
HAL Id: hal-03470307
https://hal.science/hal-03470307v1

Submitted on 8 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trust in complex actions (ESSLLI 2010)
Julien Bourdon, Guillaume Feuillade, Andreas Herzig, Emiliano Lorini

To cite this version:
Julien Bourdon, Guillaume Feuillade, Andreas Herzig, Emiliano Lorini. Trust in complex actions
(ESSLLI 2010). Workshop Logics in Security @ 22rd European Summer School in Logic, Language
and Information (ESSLLI 2010), Aug 2010, Copenhagen, Denmark. �hal-03470307�

https://hal.science/hal-03470307v1
https://hal.archives-ouvertes.fr

Trust in complex actions

Julien Bourdon1, Guillaume Feuillade2, Andreas Herzig2, and Emiliano Lorini2

1. Kyoto University, Department of Social Informatics, Japan
2. Université de Toulouse, CNRS, IRIT, France

Abstract. Current formal models of trust are limited since they only consider
an agent’s trust in the atomic action of another agent and therefore do not apply
to trust in complex actions where the elements in the complex action are atomic
actions of different agents. Our aim is to present a logical formalization of trust in
complex actions, and to show that this formalization can be useful for the formal
characterization of trust in composite services, where trust in a composed service
is defined in a compositional way from trust in the components of that service.

1 Introduction

According to Castelfranchi and Falcone (C&F henceforth), the trust relation involves
a truster i, a trustee j, an action a that is performed by j and a goal ϕ of i [5, 7]. They
defined the predicate Trust as a goal together with a particular configuration of beliefs
of the trustee. Precisely, i trusts j to do a in order to achieve ϕ if and only if:

1. i has the goal that ϕ and
2. i believes that:

(a) j is capable to perform a,
(b) j is willing to perform a,
(c) j has the power to achieve ϕ by doing a.

C&F distinguish external from internal conditions in trust assessment: j’s capability to
perform a is an external condition, while j’s willingness to perform a is an internal con-
dition (being about the trustee’s mental state). Finally, j’s power to achieve ϕ by doing
a relates internal and external conditions: if j performs a then ϕ will result. Observe
that in the power condition the result is conditioned by the execution of a; therefore the
power condition is independent from the capability condition. In particular, j may well
have the power to achieve ϕ without being capable to perform a: for example, right now
I have the power to lift a weight of 50kg, but I am not capable to do this because there
is no such weight at hand.1

C&F did not investigate further how goals, capabilities, willingness and power have
to be defined; their definition might therefore be called semi-formal. Recently Herzig,

1 Together, capability to perform a and power to achieve ϕ by doing a amount to having a strat-
egy to achieve ϕ. Similar modalities were studied in Coalition Logic CL [17], Alternating-time
Temporal Logic ATL [1], and STIT theory [2]. However, these logics focus on game-theoretic
situations where an agent has the power to achieve ϕ whatever the other agents choose to do.
While this latter aspect will not be captured in our analysis here, we have shown in [12, 15]
how it could be integrated into our logical framework.

35

Lorini et al. analysed these predicates in more detail in [13, 14, 16]. First of all they
defined the predicate Trust0 as follows:

Trust0(i, j:a, ϕ) def
= Goal(i, ϕ) ∧ Beli(CExt(i:a) ∧ CInt(i:a) ∧ Res(i:a, ϕ))

where Goal(i, ϕ) corresponds to item 1 and CExt(i:a), CInt(i:a) and Res(i:a, ϕ) respec-
tively correspond to items 2a, 2b and 2c in C&F’s definition (and CExt and CInt stand
for the external and the internal conditions in trust assessment).2

They then defined the predicates CExt(j:a), CInt(j:a) and Res(j:a, ϕ) in terms of
the concepts of belief, choice, action and time. They draw a distinction between occur-
rent trust —i’s trust that j is going to perform a here and now— and dispositional trust:
i trusts that j is going to perform a whenever suitable conditions obtain. The above
definition is that of occurrent trust.

Both C&F and Herzig, Lorini et al. only considered trust in the atomic action of
another agent and did not consider trust in complex actions where the elements in the
complex action are atomic actions of different agents. Our aim in this article is to extend
their definition to complex actions, and to show that a definition of trust in complex
actions is extremely important in the context of composite services.

In the context of services architecture, some provider agents publish atomic ser-
vices; however, when a client agent needs to implement a more complex business pro-
cess, it must chain service calls, according to a specific workflow structure. Automating
the service calls is called service composition: given the business process to implement,
the control flow has to be computed in order to guarantee that the goal of the service
caller is satisfied.

Since services are provided by agents, users may trust some agents for certain ac-
tions but not for other actions which they deem critical, usually depending on the nature
of the information they have to send to this agent for the service action to perform the
action.

In current literature, for example in [18], service selection for composition assumes
the existence of a central authority guaranteeing the non-functional properties of the
services. In practice, such an authority might not exist, for example in P2P networks
[20], or may not itself be trustworthy.

To resolve the aforementioned problem, trust in complex action, supported by the
introduction of beliefs and trust in the description of services, could be used. With a
model for trust in the services world, one may express composition objectives as dy-
namic logic formulas with trust component. The service composition problem would
then reduce to the satisfaction of such a formula. This method would ensure that the
composition is correct and compatible with the beliefs of the user, thus ensuring a trust-
worthy sequence of service call for achieving the goal of the user.

The rest of the paper is organized as follows. In Section 2 we introduce a modal logic
of belief, goal, time, and complex actions. In Section 3 we define the trust predicate for
complex actions and study its constituents. In Section 4 we relate trust in complex

2 They used a 4-ary predicate Trust(i, j, a, ϕ) instead of our ternary Trust0(i, j:a, ϕ). More-
over, their trust definition was in terms of the predicates Capable(j:a), Willing(j:a) and
Power(j:a, ϕ) instead of our CExt(j:a), CInt(j:a) and Res(j:a, ϕ). We preferred our terms
and notations because they better generalize to complex actions.

36

actions to trust in atomic actions, providing thus a way to construct trust in complex
actions. In Section 5 we then discuss how this applies to service composition.

2 Background

We recall the logical framework of [13, 14, 16], that we extend towards complex actions.

2.1 A logical language with complex actions

Suppose given three countable sets: a set of propositional variables Atm, a set of agents
Agt and a set of atomic actions Act. Complex formulas ϕ and complex actions α are
defined by the following BNF:

ϕF p | ¬ϕ | ϕ ∧ ϕ | Beliϕ | Chiϕ | Feasibleαϕ | Happensαϕ | Fϕ
αF i:a | α;α | α+α | ϕ? | α∗

where p ranges over Atm, i ranges over Agt, and a ranges over Act. Beliϕ reads “i be-
lieves that ϕ”; Chiϕ reads “i chooses that ϕ”; Feasibleαϕ reads “there is a possible
execution of α after which ϕ is true”; Happensαϕ reads “α happens, and ϕ is true af-
terwards”; and Fϕ reads “ϕ will eventually be true”. Both Feasibleα and Happensα
are modal operators of the possible kind, and could be written 〈α〉 as in dynamic logic.
Note that they are different: Feasibleα>means that α is executable, while Happensα>
means that α is executed.

Operators Chi are used to denote an agent’s current chosen goals, that is, the goals
that the agent has decided to pursue here and now. We do not consider how an agent’s
chosen goals originate through deliberation from more primitive motivational attitudes,
called desires, and from moral attitudes, such as ideals and imperatives. Since the cho-
sen goals of an agent result from the its deliberation, they must satisfy two fundamental
rationality principles: chosen goals have to be consistent (i.e., a rational agent cannot
decide to pursue an inconsistent state of affairs); chosen goals have to be compatible
with the agent’s beliefs (i.e., a rational agent cannot decide to pursue something that it
believes to be impossible). These two principles will be formally expressed in Section
2.2.

Remark 1. In [13, 14, 16] Happensi:a was noted Doesi:a and read “a is going to be per-
formed by i”. We preferred Happens in order to allow for complex actions such as
i:a; j:b that are performed by more than one agent.

The atomic action i:a reads “i performs a”; the complex action α1;α2 reads “do α1
and then α2”; α1+α2 reads “choose nondeterministically between α1 and α2”, where
the choice is understood to be up to the environment (i.e., the other agents and nature),
and not up to the agents performing α1 and α2; ϕ? reads “if ϕ is true then continue, else
fail”; and finally, α∗ reads “do α an arbitrary number of times”.

We define Afterαϕ to be an abbreviation of ¬Feasibleα¬ϕ, which therefore has
to be read “if the execution of α is possible then ϕ holds afterwards”. Moreover, the
following standard program constructions are defined as follows:

37

skip
def
= >?

fail
def
= ⊥?

if ϕ then α1 else α2
def
= (ϕ?;α1)+(¬ϕ?;α2)

while ϕ do α
def
= (ϕ?;α)∗;¬ϕ?

In our application the actions seem never to be joined actions (which here would be
something like translating a text together). For that reason we define parallel composi-
tion as interleaving, i.e. α||β def

= (α; β)+(β;α). In this way we can avoid introducing ||
as a primitive.

2.2 Semantics

We take over the semantics of [14] and extend it to complex actions, whose semantics
we take over from Propositional Dynamic Logic PDL. We call the resulting logicL. The
semantics of L is in terms of a class of frames that has to satisfy several constraints.

Frames A frame is a tuple M = 〈W, A, B,C,D〉 that is defined as follows.

– W is a nonempty set of possible worlds or states.
– A : Agt × Act −→ 2W×W maps every agent i and action a to a relation Ai:a between

possible worlds in W.
– B : Agt −→ 2W×W maps every agent i to a serial, transitive and Euclidean3 relation

Bi between possible worlds in W.
– C : Agt −→ 2W×W maps every agent i to a serial relation Ci between possible worlds

in W.
– D : Agt × Act −→ 2W×W maps every agent i and action α to a deterministic relation

(alias a partial function) Di:a between possible worlds in W.4

It is convenient to view relations on W as functions from W to 2W ; therefore we
write Di:a(w) for the set {w′ | (w,w′) ∈ Di:a}, etc.

When w′ ∈ Ai:a(w) then if at w agent i performs α then this might result in w′. Bi(w)
is the set of worlds that are compatible with agent i’s beliefs at w; the conditions of
seriality, transitivity and Euclideanity are those of the standard logic of belief KD45.
Ci(w) is the set of worlds that are compatible with agent i’s choices at w; seriality corre-
sponds to consistency of choices, which is the only condition that is generally imposed
on choices. Di:a(w) is the set of worlds w′ that can be reached from w through the oc-
currence of agent i’s action a. If (w,w′) ∈ Di:a then w′ is the unique actual successor
world of w, that will be reached from w through the occurrence of agent i’s action a at
w: at w agent i performs an action a, resulting in the next state w′. (We might also say
that Di:a is a partial function.) If Di:a(w) , ∅ then we say that Di:a is defined at w.

3 A relation Bi on W is Euclidean if and only if, if (w,w′) ∈ Bi and (w,w′′) ∈ Bi then (w′,w′′) ∈
Bi.

4 A relation Di:a is deterministic iff, if (w,w′) ∈ Di:a and (w,w′′) ∈ Di:a then w′ = w′′.

38

Constraints on frames Frames will have to satisfy some constraints in order to be
legal L-frames. For every i, j ∈ Agt, α, β ∈ Act and w ∈ W we suppose:

C1 if Di:a and D j:b are defined at w then Di:a(w) = D j:b(w).

Constraint C1 says that if w′ is the next world of w which is reached from w through
the occurrence of agent i’s action α and w′′ is also the next world of w which is reached
from w through the occurrence of agent j’s action β, then w′ and w′′ denote the same
world. Indeed, we suppose that one agent acts at a time, and that every world can only
have one next world. Note that C1 implies determinism of every Di:a (so we might have
omitted that from the above constraints on D).

Therefore, when w′ ∈ Ai:a(w) but Di:a(w) = ∅ then at w agent i does not perform α,
but if it did so it might have produced another outcome world w′.

Moreover, for every i ∈ Agt, α ∈ Act we suppose:

C2 Di:a ⊆ Ai:a.

The constraint C2 says that if w′ is the next world of w which is reached from w through
the occurrence of agent i’s action α, then w′ must be a world which is reachable from
w through the occurrence of agent i’s action α.

The next constraint C3 links the agents’ choices with what they do: if a is executable
and i chooses to do a then a is going to happen.

C3 if Ai:a is defined at w and Di:a is defined at w′ for all w′ ∈ Ci(w) then Di:a is
defined at w.

The following semantic constraint C4 is also about the relationship between an
agent i’s choices (i.e., chosen worlds) and the actions performed by i. For every i ∈ Agt,
α ∈ Act and w ∈ W, we suppose that:

C4 if w′ ∈ Ci(w) and Di:a is defined at w, then Di:a is defined at w′.

In other words, if it is not the case that i performs a in all of i’s chosen worlds then i is
not going to perform a.

The next constraint relates worlds that are compatible with agent i’s beliefs and
worlds that are compatible with i’s chosen goals: as motivated in the beginning of Sec-
tion 2.1, they should not be disjoint. For every i ∈ Agt and w ∈ W:

C5 Ci(w) ∩ Bi(w) , ∅.

The next constraint on L-frames is one of introspection w.r.t. choices. For every
i ∈ Agt and w ∈ W:

C6 if w′ ∈ Bi(w) then Ci(w) = Ci(w′).

The next two constraints on L-frames are what is called ‘no learning’ and ‘no for-
getting’ for beliefs in the literature [6]. For every i, j ∈ Agt, a ∈ Act and w ∈ W:

C7 if (w, v) ∈ A j:a ◦Bi and there is u such that (w, u) ∈ Bi ◦A j:a then (w, v) ∈ Bi ◦A j:a

C8 if (w, v) ∈ Bi ◦ A j:a and there is u such that (w, u) ∈ A j:a then (w, v) ∈ A j:a ◦ Bi,

39

where ◦ is the standard composition operator between two binary relations. Thus, we
suppose that events are always uninformative, in the sense: i should not forget anything
about the particular effects of j’s action a that starts at a given world w, and i should
not learn anything new due to the occurrence of j’s action a that starts at a given world
w (except the occurrence of that very action). In other words, what an agent i believes
at a world v after the occurrence of j’s action a, only depends on what i believed at the
previous world w and on the action which has occurred and which was responsible for
the transition from w to v. Note that the ‘no forgetting’ and ‘no learning’ constraints
rely on an additional assumption that actions are public: it is supposed that j’s action a
occurs if and only if every agent is informed of this fact.

We have similar principles of no learning and no forgetting for the relations Di:a.
For every i, j ∈ Agt, a ∈ Act and w ∈ W:

C9 if (w, v) ∈ D j:a◦Bi and there is u such that (w, u) ∈ Bi◦A j:a then (w, v) ∈ Bi◦D j:a;
C10 if (w, v) ∈ Bi ◦ D j:a and there is u such that (w, u) ∈ D j:a then (w, v) ∈ D j:a ◦ Bi.

Models and truth conditions A model is a tuple M = 〈W, A, B,C,D,V〉 where the
tuple 〈W, A, B,C,D〉 is a frame and V : Atm→ 2W is a valuation.

Formulas and events are interpreted according to the following clauses.
Rα;β = Rα ◦ Rβ

Rα+β = Rα ∪ Rβ

Rϕ? = {〈v, v〉 | v ∈ W and M, v |= ϕ}
Rα∗ = (Rα)∗

M,w |= p iff w ∈ V(p)
M,w |= Beliϕ iff M,w′ |= ϕ for every w′ ∈ Bi(w)

M,w |= Chiϕ iff M,w′ |= ϕ for every w′ ∈ Ci(w)
M,w |= Feasibleαϕ iff M,w′ |= ϕ for some w′ ∈ Aα(w)

M,w |= Happensαϕ iff M,w′ |= ϕ for some w′ ∈ Dα(w)
M,w |= Fϕ iff M,w′ |= ϕ for some w′ such that w(

⋃
a∈Act Da)∗w′

The clauses for the Boolean operators are as usual. The last clause is based on the
hypothesis that time flow is determined by the actions that are performed (where the Da

and
⋃

a∈Act Da are understood as relations).
⋃

a∈Act Da(w) is the set of worlds w′ that are
in the future of w: w′ can be attained from w by some D-chain, i.e. by some sequence
of actions.

2.3 Some useful validities

We now state some validities of our logic that will be useful later.5

Proposition 1. The following formulas are valid:

5 We do not give a completeness result: there is such a result (albeit for a simpler language)
in [14], which should be extended in order to account for complex actions; in particular the
Kleene star “∗” requires a fixpoint axiom and a least fixpoint axiom, which makes that the
completeness proof is not straightforward.

40

1. Afterϕ?ψ↔ (ϕ→ ψ)
2. Happensϕ?ψ↔ (ϕ ∧ ψ)
3. Happensα;βϕ↔ (Happensα> ∧ ¬Happensα¬Happensβϕ)
4. Happensα+βϕ↔ (Happensαϕ ∨ Happensβϕ)
5. Happensα∗ϕ↔ (ϕ ∧ HappensαHappensα∗ϕ)
6. (F¬ϕ ∧ Afterα∗ (ϕ→ Happensα>))→ Happenswhile ϕ do α>
7. Happensαϕ→ Feasibleαϕ
8. Feasibleαϕ→ Fϕ
9. (Happensαϕ ∧ Afterαψ)→ Happensα(ϕ ∧ ψ)

10. ¬(Chiϕ ∧ Beliϕ)
11. (Feasiblei:aϕ ∧ ChiHappensi:a>)→ Happensi:a>

12. (¬Beli¬Feasibleα> ∧ BeliAfterαϕ)→ AfterαBeliϕ
13. (Feasibleα> ∧ AfterαBeliϕ)→ BeliAfterαϕ
14. (¬Beli¬Happensα> ∧ Beli¬Happensα¬ϕ)→ ¬Happensα¬Beliϕ
15. (Happensα> ∧ ¬Happensα¬Beliϕ)→ Beli¬Happensα¬ϕ

Formula 11 is a principle of intentional action IntAct. The last four are principles of no
forgetting (NF, alias perfect recall) and no learning (NL, alias no miracles) for beliefs.
Similar principles have been studied in [8, 19, 11].

3 Trust about complex actions

We now generalize the definition of (occurrent) trust about atomic actions of [13, 14,
16] to trust about complex actions and study its constituents. Among all possible com-
plex actions we here only consider deterministic actions [9]: actions built with “skip”,
“fail”, “;”, “if ϕ then α1 else α2”, and “while ϕ do α”. Their BNF is:

αF i:a | skip | fail | α;α | if ϕ then α else α | ϕ? | while ϕ do α

Tests ϕ? can be defined as if ϕ then skip else fail. In our analysis of trust in com-
plex actions we do not consider the other program operators of PDL, viz. nondetermin-
istic composition and iteration.

Let us first recall the definition of the original trust predicate in [13, 14, 16]. There,
the goal condition Goal(i, ϕ) was defined as ChiFϕ, i.e. as i’s choice of futures where
ϕ holds. The external condition CExt(j:a) was defined as Feasible j:a> (j:a is exe-
cutable), and the internal condition CInt(j:a) as Ch jHappens j:a> (j chooses that j:a is
going to occur). Finally, the power condition Res(j:a, ϕ) was defined as After j:aϕ (ϕ
will hold immediately after every possible performance of j:a).

It turns out that our move from trust in atomic actions to trust in complex actions
requires some adjustments.

3.1 Definition of trust

First of all, here is our official definition of trust in a complex action:

Trust(i, α, ϕ) def
= Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α) ∧ Res(α, ϕ))

41

where i is an agent, α is a deterministic action, and ϕ is a formula. As before, CExt and
CInt stand for the external and the internal conditions in trust assessment; they will be
defined in the sequel. We have thus simply replaced the atomic actions in our definition
of Section 1 by complex actions.

Observe that trust in atomic actions involved a single trustee j. Here we have to ac-
count for trust in complex actions that may be performed by several agents; we therefore
consider trust in a group of agents.

Note also that before, the trustee j —which here would be a set of agents J—
appeared explicitly in the definition of the predicate Trust. However, one may consider
that J is implicitly already there: it is the set of agents occurring in α. Therefore the
agent argument need not appear as a separate argument in the definition.

It remains to explain the predicates on the right hand side of the definition of trust.

3.2 Defining the ingredients of trust

We now reduce the predicates on the right hand side of the definition of trust.

Goal The definition of the Goal predicate transfers straightforwardly because no ac-
tion occurs in it:

Goal(i, ϕ) def
= ChiFϕ

So it remains to define CExt, CInt and Res.

Result The original power condition BeliAfter j:aϕ stipulated that i believes ϕ im-
mediately results from j’s performance of atomic action a. However, consider i’s trust
in j1 and j2 to perform the sequence of actions j1:a1; j2:a2 in order to achieve i’s goal
ϕ. With respect to which goal should i trust j1? The truster i typically does not bother
about the direct effect of j1’s action a1 and is only interested in the overall effect ϕ of
the complex action j1:a1; j2:a2. In other words, we have to account for the case where
ϕ is not achieved immediately, but only at some time point in the future. We therefore
redefine

Res(α, ϕ) def
= AfterαFϕ

Under the other definitions to come, the original Trust0(i, j:a, ϕ) will be equivalent to
our Trust(i, j:a, Fϕ).

External and internal condition Up to now, all our definitions were directly in terms
of well-defined formulas of our logic. Things are not as simple for the external condition
CExt and for the internal condition CInt.

In [13, 14, 16], using axiom IntAct it was proved that
(CExt(i:a) ∧ CInt(i:a))→ Happens(i:a)

is valid. That is, if both the external condition and the internal condition for the execu-
tion of action a by agent i obtain —i.e., i is capable to perform action a and is willing
(has the intention) to perform a— then i performs a. We would like to keep this principle
of intentional action, and therefore need a definition of the CExt and CInt predicates

42

validating
(CExt(α) ∧ CInt(α))→ Happens(α)

In particular, we will have to include a condition guaranteeing that while-loops are ex-
ited (because Happenswhile ψ do α> implies that F¬ψ).

As to the external condition, CExt(α) means that the complex action α is exe-
cutable whatever the other agents and nature choose to do. This means that the pre-
conditions of α must obtain at every step of every execution of α. It follows that while
CExt(α) implies Feasibleα>, it should not be equivalent to it. For example, the com-
plex action (i:a+i:a′); i:b cannot be said to be executable (in the above sense) when just
Feasiblei:a+i:a′;i:b> holds. Indeed, a situation where Feasiblei:a′Afteri:b> is compat-
ible with the latter formula, and if nature chooses i:a′ when executing the nondetermin-
istic i:a+i:a′ then it cannot be said that Feasiblei:a+i:a′;i:b> is executable.

Given these considerations we recursively define CExt(α) as follows:

CExt(i:a) def
= Feasiblei:a>

CExt(skip) def
= >

CExt(fail) def
= ⊥

CExt(α; β) def
= CExt(α) ∧ AfterαCExt(β)

CExt(if ϕ then α1 else α2) def
= (ϕ ∧ CExt(α1)) ∨ (¬ϕ ∧ CExt(α2))

CExt(while ψ do α) def
= F¬ψ ∧ After(ψ?;α)∗;ψ?CExt(α)

It is the clause for “;” that makes that CExt(α) stronger than Feasibleα>.

As to the (internal) willingness condition, it is tempting to define CInt(α) as∧
j∈Agt(α) Ch jHappensα>,

where Agt(α) is the set of agent names occurring in α: every agent involved in the
complex action α chooses that α happens. However, this would be too strong. Indeed,
consider the scenario where j1:a1 is j1’s action of requesting j2 to do a2, and where j2
initially prefers not to be asked by j1, i.e. Ch j2¬Happens j1:a1

⊥, but intends to perform
j2:a2 after j1’s request. In symbols, we have a situation where Happens j1:a1; j2:a2

> and
¬Ch j2Happens j1:a1; j2:a2

> is true.
Such considerations lead to the following recursive definition of the predicate CInt.

CInt(i:a) def
= ChiHappensi:a>

CInt(fail) def
= >

CInt(skip) def
= >

CInt(α; β) def
= CInt(α) ∧ AfterαCInt(β)

CInt(if ϕ then α1 else α2) def
= (ϕ ∧ CInt(α1))∨

(¬ϕ ∧ CInt(α2))

CInt(while ψ do α) def
= After(ψ?;α)∗;ψ?CInt(α)

43

3.3 A principle of intentional action for complex actions

We are now going to relate the predicates CExt and CInt with the modal operator
Happens. We prove that when α is complex then one half of the axiom IntAct remains
valid.

Proposition 2. The formula CExt(α)→ Feasibleα> is valid.

Proof. The proof is by induction on the structure of α.

As mentioned above, the other direction Feasibleα> → CExt(α) is guaranteed to
be valid only when α is atomic.

Proposition 3. The formula (CExt(α) ∧ CInt(α))→ Happensα> is valid.

Proof. We use induction on the structure of α. The base cases are ensured by the axiom
IntAct and by Proposition 1. For the induction step we have:
CExt(α; β) ∧ CInt(α; β)
↔ CExt(α) ∧ AfterαCExt(β) ∧ CInt(α) ∧ AfterαCInt(β)
→ Happensα> ∧ AfterαHappensβ> (by I.H.)
→ Happensα;β> (by Prop. 1)

CExt(if ψ then α else β) ∧ CInt(if ψ then α else β)
↔ (ψ→ (CExt(α) ∧ CInt(α)) ∧ (¬ψ→ (CExt(β) ∧ CInt(β))
→ (ψ→ Happensα>) ∧ (¬ψ→ Happensβ>) (by I.H.)
→ Happensif ψ then α else β> (by Prop. 1)

CExt(while ψ do α) ∧ CInt(while ψ do α)
↔ F¬ψ ∧ After(ψ?;α)∗;ψ?(CExt(α) ∧ CInt(α))
→ F¬ψ ∧ After(ψ?;α)∗ (ψ→ Happensα>) (by I.H.)
→ F¬ψ ∧ After(ψ?;α)∗ (ψ→ Happensψ?;α>)
→ Happenswhile ψ do α> (by Prop. 1)

As said above, the other direction of Proposition 3
Happensi1:a1;i2:a2

> → (CExt(i1:a1; i2:a2) ∧ CInt(i1:a1; i2:a2))
is invalid because i1’s performance of a1 may cause i2’s performance of a2.

We finally observe that when the truster’s goal is > then trust in α amounts to the
conjunction of external and internal condition.

Proposition 4. The formula Trust(i, α,>)↔ Beli(CExt(α) ∧ CInt(α)) is valid.

4 Properties of trust

In this section we state the properties of trust in complex actions, alias workflow con-
structs.

First of all and as announced in Section 3.2 we observe that our and the original
definition coincide for atomic actions, except that we have relaxed the result condition:

44

for us it suffices that the result ϕ obtains at some point in the future, and not immediately
after the action. We therefore have Trust(i, j:a, ϕ)↔ Trust0(i, j:a, Fϕ).

For complex actions we are going to have reductions in terms of equivalences for the
cases of skip, fail, if-then-else conditionals and while loops. For trust in sequential
compositions we only give a sufficient condition. We only give some of the proofs.

4.1 Atomic actions

Theorem 1. The formulas Trust(i, fail, ϕ)↔ ⊥ and
Trust(i, skip, ϕ)↔ (Goal(i, ϕ) ∧ BeliFϕ)

are valid.

4.2 Sequential composition

Our first theorem allows to construct trust in a sequence α; β from trust in α and trust
in β.

Theorem 2. The formula
(Trust(i, α, ϕ) ∧ BeliAfterαTrust(i, β, ϕ))→ Trust(i, (α; β), ϕ)

is valid.

Proof. We have:
Trust(i, α, ϕ) ∧ BeliAfterαTrust(i, β, ϕ)

→ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α))∧
BeliAfterαBeli(CExt(β) ∧ CInt(β) ∧ AfterβFϕ)

→ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α))∧
Beli(Afterα⊥ ∨ BeliAfterα(CExt(β) ∧ CInt(β) ∧ AfterβFϕ))

(by NL of Prop. 1)
→ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α))∧

BeliBeliAfterα(CExt(β) ∧ CInt(β) ∧ AfterβFϕ)
→ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α)) ∧ BeliAfterα(CExt(β) ∧ CInt(β) ∧ AfterβFϕ)
↔ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ AfterαCExt(β))∧

Beli(CInt(α) ∧ AfterαCInt(β)) ∧ BeliAfterαAfterβFϕ
↔ Goal(i, ϕ) ∧ Beli(CExt(α; β) ∧ CInt(α; β) ∧ Afterα;βFϕ)
= Trust(i, (α; β), ϕ)

The next two theorems are about the consequences of trust in a sequence of actions.

Theorem 3. The formula
Trust(i, (α; β), ϕ)→ Trust(i, α, ϕ)

is valid.

Proof. We have:

45

Trust(i, (α; β), ϕ)
↔ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ AfterαCExt(β))∧

Beli(CInt(α) ∧ AfterαCInt(β)) ∧ BeliAfterα;βFϕ
↔ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α))∧

BeliAfterα(CExt(β) ∧ CInt(β) ∧ AfterβFϕ)
→ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α)) ∧ BeliAfterα(Happensβ> ∧ AfterβFϕ)

(by Prop. 3)
→ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α)) ∧ BeliAfterαHappensβFϕ (by Prop. 1)
↔ Goal(i, ϕ) ∧ Beli(CExt(α) ∧ CInt(α)) ∧ BeliAfterαFϕ (by Prop. 1)
↔ Trust(i, α, ϕ)

Our last theorem says that trust persists under the condition that the goal persists.

Theorem 4. The formula
Trust(i, (α; β), ϕ)→ Afterα(¬Goal(i, ϕ) ∨ Trust(i, β, ϕ))

is valid.

Proof. First, observe that

Trust(i, (α; β), ϕ)→ BeliFeasibleα> (*)

is valid by Proposition 3 and Proposition 1. Now:
Trust(i, (α; β), ϕ)
→ BeliAfterα(CExt(β) ∧ CInt(β) ∧ AfterβFϕ)
→ BeliAfterα⊥ ∨ AfterαBeli(CExt(β) ∧ CInt(β) ∧ AfterβFϕ) (by NF of Prop. 1)
→ AfterαBeli(CExt(β) ∧ CInt(β) ∧ AfterβFϕ) by (*)

4.3 If-then-else

Theorem 5. The formula

Trust(i, if ψ then α else β, ϕ)↔ Beli((ψ→ Trust(i, α, ϕ))∧
(¬ψ→ Trust(i, β, ϕ)))

is valid.

Proof. We have:
Trust(i, if ψ then α else β, ϕ)
↔ Goal(i, ϕ)∧
Beli((ψ→ CExt(α)) ∧ (¬ψ→ CExt(β)))∧
Beli((ψ→ CInt(α)) ∧ (¬ψ→ CInt(β))))∧
Beli((ψ→ AfterαFϕ) ∧ (¬ψ→ AfterβFϕ))

↔ BeliGoal(i, ϕ)∧
Beli(ψ→ (CExt(α) ∧ CInt(α) ∧ AfterαFϕ))∧
Beli(¬ψ→ (CExt(β) ∧ CInt(β) ∧ AfterβFϕ))

↔ Beli((ψ→ Trust(i, α, ϕ)) ∧ (¬ψ→ Trust(i, β, ϕ)))

46

4.4 While

Theorem 6. The formula
Trust(i, (while ψ do α), ϕ)↔ (BeliAfter(ψ?;α)∗ (ψ→ (CExt(α) ∧ CInt(α)))∧

Goal(i, ϕ) ∧ BeliAfterwhile ψ do αFϕ ∧ BeliF¬ψ)
is valid.

Proof. We have:
Trust(i, (while ψ do α), ϕ)↔ Goal(i, ϕ) ∧ BeliAfterwhile ψ do αFϕ∧

Beli(CExt(while ψ do α) ∧ CInt(while ψ do α))
↔ Goal(i, ϕ) ∧ BeliAfterwhile ψ do αFϕ ∧ BeliF¬ψ∧
BeliAfter(ψ?;α)∗ (ψ→ (CExt(α) ∧ CInt(α)))

5 Application

Services-oriented architectures (SOA) allow to develop dynamic business processes and
agile applications spanning across organisations and computing platforms to quickly
adapt to ever changing requirements. By their modular nature, services can be com-
posed to implement processes of various complexities.

Actors of SOA are divided into two rules, the client, having specific requirements,
and the provider advertising its services. Non-functional parameters, such as quality of
service (QoS) become important when selecting among a range of functionally equiva-
lent services. However, in certain cases, discrepancies between advertised and observed
QoS can occur, either because of temporary failures or voluntary over-rating from the
provider. When facing such uncertainties, trust mechanisms should be used to select
services matching the goals of the clients and providers.

Trust becomes even more crucial in composite services, where not only the client
must trust the composite service but also where each provider involved in the composi-
tion must trust its partners [4]. Composite services can be modelled as a set of workflow
patterns [10], which are equivalent to the complex action framework described in Sec-
tion 4. Indeed, trust in a composite service depends on the services involved but also on
the structure workflow. For example, a provider might agree to participate in a compos-
ite service if only its service is used at the end of a sequence, notably for data privacy
concerns [3].

In the aforementioned paper, a multi-agent protocol is developed to entice providers
to take part in composite web services. This protocol is centered around data privacy
in composite services. Basically, and according to Theorem 4, a provider is willing to
enter a composite service if and only if it trusts the providers of subsequent services
to not mishandle its data. In other words the goal ”not mishandle the data” only holds
after its won service invocation thus fostering the need for trust.

6 Conclusion

We have presented in this work a logical formalization of trust in complex actions, and
have sketched how this formalization could be useful for the formal characterization of

47

trust in composite services, where trust in a composed service is defined in a compo-
sitional way from trust in the components of that service. Directions of future research
are manifold. In the present article we only gave a semantics for a logic of complex
actions. On the one hand, future works will be devoted to find a complete axiomatiza-
tion of the logic of Section 2 and to study the computational properties of this logic
(decidability and complexity). On the other hand, we plan to extend the PDL-based for-
malism of Section 2 by parallel actions in order to be able to formalize services whose
components might work in parallel.

7 Acknowledgements

We would like to thank the anonymous reviewers of LIS’2010 whose comments (hope-
fully) helped to improve the paper.

References

1. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.
In Proc. 38th IEEE Symposium on Foundations of Computer Science, Florida, October 1997.

2. Nuel Belnap, Michael Perloff, and Ming Xu. Facing the Future: Agents and Choices in Our
Indeterminist World. Oxford University Press, Oxford, 2001.

3. Julien Bourdon and Toru Ishida. Trust chaining for provider autonomy in composite services.
In Joint Agent Workshop and Symposium (JAWS’09), 2009.

4. Julien Bourdon, Laurent Vercouter, and Toru Ishida. A multiagent model for provider-
centered trust in composite web services. In The 12th International Conference on Principles
of Practice in Multi-Agent Systems (PRIMA 2009), number 5925 in LNAI, pages 216–228.
Springer Verlag, 2009.

5. Cristiano Castelfranchi and Rino Falcone. Principles of trust for MAS: Cognitive anatomy,
social importance, and quantification. In Proceedings of the Third International Conference
on Multiagent Systems (ICMAS’98), pages 72–79, 1998.

6. Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning about
Knowledge. MIT Press, 1995.

7. Rino Falcone and Cristiano Castelfranchi. Social trust: A cognitive approach. In C. Castel-
franchi and Y. H. Tan, editors, Trust and Deception in Virtual Societies, pages 55–90. Kluwer,
2001.

8. J. Halpern and M. Vardi. The complexity of reasoning about knowledge and time. Journal
of Computer and System Sciences, 38:195–237, 1989.

9. J.Y. Halpern and J. H. Reif. The propositional dynamic logic of deterministic, well-structured
programs. Theoretical Computer Science, 27:127–165, 1983.

10. Q. He, J. Yan, H. Jin, and Y. Yang. Adaptation of web service composition based on workflow
patterns. Proceedings of the 6th International Conference on Service-Oriented Computing
(ICSOC’08), Jan 2008.

11. Andreas Herzig and Dominique Longin. C&L intention revisited. In Proc. 9th International
Conference on Principles of Knowledge Representation and Reasoning (KR 2004), pages
527–535. AAAI Press, 2004.

12. Andreas Herzig and Emiliano Lorini. A dynamic logic of agency I: STIT, abilities and
powers. Journal of Logic, Language and Information, 19:89–121, 2010.

48

13. Andreas Herzig, Emiliano Lorini, Jomi F. Hübner, Jonathan Ben-Naim, Olivier Boissier,
Cristiano Castelfranchi, Robert Demolombe, Dominique Longin, Laurent Perrussel, and
Laurent Vercouter. Prolegomena for a logic of trust and reputation. In 3rd International
Workshop on Normative Multiagent Systems (NorMAS 2008), Luxembourg, 15/07/2008-
16/07/2008, pages 143–157, http://wwwen.uni.lu/fdef/luxembourg business academy/press,
2008. University of Luxembourg Press. ISBN: 2919940481.

14. Andreas Herzig, Emiliano Lorini, Jomi F. Hübner, and Laurent Vercouter. A logic of trust
and reputation. Logic Journal of the IGPL, 18(1):214–244, February 2010. Special Issue
“Normative Multiagent Systems”.

15. Emiliano Lorini. A dynamic logic of agency II: deterministic DLA, Coalition Logic, and
game theory. Journal of Logic, Language and Information, 19(3):327–351, 2010.

16. Emiliano Lorini and Robert Demolombe. Trust and norms in the context of computer se-
curity. In Proc. Ninth International Conference on Deontic Logic in Computer Science
(DEON’08), number 5076 in LNCS, pages 50–64. Springer-Verlag, 2008.

17. Marc Pauly. A modal logic for coalitional power in games. Journal of Logic and Computa-
tion, 12(1):149–166, 2002.

18. E. Sirin, B. Parsia, and J. Hendler. Composition-driven filtering and selection of semantic
web services. In AAAI Spring Symposium on Semantic Web Services, pages 129–138, 2004.

19. J. van Benthem and E. Pacuit. The tree of knowledge in action: Towards a common perspec-
tive. In G. Governatori, I. Hodkinson, and Y. Venema, editors, Proc. of Advances in Modal
Logic Volume 6 (AiML 2006), pages 87–106. College Publications, 2006.

20. Y. Wang and J. Vassileva. Trust and reputation model in peer-to-peer networks. In Pro-
ceedings of the 3rd International Conference on Peer-to-Peer Computing, pages 150–157,
Linkoeping, Sweden, 2003. IEEE Press.

49

