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Abstract—The numerical format used for representing weights
and activations plays a key role in the computational efficiency
and robustness of CNNs. Recently, a 16-bit floating point format
called Brain-Float 16 (bf16) has been proposed and implemented
in hardware accelerators. However, the robustness of accelerators
implemented with this format has not yet been studied. In this
paper, we perform a comparison of the robustness of state-of-the
art CNNs implemented with 8-bit integer, Brain-Float 16 and 32-
bit floating point formats. We also introduce an error detection
and masking technique, called opportunistic parity (OP), which
can detect and mask errors in the weights with zero storage
overhead. With this technique, the robustness of floating point
weights to bit-flips can be improved by up to three orders of
magnitude.

Index Terms—fault tolerance, error detection, quantized neural
network, convolutional neural network

I. INTRODUCTION

Convolutional Neural Networks (CNNs) are increasingly
used in applications where safety requirements must be re-
spected, notably in Autonomous Driving Systems. The imple-
mentation of these networks on hardware platforms must thus
be tolerant of faults of any kind, including soft errors. Previous
works have shown that in some cases, networks are tolerant
of a large number of bit-flips, however, it has been shown
that there are cases where a single bit-flip can cause a CNN’s
classification accuracy to drop dramatically [1]. We also note
that by making networks robust to faults, we open the door
to their implementation using advanced memory technologies
which are intrinsically less reliable.

Improving the robustness of CNNs is an active field of study.
Researchers have proposed hardware techniques, approaches
based on identifying anomalies as well as techniques where
the training process is modified. It is generally accepted that
quantized neural networks are several orders of magnitude
more robust than floating-point-based CNNs [2], [3]. The
quantization process induces a loss of accuracy that may be
problematic for some applications, therefore floating point
formats remain important. In this paper, we propose Oppor-
tunistic Parity (OP), a zero-overhead technique to detect and
mask errors in the weights of CNNs.

Other authors have shown that CNNs can tolerate a signif-
icant number of errors in the Least Significant Bits (LSBs)
of their weights [4] which is also confirmed for the networks
studied in this paper. Based on this observation, we propose
a hardware-based technique to detect and mask errors in the
weights of CNNs that employs Opportunistic Parity (OP). The
idea behind the concept is to use some of the least significant

bits in the weights in order to introduce a simple parity code
to detect a single (or an odd number) of bit-flips. If the parity
code detects an error, we replace the erroneous weights with
zero and continue

In CNNs, it is known that masking an erroneous weight
or activation value to zero has a minimal impact on the
classification accuracy [5], [6]. Therefore, when a parity error
is detected, by masking the data with zero, the impact of the
error is minimized.

This technique was tested on three CNNs with different
numerical formats. Our results demonstrate that the OP tech-
nique improves the robustness of floating-point-based CNNs
by one to three orders of magnitude, with zero storage or area
overhead.

This paper contains two main contributions. First, we
perform a study of the robustness of three modern CNNs
including their execution using the recent Brain-Float 16
(bf16) numerical format1. Secondly, we propose a new fault
mitigation technique, Opportunistic Parity, that reduces the
impact of bit errors in the weights. Tolerance to bit flips
in the weights is important in high-reliability applications,
where safety is a concern. Indeed, by making a CNN resilient
to weights errors, we open the path to a wider acceptation
of weight storage using advanced or emerging, lower-energy
memory technologies, that are not very mature, being more
prone to bit errors due to defects and variations.

II. BACKGROUND

A. Convolutional Neural Networks

An artificial neural network is a machine learning model
consisting of neurons, synapses and activation functions. The
neurons are organized as layers and receive their input, or ac-
tivations, from previous layers. The connections, or synapses,
determine how activations propagate between layers. The
configuration of the weights determines the behaviour of the
network and these values are obtained during the training
process. In this paper, our focus is on CNNs trained using
supervised learning, as this is the type of network that is most
widely used in computer vision.

Three networks are considered in our study : ResNet50 [7],
SqueezeNetV1 [8] and MobileNetV2 [9]. All three networks
are tested with the 2012 ImageNet data-set. ResNet50 was cho-
sen as an example of a high performance network. It achieves
state-of-the-art performance using deep residual layers, which

1 [4], studies the IEEE764 16-bit floating point format.



consist of shortcut connections between layers to address the
problem of a vanishing gradient during training.

SqueezeNetV1 and MobileNetV2 were chosen as examples
of optimized CNNs. SqueezeNet is fully convolutional and
uses fire modules, which are composed of a squeeze layer with
a 1x1 convolution followed by an expand layer with 3x3 con-
volutions. It achieves low latency and has the lowest number
of weights of the three networks. MobileNetV2 is based on an
inverted residual structure with residual connections between
bottleneck layers.

B. Optimizing Neural Networks

The high accuracy of CNNs comes at the expense of
large memory storage for the weights and high computational
complexity. These factors render their application in embedded
systems more challenging.

int8bf16

fp32

sign exponent mantissa sign value

sign exponent mantissa

Fig. 1. Three Numerical Formats used for CNN Weight Values

In recent years, reducing the power consumption of CNNs,
while maintaining accuracy, is an active field of research.
Three main avenues are being explored. First, optimization
of the network topology, which has resulted in the devel-
opment of networks such as MobileNetV2 or SqueezeNet
which reach state-of-the-art performance while reducing the
number of operations and weights. Second, the development
of dedicated hardware accelerators, such as Eyeriss [10] and
ShiDianNao [11], which are optimized for the evaluation of
neural networks. Third, the tuning of the numerical format, for
example, the use of reduced precision floating-point or fixed-
point reduces memory bandwidth and storage requirements.
bf16 is a recent 16-bit floating-point numeric format used in
new Intel Xeon processors [12]. It has the same exponent
width as a standard IEEE 754 single precision float. The length
of the mantissa is simply reduced to 7 bits. When used in CNN
accelerators, the multiply operations are performed using bf16,
however, the sum is accumulated in a standard fp32 format
to limit the rounding error, as described in [13], [14]. These
numerical formats are illustrated in Fig. 1.

C. Characteristics of the CNNs

For each of the three networks, we used publicly available
ONNX models from [15]. The weights were converted to
bf16 format by simply rounding the mantissa to 7 bits. The
conversion to int-8 format was performed using the the N2D2
platform [16] using the methodology described in [17].

The classification accuracy is slightly lower when the nu-
merical format for the weights is reduced. In Tab. I, we present
the accuracy of the networks, in the absence of faults, as well

the network requirements in terms of the number of multiply-
accumulate (MAC) operations and the number of weights.

TABLE I
CHARACTERISTICS AND ACCURACY OF SELECTED NETWORKS FOR

IMAGENET DATA-SET

Network Numerical Num. Num. Top-5
Format MACs Weights Accuracy

fp32 91.90%
ResNet50 bf16 3.9 G 25.5 M 91.83%

int8 88.08%
fp32 80.35%

SqueezeNet bf16 352 M 1.2 M 80.35%
int8 78.74%
fp32 89.91%

MobileNetV2 bf16 300 M 3.4 M 89.55%
int8 86.39%

D. Fault Model

In this paper, we limit our study to bit-flips in the weights.
For the purpose of this study, these bit flips could be the result
of radiation-induced soft-errors, or they could be the result of
timing errors or retention errors due to the weight storage
memory being operated at an extremely low voltage, in order
to reduce power [18].

III. OPPORTUNISTIC PARITY

Numerous, well known, techniques exist for protecting
memories from bit-flips, including EDAC (Error Detection
and Correction) codes with various detection and correction
capabilities. In all standard approaches, additional check bits
are added to the initial data, in order to provide protection
or even error correction. Unlike these approaches, rather than
adding additional check bits, we propose to directly modify
the data, or the stored weights. In CNN applications, the
least-significant bits of the weights is not critical [4]. Indeed,
flipping a small number of these least significant bits (LSBs),
leads to a very small loss in accuracy of the network.

In the simplest form, for each weight that initially had odd
parity, we propose to flip the LSB in order to ensure that all
the weights actually have even parity, as illustrated in Fig 2.
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Fig. 2. Opportunistic Parity : Altering LSB to Obtain Even Parity

As presented, potentially, the LSB of every single weight
could be flipped, which would have an impact on accuracy.
However, we note that the storage word size of most modern



memories is large (at least 64 to 256 bits). Multiple (N)
weights are stored in one memory word. We can cover the
entire memory word with a single parity bit, thus only the
LSB of one of the N weight values needs to be flipped. This
reduces the number of perturbations to the weights.

Different techniques could be used in order to select which
of the N weight values to modify. One strategy would be to
pick the weight with the largest absolute value, to minimize
the relative error. Another strategy consists of picking the
weight which is the least critical, but this would imply a costly
analysis of the criticality of the weights. In the interests of
simplicity, we arbitrarily pick the LSB of the memory word.

A. Fault Mitigation

Error is detected
due to parity bit

Erroneous Weight is set
to zero to mitigate fault
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Fig. 3. Opportunistic Parity : Masking Detected Faults with Zero

Of course, a parity code only provides detection of an
odd number of bit-flips. When a parity error is detected, the
weight values can be replaced, or masked, with zeroes, as is
illustrated in Fig. 3. Many authors [5], [6] have shown that in
CNNs, masking erroneous values to zero is an effective fault
mitigation technique. This approach prevents error scenarios
where one of the Most Significant Bits (MSBs) gets flipped
to one. These are the cases that most impact the accuracy.

B. Methodology

To analyze the efficiency of the fault mitigation strategy,
we performed a series of fault injection campaigns. When per-
forming fault injections on CNNs, the design of the experiment
is very important since, even in the absence of faults, as seen in
Tab. I, the classification accuracy of the network is not 100%.

Each of the data points we present is the average accuracy
over Nexp = 20 fault injection experiments performed for
a specific condition. A condition is defined as a tuple of
the following variables : Network (ResNet50, MobileNetV2,
Squeeznet), Numerical Format (fp32,bf16,int8), Bit Error Rate
and Fault Mitigation Strategy (none, OP over individual
weights, OP over 64 bit words, OP over 256 bit words).
Each experiment consists of applying Nbatch size images and
computing the accuracy for that batch.

The overall flow for the experiments is shown in Alg. 1.
1) Classification Methodology: When working with the

ImageNet dataset, it is common practice to report the top-1 and
top-5 accuracy. The former refers to the ability of the network
to identfy the category of the image as the top ranked output.

for all Net in (ResNet50, MobileNetV2, SqueezeNet) do
for all Numerical format in (fp32, bf16, int8) do

for all OP in (None, Weight, 64 bits, 256 bits) do
for BER from 1e-9 to 9e-1 do

for i from 1 to Nexp do
Nfaults ← (num weights ∗BER)
Faults← random(weights,Nfaults)
Inject Faults in weights
for j from 1 to Nbatchsize do

Classify Imagej
end for
Record average accuracy for batch
Clear Faults in weights

end for
Evaluate average accuracy for Nexp batches

end for
end for

end for
end for

Algorithm 1: Fault Injection Procedure

The latter, represents the ability of the network to place the
correct category among the top five outputs. In the interests of
simplicity, we have chosen to report only the top-5 accuracy.

When reporting the impact of bit-flips on the weights, we
have adopted the Bit Error Rate with Zero Accuracy Drop
(BERZAD) metric proposed by Sabbagh [2]. BERZAD is
defined as the maximum bit-error rate (number of erroneous
weight bits divided by the total number of weight bits) such
that there is zero loss of accuracy, based on a 95% confidence
interval. A higher BERZAD value indicates that the network
is more robust.

2) Batch Size: Due to the fact that the classification rate
in the absence of faults is not 100%, the uncertainity in the
fault free accuracy varies with the batch size. The batch size,
(Nbatch size), is thus chosen such that the obtained error bars
are less than 5%. In fact, it is a requirement for using the
BERZAD metric, that the batch size be sufficiently large
so that fault-free accuracy is never 5% below the nominal
accuarcy. In order to correctly choose the batch size, we
performed a set of experiments without faults. The minimum
and maximum accuracy was measured for 1000 batches of
varying size as shown in Fig. 4. Although a batch size of 50
appears sufficient to ensure a variation of under 5%, we have
chosen a larger batch size of 400. This was done, in order to
ensure the uncertainty in the measured results, is well below
5%, for all three networks and numerical formats.

IV. EXPERIMENTAL RESULTS

In this section we present the results of our fault injection
experiments. First, we present an analysis of the sensitivity of
the weights, per erroneous bit position. This first experiment is
done to validate our approach of inverting the LSBs. Secondly
we present the results of experiments where faults are injected
in the weights, both with and without the OP technique.
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Fig. 5. BERZAD as a Function of Bit Position, for Three Numeric Formats
and Three Networks

A. Analysis of Arruracy by Erroneous Bit Position

The sensitivity of the all the bit positions in the weights was
studied for the three numerical formats (fp32, bf16 and int8)
for the three networks and the results are shown in Fig. 5.

First, we observe that that ResNet50 has a slightly higher
overall BERZAD. This is not surprising, as MobileNetV2 and
SqueezeNet are optimized, extremely compressed networks,
and thus any perturbation is more likely to impact the results.

For both floating point numerical formats, there are cases
where a single bit flip in the MSB of the exponent causes
the accuracy to drop to zero. Thus, the BERZAD is zero, and
hence off the graph (shown with a red arrow, due to the log
scale). This is not the case for the int8 quantized format, where
a small number of bit flips in the MSBs does not produce an
accuracy drop over 5%.

Consistent with previous studies [4], we see that exponent
bits are more sensitive than mantissa bits. Also, for all the
formats, including the int8 format, the LSB can withstand a
BERZAD of nearly 10e-1. This observation confirms our hy-
pothesis and justifies the proposed the OP protecton technique.

The sensitivity of the bf16 format is essentially the same
as the 16 MSBs of the fp32 format. We note that a bf16

number is essentially a fp32 with the 16 LSBs of the mantissa
truncated (or preferably rounded). The bf16 format, is thus
more sensitive than the 16-bit IEEE 754 format, because the
exponent field is larger.

B. Analysis of the Opportunistic Parity Technique

As discussed previously, OP can be applied based on
different memory word sizes. We have considered three cases :
(i) parity is adjusted for each weight individually, (ii) parity
is adjusted for 64-bit words, (iii) parity is adjusted for 256-
bit words. For comparison, we also present the classification
accuracy in the absence of mitigation. These results are
summarized in Tab. II.

TABLE II
CHARACTERISTICS AND ACCURACY OF OPPORTUNISTIC PARITY

Network Num. Level of No-Fault BERZADFormat Op.Par. Accuracy

MobileNet

fp32

None 89.9 1e-8
32 89.9 7e-6
64 89.9 5e-6
256 89.9 8e-7

bf16

None 89.6 0
16 89.3 2e-6
64 89.6 5e-7
256 89.6 9e-7

int8

None 86.4 2e-5
8 79.0 9e-6

64 85.8 7e-6
256 86.1 6e-8

SqueezeNet

fp32

None 80.3 9e-8
32 80.6 4e-5
64 80.5 4e-5
256 80.3 4e-6

bf16

None 80.6 7e-8
16 80.6 4e-5
64 80.6 3e-5
256 80.4 2e-6

int8

None 78.7 1e-4
8 77.9 2e-4

64 78.7 3e-5
256 78.8 8e-6

ResNet50

fp32

None 91.5 2e-9
32 91.9 8e-6
64 91.9 7e-6
256 91.5 2e-6

bf16

None 91.7 0
16 91.8 7e-6
64 91.7 3e-6
256 91.8 4e-6

int8

None 88.1 4e-5
8 86.5 1e-4

64 88.3 1e-5
256 88.2 6e-6

In all cases, with both floating point formats, OP greatly
increases the BERZAD, indicating the network is more robust.
For example, with MobileNetV2, with the fp32 format, the
BERZAD increases from 1e-8 to 7e-6, due to the OP at
individual word level. Note that the impact of the weight mod-
ifications on the fault free classification accuracy is negligible.

For the case where the int8 numeric format is used, when
OP is applied at the 8-bit word granularity, there is a noticeable
drop in fault-free accuracy (for example from 88.1% to 86.5%
for ResNet50). However, it does provide a nearly 2.5x (4e-5



to 1e-4) increase in BERZAD. Indeed, when there is a parity
error, only a single weight value is zeroed out, which has a
minor impact on the accuracy. Still, for the same int8 format,
when OP is applied over groups of N=8 or N=32 weights (64,
256 bit words, respectively), there is virtually no drop in fault
free accuracy, as very few bits are perturbed. The improvement
in BERZAD is, however, reduced. In these cases, when there
is a parity error, N weights get zeroed out and this has a real
impact on the classification accuracy. Considering only the
BERZAD metric, the benefits of OP appear to be limited for
the int8 format.

One shortcoming with the BERZAD metric, is that it
provides no insight into the behaviour of the network, after
the initial loss of accuracy. In Fig. 6, we plot the accuracy, as
a function of the bit error rate. In these graphs, we see how
the accuracy degrades with increasing bit error rate.

The black curves, show the behaviour in the absence of any
protection, and we we see that for the floating point formats,
the drop is quite sudden. This is due to the fact that, as soon as
one, or a few, exponent bits are modified, the accuracy drops
drastically. However, with OP, we prevent these extreme cases,
and thus typically gain two orders of magnitude in BERZAD,
before the accuracy drops off. In other words, using OP with
floating point weights, it is possible to obtain the same fault
tolerance (BERZAD) as a network using quantized weights
stored in an int8 format.

For the int8 format, the results are mixed. For example,
with ResNet50, Fig. 6c, with OP at the 8-bit word level (blue
trace), we see that the accuracy starts to drop at a higher bit-
error rate, and that the drop in accuracy is more gradual. For
Squeezenet, Fig. 6i, OP at the word level, also provides a slight
benefit. Unfortunately, for MobileNetV2, Fig. 6f, OP, even at
the word level, degrades the fault tolerance. To summarize, the
OP technique is highly effective at protecting weights stored
in floating point formats. For 8-bit integer weights, in some
cases, it can provide an improvement, but the results depend
on the type of network.

V. RELATED WORKS

Many previous works have studied the fault tolerance
of CNNs. Sabbagh [2] introduced the BERZAD metric and
performed an analysis of LeNet-5 and VGG-16, which are
no longer state of the art networks. In this work, no fault-
mitigation techniques are demonstrated.

Schorn [1] proposes a technique for modifying the weights
in a CNN in order to increase fault tolerance. The technique
is based on identifying the most critical weights and reducing
their value in order to minimize the extent to which they prop-
agate faults. After this change, a computationally expensive
re-training is required to restore the original accuracy. The
authors protected all the weights for the small LeNet-5 net-
work. For the larger Squeezenet network, however, they only
considered faults in a subset of the neurons. This technique is
dependent on the network topology, requires costly re-training
and it is not clear that it scales for complete, modern networks.
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Fig. 6. Impact of Opportunistic Parity on Accuracy

Kim [18] proposed a training method to improve robustness
of CNNs to those bit-flips that are most likely to occur when
an external SRAM holding the weights, is operated at low
voltage. This technique requires a costly re-training of the
network and it is not clear how it performs with recent, state-
of-the-art networks.

Li [4] proposes a syndrome-based error detection technique,
based on analyzing the statistics of the activation values. They
achieve good fault detection for small networks. Draghetti [19]
presents another detection method for soft errors in a video
object detection application. The results for the current frame
are compared with those from previous frames with the goal of
identifying anomalies. With both of these works, the proposed
technique introduces the problem of false positives (reporting
of a fault, when no fault occurred).

Zhang [5] and Reagan [6] propose hardware techniques to



mitigate computational errors. Both authors demonstrate that
replacing erroneous values with zeroes is an effective way to
mask faults. The OP approach builds on this observation.

Gambardella [20] studied the robustness of binarized net-
works. They propose selective redundancy for the most critical
channels and also propose a fault aware scheduling technique,
however, this work does not focus on memory errors.

Industrial providers of CNN accelerators [21] rely on more
traditional Dual Core Lock Step (DCLS) to achieve error
detection, although the area and power overhead is nearly 2x.

VI. CONCLUSION

In this paper, we have presented a fault injection study tar-
getting the weights for three modern CNN architectures. Our
results show that the modern, highly compressed networks,
such as SqueezeNet and MobileNetV2 are more sensitive
to bit-flips in the weights, than, for example ResNet50. We
studied three numerical formats for the weights, including the
new bf16 format.

We have proposed a simple technique called opportunistic
parity, which can be used to protect the memory used for
weight storage for a CNN accelerator and requiring zero
storage overhead. In the case of weights stored in a floating
point format, including bf16, it provides a an improvement in
bit error rate tolerance between 1-3 orders of magnitude with
practically no loss in fault-free accuracy. For int8 formats, the
technique can provide approximately a 5x improvement in bit
error rate tolerance, with a minor loss in fault free accuracy,
however, the results depend on the type of network.

Our future work is focused on identifying new techniques to
better protect quantized weights in highly compressed, modern
networks.
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