification. For the quantitative evaluation of the calibration quality in this study, the mean 382 



(unsigned) rectification error and the maximum (unsigned) rectification error were computed 383 

as the average and the maximum of the rectification errors over all check points in all 384 

rectification check images (i.e. 600 check points covering the CFoV), respectively. The 385 

maximum rectification error at the 99.7 % level was computed as the sum of the mean error 386 

and three times the standard deviation of error.  387 

4.1.3. DEM Quality 388 

Ground truths were essential to DEM evaluation to understand the links between 389 

calibration, image rectification, stereo matching and thus the resulting DEM error. The latter 390 

is evaluated by measuring a ground truth and comparing measured and “truth” elevations on a 391 

point-by-point basis, after mutual alignment. The mean unsigned error (MUE), the standard 392 

deviation of error (SDE), and the maximum unsigned error were used for the evaluation in 393 

this study. At several occasions, the maximum error at the 99.7 % level was computed as the 394 

sum of the MUE and three times the SDE. 395 

Two different ground truths were used (Figures 3 and 4). Both of them lacked initially 396 

the texture and contrast of a real gravel-bed (Bertin et al., 2014). To compensate for this, the 397 

ground truth surfaces were finished with a light layer of paint, and the addition of differently 398 

coloured fine sand (diameter less than 0.2 mm, which is smaller than the 0.39 mm theoretical 399 

depth resolution achievable by the setup). For the assessment of the measured DEMs, 400 

manufacturing imprecisions and the effect of the surface finishing were neglected.  401 

The first ground truth, hereafter referred to as the “gravel-bed model”, was prepared with 402 

a 3D printer based on the DEM of a water-worked gravel bed as measured during a previous 403 

experiment. The ground truth elevations are produced with the manufacturer’s specified 404 

accuracy range of 0.033 to 0.066 mm every 0.25 mm in both directions over a surface of size 405 

296 x 184 mm (Figure 3). The preparation of the realistic ground truth and the method to 406 

automatically align measured and “truth” data before elevation differences can be computed 407 

on a point-by-point basis at more than 800,000 known locations is described in Bertin et al. 408 

(2014).  409 



 

 

Figure 3. “Truth” DEM of the gravel-bed model (left); greyscale ortho-image of the model after the 410 

surface was finished to maximise the stereo matching performance (right). Elevations are known at 411 

every 0.25 mm over 296 x 184 mm. DEM quality is evaluated by measuring the ground truth and 412 

comparing measured and “truth” elevations, after mutual alignment, at over 800,000 locations. 413 

A second ground truth, called the “hemisphere model” (Figure 4), the same size as our 414 

measurement window (450 x 450 mm), was prepared to evaluate the full spatial distribution 415 

of DEM errors. A digital model was prepared with MATLAB®, taking the form of a “truth” 416 

DEM, with elevations known at every 0.25 mm (Figure 4). To produce the actual model, an 417 

aluminium sheet (450 x 450 mm) was machined with a DOOSAN DNM 650 milling 418 

machine, 30 mm thick and perfectly flat. 121 adjoining cylinders (40 mm in diameter, 20 mm 419 

deep) were drilled onto the plate to allow ping pong balls (40 mm diameter) to be fitted half-420 

way through. When reversed and laid down on a surface plate (flatness guaranteed with 421 

accuracy of 250 nm), no rocking due to uneven ping pong balls’ protrusions was observed, 422 

satisfying the criteria of a precise ground truth.  423 

 
 

Figure 4. “Truth” DEM of the hemisphere model (left); greyscale ortho-image of the model after the 424 

surface was finished to maximise the stereo matching performance (right). Elevations are known at 425 



every 0.25 mm over 450 x 450 mm. DEM quality is evaluated by measuring the ground truth and 426 

comparing measured and “truth” elevations, after mutual alignment, at over 3,200,000 locations. 427 

4.1.4. Dome Effect 428 

The presence of systematic errors in DEMs obtained with stereo photogrammetry, taking 429 

the form of a cubic surface centred on the photo base, called a dome, was noticed in previous 430 

studies and explained by the incorrect removal of the radial distortion (Chandler et al., 2005, 431 

Wackrow and Chandler, 2011). To detect the presence of domes in our data, a flat surface 432 

(450 x 450 mm, 250 nm specified flatness) is measured with the setup. After alignment of the 433 

obtained DEM with the photo base, the dome effect is estimated by fitting a bi-quadratic 434 

surface to the detrended DEM by least-squares.           435 



TABLE II. A summary of the causes of stereo-photogrammetric errors evaluated in the paper, the identification methods and the solutions adopted.  436 

Causes  Description  Identification and quantification  Mitigation / *removal 

Inaccurate 

calibration 

(IP/EP/distortion) 

 Conjugate points are not a same 

scan line after image rectification 

(rectification error or y-parallax), 

which may result in systematic 

matching errors 

 Compute rectification error 

Ground truth measurement 

 Optimise calibration strategy (number and 

spatial arrangement of control points) 

Apply a margin during design 

*Median filtering 

 Dome effect in the measured 

elevations due to the introduction 

of x-parallax in the stereo model  

 Measurement of a flat surface  

Ground truth measurement 

 Optimise calibration strategy (spatial 

arrangement of control points) 

Apply a margin during design 

*Bi-quadratic surface detrending if dome 

shape is known 

Image quality 

and stereo 

matching 

 Gross errors due to incorrect 

matches 

 

 Internal reliability test using different 

imagery  

Ground truth measurement  

 Optimise image quality (change camera 

settings and/or lighting environment, use 

image processing techniques) 

*Median filtering 

IP for intrinsic parameters. EP for extrinsic parameters.437 
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4.2. Workflow Optimisation Methodology  440 

Using the identification/quantification methods presented in Table II, we evaluated each 441 

DEM reconstruction step and quantified errors for each step and configuration. In test 1, the 442 

effect of the number of calibration images and the effect of automatically re-computing the 443 

corners to refine the calibration data were evaluated. The influence of the 3D spatial 444 

distribution (both horizontal and vertical) of the control points was evaluated in test 2. Test 3 445 

was designed to provide a better understanding of what is image quality and how it influences 446 

stereo matching.  447 

Unless otherwise mentioned, chequerboard calibration images were obtained inside the 448 

illuminated hydraulic flume, using manual focus, f/8 aperture setting, 1/50 s shutter speed, 449 

ISO 200 and JPEG (1:4) fine image format for both cameras. The chequerboard was held in 450 

position by supports underneath, to avoid any movement. Stereo images of the gravel-bed 451 

and hemisphere models were recorded in JPEG (1:4), using 1/20 s shutter speed, and 452 

transformed with Retinex. Detailed information on Retinex is given in Section 4.2.3.  453 

4.2.1. Test 1: Calibration Quantity and Automatic Corner Re-computation 454 

40 stereo images of the chequerboard were recorded, with the chequerboard in different 455 

positions and orientations, with care being taken to have control points (chequerboard 456 

corners) distributed throughout the CFoV (Figure 2). A maximum of 40 was chosen to verify 457 

the statement that 20 to 30 views are required (Bradley and Heidrich, 2010). Furthermore, 458 

performing a calibration using 40 calibration images still allows for a time-efficient process, 459 

which is tolerable for applications in both the laboratory and the field. Smaller subsets 460 

containing 10, 20 and 30 calibration images were created by randomly selecting images from 461 

the “parent” set of 40 calibration images. The chosen subsets ensured a decent CFoV 462 

chequerboard coverage. The calibration toolbox algorithms were successively applied for all 463 

calibration image sets individually, with and without automatic corner re-computation, 464 

resulting in eight different sets of calibration parameters, for which the stereo-465 

photogrammetric errors were computed.  466 

4.2.2. Test 2: Calibration Spatial Distribution 467 

Two subsets, both containing 15 calibration images but covering different CFoV areas, 468 

were created from the “parent” set of 40 calibration images to enable the evaluation of the 469 

effect of the control points’ planar distribution during calibration. The first subset comprised 470 

images presenting control points on one half of the CFoV only (Figure 9). The obtained 471 



calibration data is hereafter referred to as the “partial” calibration. The second subset, called 472 

the “complete” calibration, presented control points distributed throughout the CFoV (Figure 473 

9). Stereo-photogrammetric errors were computed for both calibration subsets. Based on the 474 

results of test 1, corner re-computation during calibration was not used in this test. 475 

To investigate on the importance of the calibration distance (i.e. the distance between the 476 

cameras and the control points), the rectification error was measured at distances that 477 

encompass the calibration distance (Figure 12). Calibration was completed using control 478 

points distributed throughout the CFoV at distances from the cameras between 510 mm and 479 

630 mm. The rectification error was measured at distances from the cameras between 430 480 

mm and 700 mm. To avoid any bias due to different horizontal arrangements of the check 481 

points at the various distances, only check points in the central region of the CFoV were 482 

utilised. To enable this test, the image acquisition settings were changed to f/20 aperture and 483 

1/20 s shutter speed.  484 

4.2.3. Test 3: Image Quality 485 

Stereo images of the gravel-bed model were recorded with five different shutter speeds 486 

(1/5 s, 1/10 s, 1/20 s, 1/40 s and 1/60 s) in both RAW and JPEG (1:4) image formats. The 487 

other camera settings (f/8, ISO 200) remained identical to those used for the acquisition of the 488 

calibration images. We purposely obtained images with varied histograms (Figure 13). 489 

Before the stereo matching, RAW images were exported to JPEG using the default encoding 490 

parameters and the two lowest compression rates applicable (JPEG (1:2.6) and JPEG (1:15) 491 

for “highest quality” and “high quality” JPEG compressions, respectively). The stereo images 492 

directly recorded in JPEG (1:4) were subject to transformations, such as greyscale and 493 

Retinex. Retinex is a popular human-perception-based image processing technique, 494 

increasing the sharpness and compressing the dynamic range of images by reducing flares 495 

and enlightening shadows. The Retinex theory (Land, 1986) postulates that a given image can 496 

be decomposed into two different images, a reflectance image and an illumination image, on 497 

which transformations (e.g. normalising illumination and increasing the local contrast in the 498 

dark zones) can be operated to mimic direct scene viewing. Following the emergence of the 499 

Retinex theory, different Retinex algorithms were developed; the most widely used being the 500 

multi-scale Retinex with colour restoration (MSRCR) algorithm that combines dynamic 501 

range compression and tonal rendition (Jobson et al., 1997). Retinex methods have common 502 

advantages that they do not require training images and have low computational complexity. 503 

A possible defect is the colour greying of images, either globally or in regions where the 504 

Supprimé: repartitions 505 



grey-world assumption is violated (Rahman and Woodell, 2004). Retinex was used for 506 

medical image enhancement (Meng et al., 2012), shadow detection and removal (Sun et al., 507 

2008), illumination-invariant face recognition (Park and Kim, 2008) and point selection in 3D 508 

shape registration (Liu et al., 2014). To the best of our knowledge, Retinex was never 509 

employed to improve image quality before stereo matching. Using GIMP® 510 

(http://www.gimp.org/), the MSRCR algorithm was uniformly applied with the following 511 

parameters: 240 (scale), 3 (scale division) and 4 (dynamic). These parameters were chosen to 512 

provide the best DEM accuracy based on preliminary tests. 513 

To enable a realistic comparison between obtained DEMs of the gravel-bed model, where 514 

image quality is the only difference, the same calibration data was used to rectify all images 515 

and to triangulate all depth information, leading to DEM reconstruction.   516 

5. Results and Discussion 517 

5.1. Test 1: Calibration Quantity and Corner Re-computation 518 

Figure 5a shows the numerical uncertainties on the baseline after calibration with 519 

different numbers of calibration images, with and without automatic corner re-computation. 520 

The uncertainty/precision on the camera baseline was calculated as the square root of the sum 521 

of the squared (x,y,z) uncertainties given by the toolbox. Other parameters, such as the focal 522 

length (or principal distance), the principal point and the distortion coefficients are not 523 

shown, but presented a similar shape of uncertainties. The precisions of the calibrated 524 

parameters are reduced with increasing number of calibration images, with a substantial jump 525 

between 10 and 20 images (Figure 5a). Corner re-computation also reduced the uncertainties, 526 

resulting in around 20 % improvement for all data sets.  527 

The re-projection error presented in Figure 5b is the average of the re-projection errors 528 

given by the toolbox in the horizontal (x) and vertical (y) directions in an image, averaged 529 

between the left and the right camera. It represents the overall precision with which the 530 

calibration is able to re-project the chequerboard corners on the calibration images. Figure 5b 531 

shows that the re-projection error is significantly reduced (about 3-fold) by automatically re-532 

computing the corners during calibration.  533 

The rectification error (Figure 5c) is reduced with increasing calibration images. A 534 

minimum rectification error was obtained with 30 images, after which the rectification error 535 

slightly increased again. Although re-computing the corners during calibration improved the 536 

precisions of the calibration parameters (Figure 5a), it did not improve image rectification. 537 



This suggests that the automatic corner re-computation had minimal effect on the calibration 538 

parameters, and thus on image rectification. For all calibrations, the mean and the standard 539 

deviation of rectification error are small (about 0.2 pixel and smaller), indicating that most 540 

conjugate points are on the same scanline after image rectification, ensuring minimal 541 

systematic matching error throughout the CFoV. 542 

  543 

a b 

  

c 

 
Figure 5. Influence of the automatic corner re-computation and the number of calibration images on 544 

(a) the numerical uncertainties on the calibrated baseline; (b) the re-projection error; and (c) the 545 

rectification error. Calibrations with corner re-computation (grey), calibrations without corner re-546 

computation (black). 547 

Figure 6 presents the DEMs of the gravel-bed and hemisphere models obtained with the 548 

“parent” calibration (40 images) and their associated DEMs of difference (DoDs) after 549 

comparison of the DEMs with the “truth” elevations. Figure 6 shows clearly that most DEM 550 

errors occur at the edges and troughs, due to occlusions. Edges and troughs also cause poor 551 

image correspondences because of shadows and uniform colouring of the surface (i.e. low-552 

textured areas). For occlusions, the at-a-point elevation is based on the assumption of a 553 
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continuous surface, generally resulting in over-smoothed deep holes. The DoD of the 554 

hemisphere model shows that DEM errors increase both in frequency and magnitude with the 555 

radial distance from the centre of the CFoV because of occlusions, since oblique rays are less 556 

able to reach areas shadowed by higher grounds. This is not observed in the DEM of the 557 

gravel-bed model, which can partly be attributed to its smaller size. Additionally, the decision 558 

to set the baseline parallel to the downstream direction resulted in errors preferentially 559 

aligned with the transverse direction. When recording surfaces similar to the hemisphere 560 

model, increasing the setup flying-height would likely reduce the occlusions and improve the 561 

DEM quality. A poorer resolution would result as a consequence, as mentioned previously. 562 

Gravel bed Hemispheres 

  

  
Figure 6. (Top) measured DEMs, aligned with the truth DEMs; and (bottom) associated DoDs 563 

(absolute differences are shown for clarity). Calibration was performed with the “parent” set of 564 

images without corner re-computation; stereo matching was done on JPEG (1:4) images obtained 565 

with 1/20 s and transformed with Retinex. 566 

Figure 7 shows the quantitative evaluation of the DEM quality, computed over the 567 

gravel-bed and hemisphere models, for the eight calibrations tested. All gravel-bed model 568 

DEMs have optimal accuracy with MUE equal to 0.51 ± 0.03 mm and a maximum absolute 569 

error of 8.90 ± 0.7 mm. In Bertin et al. (2014), a MUE of 0.43 mm and a maximum absolute 570 



error of 8.16 mm was obtained with a baseline distance of 250 mm and a flying-height of 636 571 

mm, suggesting that the DEM errors can be reduced by changing the stereo-photogrammetric 572 

design. As Figure 6 suggested, the DEMs of the hemisphere model are of lesser quality than 573 

the DEMs of the gravel-bed model, with an overall three-fold increase in the MUE and two-574 

fold increase in the maximum absolute error. Figure 7 shows that the MUE and the maximum 575 

error at the 99.7 % level tend to decrease with the number of calibration images for all 576 

DEMs. This may be explained by the joint reduction of the uncertainties on the calibration 577 

parameters and the rectification error with the number of calibration images, which was 578 

observed in Figure 5a and Figure 5c. Similarly to previous observations (Figure 5c), the 579 

effect of the corner re-computation on the DEM quality is small, and no clear trend is 580 

observable. We nevertheless believe that corner re-computation is useful when chequerboard 581 

image quality prevents accurate corner detection, e.g. in the case of through-water 582 

photogrammetry.  583 

Gravel bed Hemispheres 

  

 
Figure 7. Influence of the automatic corner re-computation and the number of calibration images 584 

on the DEM quality. Calibrations with corner re-computation (grey), calibrations without corner re-585 

computation (black). 586 

A small dome (elevation span of 0.64 mm ± 0.08; mean absolute elevation when centred 587 

on zero of 0.12 mm ± 0.02) was noticed in the DEM of a flat surface (450 x 450 mm) for all 588 

calibrations (Figure 8a). Increasing the number of calibration images and re-computing the 589 

corners during the calibration did not reduce the dome effect.  590 
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Wackrow and Chandler (2011) showed that the mildly convergent imagery provides 591 

means to reduce the dome effect. Similarly to the optimisation of the baseline distance, 592 

deciding between a convergent and a vertical image configuration is difficult and is surface-593 

dependent.   594 

A counter measure to minimise the dome effect in DEMs is the application of a margin 595 

during the design to limit the DEM analysis to a more central region where the dome is 596 

smaller. But again, to be effective, the minimisation of the dome effect by accounting a 597 

margin has to be balanced against a deteriorated depth resolution when the camera-to-object 598 

distance is increased.  599 

(a) (b) 

  
Figure 8. Dome observed in the DEM of a flat surface (450 x 450 mm). (a) The dome effect was 600 

similar for all calibrations tried in test 1. (b) Dome in the case of the “partial” calibration (test 2). 601 

The dome was measured by fitting a bi-quadratic surface to the DEM by least-squares, after the DEM 602 

was aligned with the photo base. 603 

5.2. Test 2: Calibration Spatial Distribution 604 

Figure 9 and Table III show that both the rectification error and the DEM error are 605 

increased in the regions where control points were missing during calibration. This is valid 606 

for the “partial” calibration, but is also visible for the “complete” calibration. For the “partial” 607 

calibration, rectification error statistics are severely increased (about 10 times) between 608 

regions with control points (called the “calibration region”) and regions without control 609 

points (Table III). This in turn results in a two-fold increase in the DEM error between the 610 

two regions (Table III). The degradation of the DEM quality is less than the difference in 611 

rectification error would suggest. Firstly, only large rectification errors (> 0.5 pixel) have an 612 

impact on the stereo matching, and thus on the DEM quality, since SDPS stereo matching is 613 

performed along lines of 1 pixel width. Secondly, point cloud to DEM transformation, during 614 



which the DEM errors due to solitary large rectification errors are smoothed by interpolation, 615 

reduces the final DEM error. And thirdly, DEM errors are bounded by the relief of the 616 

hemisphere model.  617 

(a) (b) (c) 

   

   
  

 

Figure 9. Plan-view of control points location in calibration images (a); associated rectification 618 

error (b); and associated DEM error over the hemisphere model (c). The top row corresponds to the 619 

“partial” calibration. The bottom row corresponds to the “complete” calibration. In order to 620 

emphasise the effect of a “partial” calibration, the internal reliability of the DEMs was evaluated by 621 

doing a comparison with the DEM obtained with the “parent” calibration, not the “truth” DEM.  622 

A closer look at Figure 9 and Table III shows that the “partial” calibration not only 623 

affected the point measurements outside the “calibration region”, but to a lesser extent has a 624 

global effect over the whole measurement window. Indeed, the DEM error inside the 625 

“calibration region” in the case of the “partial” calibration (MUE of 0.66 mm and SDE of 626 

0.90 mm) is larger than the overall (over the whole CFoV) DEM error in the case of the 627 

“complete” calibration (MUE of 0.30 mm and SDE of 0.42 mm). Since the rectification error 628 

was only increased outside the “calibration region” for the “partial” calibration, we conclude 629 

1 pixel ≤ Rectification error 
0.5 pixel < Rectification error < 1 pixel 
0.1 pixel < Rectification error ≤ 0.5 pixel 
Rectification error ≤ 0.1 pixel 



that there must be other DEM error sources in addition to those from inaccurate image 630 

rectification.  631 

TABLE III. Rectification error and DEM error (using the hemisphere model) in the case of the 632 

“partial” and the “complete” calibrations. In order to emphasise the effect of a “partial” 633 

calibration, the internal reliability of the DEMs was evaluated by doing a comparison with the DEM 634 

obtained with the “parent” calibration, not the “truth” DEM. 635 

 

Spatial distribution of 

control points 
Partial coverage of CFOV 

Complete coverage 

of CFoV 

Region where errors are 

calculated 

Inside 

calibration 

region 

Outside 

calibration 

region 

Whole 

CFoV 
Whole CFoV 

Rectification 

error (pixel) 

Mean 0.13 1.18 0.60 0.14 

Standard deviation 0.12 1.25 0.99 0.08 

Maximum 0.76 10.11 10.11 0.78 

DEM error 

(mm) 

MUE 0.66 1.09 0.88 0.30 

SDE 0.90 1.51 1.25 0.42 

Maximum (unsigned) 5.60 11.34 11.34 4.21 

 636 

Figure 10 presents the complete distortion model, the intrinsic parameters and the re-637 

projection errors for the “partial” and the “complete” calibrations. Observations for both 638 

cameras were identical; therefore only results for the left camera are presented. Firstly, the re-639 

projection errors are smaller for the “partial” calibration, which disagrees with the 640 

rectification error and the DEM error observations (Table III). This suggests that the re-641 

projection error is not adequate to characterise the calibration effect onto the stereo matching. 642 

Other studies showed that the rectification error is more suitable than the re-projection error 643 

to evaluate the quality of a calibration for binocular systems (Bradley and Heidrich, 2010, 644 

Bertin et al., 2012). Secondly, the shape of the distortion model is modified for the “partial” 645 

calibration, with a lateral displacement and a change in curvature. The computed distortion 646 



coefficients and the profiles of radial and tangential distortion confirm this change, showing 647 

an increase in distortion for the “partial” calibration (Figure 10). 648 

  

  

 
Figure 10. (Top row) Complete distortion model, intrinsic parameters and re-projection errors 649 

obtained during calibration of the left camera for (left) the “partial” calibration; and (right) the 650 

“complete” calibration. (Bottom row) Profiles of radial (left) and tangential (right) distortion of the 651 

left camera. Similar observations were made with the right camera.  652 

Resulting from the inaccurate distortion model obtained with the “partial” calibration, a 653 

large dome (elevation span of 3.71 mm and mean absolute elevation when centred on zero of 654 

0.47 mm; compared with 0.64 mm and 0.12 mm, respectively, for a “complete” calibration) 655 

was observed in the DEM of a flat surface (Figure 8b), explaining why DEM errors not only 656 

increased outside the “calibration region”, but globally over the CFoV.  657 

Figure 11 presents the results obtained with the “parent” calibration. We recall the 658 

“parent” calibration was completed using 40 calibration images, which was the largest image 659 

set in this study. As shown, it is difficult to place the chequerboard (and thus obtaining 660 



control points) to cover the whole CFoV (Figure 11). Rectification errors larger than 0.5 pixel 661 

are found in the two corners of the measurement window where only one control point was 662 

available for calibration. Hence, to enable correct stereo matching throughout the 663 

measurement window, it is essential to obtain sufficient control points (our results suggest at 664 

least two). 665 

  
 

 

Figure 11. Plan-view of control points location in the case of the “parent” calibration: 40 calibration 666 

images (left); and associated rectification error (middle). The lines delimit the regions after a margin 667 

of size 10, 20 and 30% the size of the CFoV, respectively, has been applied. The graph on the right 668 

shows the rectification error as a function of the margin size. 669 

Accounting for a margin around the CFoV, where the rectification error is not counted, 670 

can be helpful to remove marginal pixels with large rectification errors (Figure 11), thus 671 

reducing the risk to have large DEM errors at these same locations. Median filtering during 672 

the stereo matching may also smooth the effects of solitary large rectification errors. 673 

With no loss in accuracy, image rectification to epipolar geometry can be performed for 674 

points with a camera distance outside the range of control points (Figure 12). As previously 675 

found, control points should be evenly distributed throughout the 3D volume covered by the 676 

object of interest (Chandler et al., 2001, Carbonneau et al., 2003). Figures 9 and 12 show that 677 

in our case control points only need to cover the 2D area of interest. For hydraulic 678 

experiments this implies that calibration images can be obtained above the gravel-bed 679 

surface, without increasing the rectification error at the distance of the gravel bed. 680 

Subsequent stereo matching performance will not be decreased. This is a major advantage, as 681 

the setup does not need to be moved for the calibration, which minimises the risk to alter the 682 

validity of the calibration over time. Our results support and extend the early findings of 683 

Weng et al. (1992), who showed that calibrated cameras are able to measure points at 684 

distances beyond the range of control points with minimal (1.3 %) loss in accuracy. However, 685 

0.5 pixel < Rectification error < 1 pixel 
0.1 pixel < Rectification error ≤ 0.5 pixel 
Rectification error ≤ 0.1 pixel 



caution needs to be taken when generalising these results to a much larger range of camera 686 

distances, as only a narrow distance strip was tested.  687 

 688 
Figure 12. Rectification error, determined at each corner of the chequerboard in 65 rectification-689 

check images (i.e. at 2600 check points), versus the distance from the cameras. The grey markers on 690 

the horizontal axis and the box delimit the range of control points’ distances during calibration.  691 

5.3. Test 3: Image Quality  692 

Figure 13 presents the original images of the gravel-bed model, directly recorded in 693 

JPEG (1:4) using various shutter speeds (other camera settings remained constant), and their 694 

Retinex equivalents, all cropped to the size of the model (296 x 184 mm), with their 695 

respective luminosity histograms. Pixel luminosity corresponds to the sum of 0.299, 0.587, 696 

and 0.114 times the intensity in the red, green and blue tones, respectively. As evidenced in 697 

Figure 13, the MSRCR algorithm implemented in GIMP® is able to re-centre the distribution 698 

of pixel luminosity for all images tested. Whilst original images look very different, the 699 

images transformed with Retinex are very similar visually. As observed in previous works, a 700 

colour greying happened during the Retinex transformations (Jobson et al., 1997, Rahman 701 

and Woodell, 2004).  702 

Table IV presents the MUE computed after differentiation of the DEMs reconstructed 703 

with the images obtained for the test and the “truth” DEM of the gravel-bed model. We recall 704 

that the same calibration data was used throughout the test to ensure a consistent comparison 705 

between the DEMs, where image quality is the only difference. HHQ and HQ correspond to 706 

images recorded in RAW exported to “highest quality” (1:2.6 compression ratio) and “high 707 

quality” (1:15 compression ratio) JPEG, respectively. 708 

Mean = 0.106 
STD = 0.018 

Mean = 0.096 
STD = 0.017 

Mean = 0.089 
STD = 0.022 



Shutter speed  1/5 s 1/10 s 1/20 s 1/40 s 1/60 s 

Original 
images 

     

Luminosity 
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transformed 
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Figure 13. Left-hand images of the gravel-bed model, cropped to the size of the ground truth (296 x 709 

184 mm), and their associated luminosity histograms. Only the shutter speed was changed, other 710 

settings (ISO, aperture) remained constant. The original images, recorded in JPEG (1:4), and their 711 

Retinex transformations are presented.  712 

Image transformations (greyscale and Retinex) have a considerable impact on the stereo 713 

matching and thus on the DEM accuracy (Table IV). The most accurate DEMs were those 714 

obtained with images transformed with Retinex, with an average 40 % reduction of the MUE 715 

compared with the DEMs reconstructed using the original images. This finding is significant, 716 

as to the authors’ knowledge it is the first time the MSRCR algorithm is implemented to 717 

facilitate the stereo matching. In contrast, the stereo matching performed on the greyscale 718 

equivalent images provided the worst results. We therefore recommend other users of the 719 

calibration toolbox to modify the code to obtain rectified images in RGB format to enable 720 

superior stereo matching results.  721 

Table IV shows that RAW to JPEG transformation reduced the DEM quality in terms of 722 

the MUE (about 5 % for HHQ, 10 % for HQ), compared to DEMs collected using images 723 

directly recorded in JPEG (1:4). It suggests that the in-camera and the camera software JPEG 724 

encodings are different. Here, the in-camera JPEG compression provided better quality 725 

images for the stereo matching. We still believe RAW imagery will be useful for other 726 

studies, where there is no a-priori knowledge of the optimum stereo matching camera 727 

settings, since exposure changes can be made on RAW images.  728 



TABLE IV. Mean unsigned error (MUE) in millimetre measured on the DEMs of the gravel-bed 729 

model, reconstructed using images recorded with various shutter speeds (other camera settings 730 

constant) in both JPEG(1:4) and RAW format. Images recorded in RAW were converted to HHQ and 731 

HQ JPEG (JPEG (1:2.6) and JPEG (1:15), respectively) before the stereo matching. Original images 732 

directly recorded in JPEG (1:4) were transformed with Retinex and greyscale. To allow a realistic 733 

comparison between DEMs, where the differences are only due to the image quality, the image 734 

rectification prior to the stereo matching and the depth triangulation were performed using the same 735 

calibration data. Image file size is indicated, and was determined on the left-hand images recorded 736 

with 1/20 s shutter speed. 737 
Shutter speed (s) 

Transformation       

 
1/5 

 
1/10 

 
1/20 

 
1/40 

 
1/60 

Retinex (7.8Mb)  0.54   0.51   0.49   0.49   0.51  

Original (6.6 Mb)  0.96   0.69   0.62   1.08   1.64  

HHQ (9.1 Mb)  1.02  0.72  0.64  1.12  1.59 

HQ (1.8 Mb)  1.09  0.73  0.66  1.13  1.57 

Greyscale (4.7 Mb)  1.43  1.16  0.98  2.01  2.57 

The tested shutter speed camera setting impacted the stereo matching performance and 738 

the DEM quality substantially (Table IV). All other camera settings were unchanged in this 739 

test. The stereo pair recorded with 1/20 s shutter speed always provided the best DEMs in 740 

terms of the MUE. It is important to note that this finding is specific to this study, as the 741 

shutter speed selection depends on various parameters, such as the lighting environment and 742 

the shininess of the surface. For all images except the Retinex equivalents, the correct 743 

selection of the shutter speed was essential, since a change of the shutter speed from 1/20 s to 744 

1/60 s resulted in DEMs with a large difference in MUE (about 60 % change). For images 745 

transformed with Retinex, the representation of the MUE for various shutter speeds is less 746 

widely spread (Table IV), suggesting that a larger range of shutter speeds has a lesser effect 747 

on stereo matching. Still, a 9 % difference in MUE is observed between two DEMs collected 748 

using Retinex imagery (DEMs reconstructed with 1/5 s and 1/20 s, respectively). Therefore, 749 

whilst image transformation techniques like Retinex have the potential to facilitate the stereo 750 

matching, the careful selection of the camera settings must still be regarded as a key element 751 



in a stereo-photogrammetric project. According to the results obtained in this test, a good 752 

image for stereo matching is represented by a luminosity histogram with a pronounced 753 

central peak before any transformation. 754 

Figure 14 presents a summary of the MUE for 62 gravel-bed model DEMs. The 755 

horizontal axis shows the difference in mean pixel intensity between the two images, 756 

calculated over the size of the gravel-bed model (296 x 184 mm). Even in a controlled 757 

environment such as the laboratory, exposure difference between the left and right images 758 

forming a stereo pair may be observed, often due to the lighting source. Neon lights (Figure 759 

1), which were used for the study, have the advantage of producing an even illumination of 760 

the test section. The known disadvantage is that they cause a “flicker effect” with light pulsed 761 

at twice the supply frequency. Figure 14 shows clearly that the difference in mean pixel 762 

intensity between the two images forming a stereo pair is reduced when transformed with 763 

Retinex.  764 

 765 
Figure 14. Effect of the image quality (here described in terms of the difference in mean pixel 766 

intensity between the two images forming a stereo pair) on the DEM accuracy, represented by the 767 

MUE. The results obtained on 62 DEMs of the gravel-bed model (37 Retinex and 25 original images) 768 

are summarised in this graph.  769 

Furthermore, the results show that the MUE and the difference in mean pixel intensity are 770 

correlated, with a distinct relationship for each image type (i.e. with or without Retinex). For 771 

both original images and their Retinex equivalents, the MUE increases with an increased 772 

difference in mean pixel intensity between the two images used for the stereo matching. To 773 

evaluate image quality, the difference in mean pixel intensity between the two images 774 



forming a stereo pair, needs to be an important parameter to judge the pair’s suitability for 775 

stereo matching.  776 

6. Conclusions 777 

This paper presented a digital stereo-photogrammetric workflow for close-range 778 

measurement, in application to grain-scale fluvial surfaces. Processing steps (calibration, 779 

image rectification and stereo matching) were introduced and discussed. A controlled 780 

laboratory evaluation was carried out to identify the cause of processing errors and to find 781 

means to reduce their impact on DEM quality. 782 

The introduced workflow can be described as user-friendly, low-cost and versatile. 783 

Imagery was acquired with two consumer-grade DSLRs and processed using non-proprietary 784 

algorithms. Compared with previous fluvial applications, “on-the-job” calibration using 785 

stereo images of a 2D chequerboard does not require the placement of fixed control targets on 786 

the riverbed surveyed with an independent device, and enables both radial and tangential 787 

distortion coefficients to be recovered. Scanline-based stereo matching resulted in dense 788 

DEMs with the possibility to have sampling distances as small as the pixel size at the object’s 789 

distance, which improves substantially on traditional area-based methods. Limited post-790 

processing was applied and prevented the introduction of new errors.  791 

Consequently, our DEMs have high point densities (0.25 mm sampling distance) and high 792 

vertical accuracies (MUE close to 0.5 mm), which are required to realistically represent 793 

water-worked riverbed roughness. To the authors’ knowledge this represents one of the most 794 

precise and accurate topography measurement solution for hydraulic research, which rivals 795 

results obtained with laser-scanning (Hodge et al., 2009).  796 

Using the presented evaluation strategy, it is shown that errors are systematically 797 

introduced to the workflow, starting with the calibration. Evenly distributed control points 798 

throughout the measurement window improve DEM quality, by ensuring a smaller than 0.5 799 

pixel homogeneous rectification error and removing most of the optical imagery distortion. In 800 

general terms, an increasing number of calibration images improved DEM quality, whilst re-801 

computing corners had no observable effect outside the re-projection error reduction. 802 

Following on previous works, our studies confirm that the calibration quality for binocular 803 

systems is best expressed in terms of the rectification error, rather than the more commonly 804 

used re-projection error (Bradley and Heidrich, 2010, Bertin et al., 2012). Image quality, a 805 

function of the dynamic range in the imagery, as well as the similarity between the two 806 



images forming a stereo pair, was shown critical to stereo-matching success. We presented 807 

how image transformation techniques, such as Retinex, provide means to heighten the 808 

similarity between the images forming a stereo pair and thus to improve stereo matching. 809 

Given suitable calibration parameters, image enhancement and stereo matching were the 810 

steps where optimisation resulted in the most significant DEM accuracy improvement in our 811 

study. We therefore recommend considering these steps carefully to achieve optimal 812 

accuracy.  813 

Ongoing work is required on how best to address the existence of occlusions, which are 814 

still a major source of photogrammetric errors. Recent studies use multi-view stereo (MVS) 815 

and structure-from-motion (SfM) photogrammetry techniques for medium to large scale 816 

experiments (Westoby et al., 2012, Javernick et al., 2014), but not for the very small scales. 817 

Those techniques are potentially more suited to capture occlusions. In the present study, 818 

occlusion errors could not be removed completely, although calibration and image quality 819 

optimisation improved stereo-matching results. Occlusions are the direct consequence of the 820 

photogrammetric design. The use of realistic ground truths, such as the ones presented in this 821 

study, is shown to be useful for the experimental determination of the optimum stereo-822 

photogrammetric design. The next step is acquiring multiple depth maps of the same scene 823 

from different viewpoints, which can then be fused to improve data quality.  824 
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