
HAL Id: hal-03470306
https://hal.science/hal-03470306

Submitted on 9 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic languages of propositional control for protocol
specification

Andreas Herzig, Nicolas Troquard

To cite this version:
Andreas Herzig, Nicolas Troquard. Dynamic languages of propositional control for protocol specifi-
cation. Workshop ”Logics in Security” at (ESSLLI 2010), Aug 2010, Copenhague, Denmark. �hal-
03470306�

https://hal.science/hal-03470306
https://hal.archives-ouvertes.fr

Dynamic languages of propositional control
for protocol specification

Andreas Herzig1 and Nicolas Troquard2

1. Université de Toulouse, CNRS, IRIT, France
2. Department of Computer Science, University of Liverpool, UK

Abstract. We propose a family of dynamic logics of propositional control. They
extend classical propositional logic by a variety of modal operators of assignment,
and modal operators of transfer of control over a propositional variable. We also
present an extension with operators of knowledge. We essentially focus on their
formal properties, stating their complexity and their proof theory.

1 Introduction

The logic of propositional control CL-PC was introduced in [10] as a reconstruction of
coalition logic. What agents can achieve is explained there in terms of their control over

propositional variables. The central construction is a modal operator 〈
J
←〉 of contingent

ability, where J is a set of agents.1 The formula 〈
J
←〉ϕ reads “the coalition of agents J

can assign truth values to the variables under its control in such a way as to make ϕ

true”. For example, 〈
{i}
←〉q ∧ 〈

{i}
←〉¬q expresses that agent i is able both to make q true

and to make q false; which means that agent i controls q.
The logic was further studied and extended in [7, 15, 14, 13]. A particularly inter-

esting such extension is that by delegation CL-PC, coined δCL-PC; see [8] for a recent
presentation.2 It introduces into CL-PC new modalities of control transfer (baptized
‘delegation’ in the original papers). In that work, atomic delegation programs take the
form i

q
↪→j, whose intended meaning is that i who currently controls q turns over its

control to j. Moreover, complex control transfer programs δ are constructed by means
of the standard PDL constructs ? (test), ; (sequential composition), ∪ (nondeterministic
composition) and ∗ (iteration). The modal formula 〈δ〉ϕ then reads “there exists a com-
putation of the delegation program δ, starting from the current situation, such that after
δ has terminated ϕ holds”. Such constructs allow to talk about interaction protocols.

The semantics of CL-PC and δCL-PC are originally in terms of couples (ξ, θ) where
θ maps every propositional variable q to a truth value θ(q) in {tt,ff}, and ξ maps every
propositional variable q to one agent. We will here consider a more general setting (to
be introduced in Section 2), where ξ maps every propositional variable q to a —possibly

1 The original notation is ^Jϕ instead of 〈
J
←〉ϕ.

2 It was originally abbreviated DCL-PC, but we changed it in order to avoid confusion with the
logics we introduce here. In these logics (and more generally in dynamic epistemic logics [5])
the letter ‘D’ stands for ‘dynamic’.

empty— set of agents ξ(q). We call the mapping ξ a control allocation and the mapping
θ a valuation. ξ is about control, while θ is about truth. Given (ξ, θ), call an update of
J’s part of θ any model (ξ′, θ′) such that ξ′ = ξ and θ′(q) = θ(q) for every q such that
ξ(q) is not in J.

In addition to generalising the models of CL-PC, our main objective is to elaborate
on the basic bricks3 of the language. Indeed, in much the same spirit as the program

i
q
↪→j updates the allocation function ξ, one may view the operator 〈

J
←〉 of CL-PC as the

application of a program
J
← that updates the valuation function θ by changing at most

the value of the propositions under the control of the agents in J.
This observation made, one of the main contributions of this paper is to show that

we can redefine the logics of CL-PC and δCL-PC from a dynamic logic with very
simple programs. Our logic DLPC (that we introduce in Section 3) makes use of four
types of atomic programs:

q←> : q is given the value tt
q←⊥ : q is given the value ff

i
q
↪→ : i loses the control of q
q
↪→i : i receives the control of q

We keep track of who owns a propositional variable by the use of a theory of propo-
sitions ci,q, for every agent i and proposition q, that reads that i controls q. For instance,

the δCL-PC program i
q
↪→j will then be simulated by a test of ci,q followed by i’s loss

and j’s gain of control over q.
In Section 4 we introduce two new primitive programs to obtain a logic that we call

Q-DLPC, for quantified DLPC. The program
q
↪→J gives the control of q to one of the

agents in J, and the program q
J
← sets the value of q that is controlled by some agent in

J to tt or ff. These programs may look a bit abstract. They can in fact be defined in
terms of the four programs listed above as we will see, but to the price of losing a bit
of succinctness. Moreover, they will provide the good level of abstraction to relate our
languages with those of CL-PC and Coalition Logic.

Here is an example illustrating the concepts that we have introduced so far.

Example 1. Consider the reviewing process of some conference. Let the set of agents
be A = {Chair} ∪ RV , where Chair is the PC chair and RV = {R1, . . . ,RM} is the
set of reviewers. Let there be N papers PP = {1, . . . ,N} to be reviewed. We suppose
that the decision of acceptance of each paper n ∈ PP is based on three opinions. Each
opinion is modelled by the truth value of a propositional variable. Let their set be P =⋃

1≤n≤N{p1
n, p

2
n, p

3
n}. Initially it is the PC chair who controls all the papers, i.e. we have

an initial model where ξ(pk
n) = {Chair} for all n ∈ PP and k ∈ {1, 2, 3}. The assignment

of papers to reviewers corresponds to the execution of the sequence
p1

1
↪→RV , · · · ,

p3
N
↪→RV .

After that, every pk
n is controlled by both the PC chair and some reviewer. Finally, the

3 We will generalise the atomic programs, but we will keep a complete investigation of the PDL
constructs for later work.

reviewers’ decisions are modelled as the assignment of truth values to papers under

their control, i.e. the programs pk
n

Rm
←> and pk

n
Rm
←⊥. One may then check properties such

as 〈
PP
↪→RV〉〈PP

RV
←〉ϕ for some property ϕ expressing for instance that the acceptance rate

is 25%. A more complex and more realistic check where the final decision is up to the

PC chair can be expressed by 〈Chair
PP
↪→RV〉〈PP

RV
←〉〈RV

PP
↪→Chair〉〈PP

RV
←〉〈PP

Chair
← 〉ϕ.

We are going to take this example up in the end of Section 4.1.

Later on in this paper (in Section 5) we will investigate an adequate mix of the dy-
namic logic of propositional control with knowledge. Though related, up to now the
logic of assignments was studied independently of CL-PC in the framework of exten-
sions of public announcement logic [5, 11]. The latter aim at modelling how agents’
knowledge changes when some propositional variable is publicly assigned to true or to
false. There, assignments take the form q←ψ, and the formula 〈q←ψ〉ϕ reads “ϕ is true
after the assignment of ψ to q”. So these assignments differ in two respects from ours:
first, q may be assigned any formula ψ, and second, no agent performing an assignment
is mentioned. As to the first point, assigning only > and ⊥ is going to simplify our
technicalities; as to the second point, in the perspective of extending a logic of agency
such as CL-PC it is appealing to consider that assignments are performed by agents. We
will see that there are interesting and intricate complications that arise when the agents
learn that the value of a proposition has changed or when an agent publicly transfers
her control over a proposition to another agent.

We believe that logics of propositional control offer a concrete and general tool
for specifying interaction protocols of intelligent agents. The investigation of dynamic
logics of propositional control appears bottomless. We present a few of these possible
variants in Section 6.

2 PC models: models of propositional control

Throughout the paper, A denotes a (fixed) finite set of agents and P denotes a (fixed)
countable set of propositional variables. A coalition is a subset of agents J ⊆ A. The set
J = A \ J is the complement of J.

Definition 1. A model of propositional control (PC model) is a couple (ξ, θ) where:

– ξ : P −→ 2A, called an allocation;
– θ : P −→ {tt,ff}, called a valuation.

An allocation maps propositional variables to agents. The set {q : i ∈ ξ(q)} is i’s part
of ξ: the set of propositions under the control of i. The function ξ determines the initial
allocation of propositional variables to agents, and θ determines the initial truth value
of the propositional variables.

In the terminology of Gerbrandy [7], the models of CL-PC and δCL-PC are PC
models where the control of every variable is both exclusive (allocated to at most one
agent) and actual (allocated to at least one agent).4

4 To match van der Hoek and Wooldridge’s models, Gerbrandy actually needs to strengthen his
abstract models with a property of full control. It says that if an agent i controls a set Ati of

Definition 2. We say a PC model (ξ, θ) has exclusive and actual control if ξ(q) is a
singleton for every variable q ∈ P.

We are going to present several languages to talk about these structures of propo-
sitional control. Apart from the epistemic extension that is presented in Section 5, all
languages will be interpreted on these models. The epistemic extension is going to be
interpreted on a generalisation of PC models.

For each of the languages that we are going to introduce, we define Aϕ to be the
set of agents from A occurring in ϕ, and we define Pϕ to be the set of variables from P
occurring in ϕ.

3 DLPC: dynamic logic of propositional control

In this section we define syntax and semantics of the dynamic logic of propositional
control DLPC, whose modal operators are 〈q←>〉 (setting q to true), 〈q←⊥〉 (setting q
to false), 〈i

q
↪→〉 (i loosing control of q), and 〈

q
↪→i〉 (i obtaining control of q). We prove

the NP-completeness of DLPC satisfiability.

3.1 Language and semantics

Beyond the modal operators that we have introduced informally in the introduction, we
also need constants ci,q that are read “agent i controls variable q”. They are going to be
useful to state the reduction axioms for our basic logic.

The language of DLPC is defined by the following BNF:

ϕF q | > | ⊥ | ci,q | ¬ϕ | ϕ ∨ ϕ | 〈q←>〉ϕ | 〈q←⊥〉ϕ | 〈i
q
↪→〉ϕ | 〈

q
↪→i〉ϕ

where i ranges over A and q ranges over P.
We use the logical connectives ∧,→ and↔ with the usual meaning. We use q←τ

in order to talk about q←> and q←⊥ in an economic way, where τ is a placeholder for
either > or ⊥.

The length of a formula ϕ, noted |ϕ|, is the number of symbols used to write down
ϕ (without 〈, 〉, parentheses and commas). For example |ci,q| = 3 and |〈q←>〉(q ∧ r)| =
3 + 3 = 6.

Given a PC model (ξ, θ), we are going to update θ in order to interpret the assignment
operators, and we are going to update ξ in order to interpret allocation programs.

Given a valuation θ and an allocation ξ, we define the updates ξi
q
↪→, ξ

q
↪→i, θq←> and

θq←⊥ as follows:

ξi
q
↪→(p) =

ξ(p) \ {i} when p = q
ξ(p) otherwise.

ξ
q
↪→i(p) =

ξ(p) ∪ {i} when p = q
ξ(p) otherwise.

θq←>(p) =

tt when p = q
θ(p) otherwise.

θq←⊥(p) =

ff when p = q
θ(p) otherwise.

propositions, then she has a strategy for every valuation of the propositions in Ati. However,
this property is commonplace here.

The truth conditions are the usual ones for >, ⊥, negation and disjunction, plus:

(ξ, θ) |= q iff θ(q) = tt
(ξ, θ) |= ci,q iff i ∈ ξ(q)
(ξ, θ) |= 〈q←τ〉ϕ iff (ξ, θq←τ) |= ϕ

(ξ, θ) |= 〈i
q
↪→〉ϕ iff (ξi

q
↪→, θ) |= ϕ

(ξ, θ) |= 〈
q
↪→i〉ϕ iff (ξ

q
↪→i, θ) |= ϕ

DLPC validity and DLPC satisfiability are defined as usual.

Since the updates δ ∈ {i
q
↪→,

q
↪→j, q←τ} are always successful and deterministic,

the formulas 〈δ〉> and 〈δ〉ϕ ↔ ¬〈δ〉¬ϕ are valid. We have as well that 〈
q
↪→j〉cj,q and

〈i
q
↪→〉¬ci,q are valid.

Remark 1. Note that our truth conditions for the modal operators are slightly simpler
than the original ones in terms of partitions of P [9, 15, 8]. In particular, they naturally
account for (trivial) ‘auto-delegations’ i

p
↪→i, while the original semantics has to explic-

itly distinguish this case.

3.2 DLPC: complexity and completeness

Proposition 1. The following equivalences are DLPC valid.

〈q←τ〉p ↔

p if q , p
τ if q = p

〈q←τ〉> ↔ >

〈q←τ〉⊥ ↔ ⊥

〈q←τ〉ci,p ↔ ci,p

〈q←τ〉¬ϕ ↔ ¬〈q←τ〉ϕ
〈q←τ〉(ϕ1 ∨ ϕ2)↔ 〈q←τ〉ϕ1 ∨ 〈q←τ〉ϕ2

〈j
q
↪→〉p ↔ p

〈j
q
↪→〉> ↔ >

〈j
q
↪→〉⊥ ↔ ⊥

〈j
q
↪→〉ci,p ↔

ci,p if q , p or j , i
⊥ if q = p and j = i

〈j
q
↪→〉¬ϕ ↔ ¬〈j

q
↪→〉ϕ

〈j
q
↪→〉(ϕ1 ∨ ϕ2)↔ 〈j

q
↪→〉ϕ1 ∨ 〈j

q
↪→〉ϕ2

〈
q
↪→j〉p ↔ p

〈
q
↪→j〉> ↔ >

〈
q
↪→j〉⊥ ↔ ⊥

〈
q
↪→j〉ci,p ↔

ci,p if q , p or j , i
> if q = p and j = i

〈
q
↪→j〉¬ϕ ↔ ¬〈

q
↪→j〉ϕ

〈
q
↪→j〉(ϕ1 ∨ ϕ2)↔ 〈

q
↪→j〉ϕ1 ∨ 〈

q
↪→j〉ϕ2

These equivalences provide a complete set of reduction axioms for 〈q←τ〉, 〈i
q
↪→〉

and 〈
q
↪→j〉. Call red the mapping which iteratively applies the above equivalences from

the left to the right, starting from one of the innermost modal operators. red pushes
the dynamic operators inside the formula, and finally eliminates them when facing an
atomic formula. Each step increases the length of the formula by at most 3 (when dis-
tributing dynamic operators over disjunctions). The length of the reduced formula is
therefore linear in the length of the original formula.

Note that although no dynamic operator occurs in red(ϕ), it is not a formula of
classical propositional logic because of the control atoms ci,q. The next proposition
shows how they can be dealt with.

Proposition 2. Let ϕ be a formula in the language of DLPC. Then

1. red(ϕ) has no modal operators
2. |red(ϕ)| ≤ 3 × |ϕ|
3. red(ϕ)↔ ϕ is DLPC valid
4. red(ϕ) is DLPC valid iff red(ϕ) is valid in classical propositional logic, where the

ci,q in red(ϕ) are understood as propositional variables.

Theorem 1. Satisfiability in DLPC is NP-complete.

PROOF. Hardness is the case because DLPC is a conservative extension of classical
propositional logic: for every formula ϕ in the language of classical propositional logic,
ϕ is classically valid if and only if ϕ is DLPC valid (where it is supposed that control
atoms ci,q are not in the language of classical propositional logic).

As to membership, items 3 and 4 of Proposition 2 guarantee that ϕ is DLPC sat-
isfiable iff red(ϕ) is satisfiable in classical propositional logic. Moreover, red(ϕ) is a
polynomial reduction from CL-PC to classical propositional logic. �

Theorem 2. The validities of DLPC are completely axiomatized by

– some axiomatization of classical propositional logic
– the reduction axioms of Proposition 1
– the rule of equivalence

from ϕ↔ ϕ′ infer 〈δ〉ϕ↔ 〈δ〉ϕ′

where δ is 〈q←>〉, 〈q←⊥〉, 〈i
q
↪→〉 or 〈

q
↪→j〉.

PROOF. Soundness is guaranteed by Proposition 1, plus the fact that the inference rules
preserve validity.

The completeness proof proceeds as follows. Suppose ϕ is DLPC valid. Then red(ϕ)
is classically valid due to Proposition 2. By the completeness of classical propositional
logic, red(ϕ) is also provable there. DLPC being a conservative extension of classical
propositional logic, red(ϕ) is provable in DLPC, too. Then the formula ϕ must be prov-
able in DLPC, because the reduction axioms are part of our axiomatics and because the
rule of substitution of equivalents is derivable.5 �

It is appealing to consider that assignments are performed by agents. Indeed, as
for the moment, assignment are mere events. To reason about protocols of interacting
agents, it is important to raise these events to the status of action. Authored assignments
and control transfers are expressed in DLPC by the following abbreviations:

〈q
i
←τ〉ϕ

def
= ci,q ∧ 〈q←τ〉ϕ

〈i
q
↪→j〉ϕ def

= ci,q ∧ 〈i
q
↪→〉〈

q
↪→j〉ϕ

‘Spelling out’ these abbreviations only polynomially increases the size of formulas. The
modal operators that we are going to introduce in the next section are also going to be
reducible to DLPC, but not polynomially so (or rather, we don’t know a polynomial
reduction).

In the next section, we fully integrate these notions of agency into the logic.

4 Q-DLPC: Quantified DLPC

In this section we extend DLPC with two new constructs and modal operators. The
modal operator 〈

q
↪→J〉 quantifies over control transfer targets in the set of agents J and

〈q
J
←〉 quantifies over both assignment authors in the set J and over truth values. We

could as well introduce operators 〈I
q
↪→〉: the presentation would be symmetrical to that

of 〈
q
↪→J〉.6

4.1 Language and semantics

The language of Q-DLPC is defined by adding formulas of the form 〈q
J
←〉ϕ and 〈

q
↪→J〉ϕ

to the language of DLPC, where q is a propositional variable in P and J ⊆ A. 〈q
J
←〉ϕ

reads “the agents in J can ensure that ϕ by possibly changing the truth value of q”, and
〈

q
↪→J〉ϕ reads “ϕ holds after the transfer of q to some agent in J”.

The truth conditions of the operators 〈q
J
←〉 and 〈

q
↪→J〉 are:

5 The rule of substitution of equivalents is necessary in order to apply the reduction axioms
‘deeply’ inside formulas. It can be derived from the rules of equivalence for the classical
connectives (that are derivable with classical propositional logic) and the rule of equivalence
for δ of the axiomatics of DLPC.

6 We note that the strategy is similar to Borgo’s in [4], who also proposes a reconstruction of
coalition logic starting from a dynamic logic.

(ξ, θ) |= 〈q
J
←〉ϕ iff (ξ, θ) |= ϕ ∨ (〈q←>〉ϕ ∧

∨
i∈J ci,q)∨

(〈q←⊥〉ϕ ∧
∨

i∈J ci,q)

(ξ, θ) |= 〈
q
↪→J〉ϕ iff (ξ, θ) |=

∨
i∈J 〈

q
↪→i〉ϕ

Examples of valid equivalences are: 〈
q
↪→∅〉ϕ↔ ⊥, 〈q

∅
←〉ϕ↔ ϕ, 〈q

A
←〉ϕ↔ 〈q←>〉ϕ∨

〈q←⊥〉ϕ, 〈q←>〉ϕ↔ 〈q
A
←〉(q ∧ ϕ), and 〈q←⊥〉ϕ↔ 〈q

A
←〉(¬q ∧ ϕ).

We observe that the program q← that we discussed in the introduction can be de-

fined as q
A
←. We also observe that 〈q

{i}
←〉> is logically equivalent to >, while both

〈q
i
←>〉> and 〈q

i
←⊥〉> are logically equivalent to ci,q. We also observe that ci,p ↔

(〈
{i}
←〉p ∧ 〈

{i}
←〉¬p).

The next proposition is going to be useful to prove several results.

Proposition 3. Let ϕ be a Q-DLPC formula. Let (ξ1, θ1) and (ξ2, θ2) be PC models
agreeing on every variable outside ϕ, i.e. such that for every q < Pϕ, ξ1(q) = ξ2(q)
and θ1(q) = θ2(q). Then (ξ1, θ1) |= ϕ iff (ξ2, θ2) |= ϕ.

4.2 Two abbreviations in Q-DLPC

Let P = {q1, · · · , qn} be a finite set of propositional variables. We define:

〈P
J
←〉ϕ

def
= 〈q1

J
←〉 · · · 〈qn

J
←〉ϕ

〈
P
↪→J〉ϕ def= 〈

q1
↪→J〉 · · · 〈

qn
↪→J〉ϕ

For the case n = 0 we suppose that 〈∅
J
←〉ϕ and 〈

∅
↪→J〉ϕ are both equal to ϕ. Just as for

assignments with authors q
i
←> and q

i
←⊥, expanding these abbreviations only polyno-

mially increases the size of the formula (precisely, the size of the rewritten formula is
quadratic in the size of the original formula).

Example 2. Let us take up our running example. Consider the following formulas.

≤4 =
∧

m∈RV
∨

X⊆PP,|X|≥|PP|−4
∧

n∈X,q∈{p1
n,p2

n,p
3
n}
¬cm,q

no2 =
∧

m∈RV
∧

n∈PP
∨
{q,r}⊂{p1

n,p2
n,p

3
n}

(¬cm,q ∧ ¬cm,r)
gets3 =

∧
q∈P

∨
m∈RV cm,q

noExtr =
∧

m∈RV
∨
{q,r}⊆P(cm,q ∧ cm,r ∧ q ∧ ¬r)

accn =
∨
{q,r}⊆{p1

n,p2
n,p

3
n}

(q ∧ r)
25% =

∧
X⊂PP,|X|≥|PP|/4

∨
n∈X ¬accn

They express that: each reviewer gets at most four papers (≤4); no reviewer gets a
paper twice (no2); each paper gets three reviewers (gets3); no reviewer can have only
positive or only negative opinions (noExtr); paper n is accepted if at least two opinions
are positive (accn); at most 25% of the papers can be accepted (25%).

We can verify that the program chair can distribute the papers according to the
constraints and such that the acceptance rate can be obtained, by checking Q-DLPC

validity of the following formula:∧
q∈P

cChair,q ∧
∧

R∈RV

cR,q

 −→ 〈 P↪→RV〉(≤4 ∧ no2 ∧ gets3 ∧ 〈P
RV
←〉(noExtr ∧ 25%))

4.3 Q-DLPC: complexity and completeness

Theorem 3. The validities of Q-DLPC are completely axiomatized by

– the axiomatization of DLPC of Theorem 2
– the following axiom schemas:

〈q
J
←〉ϕ↔ ϕ ∨ (〈q←>〉ϕ ∧

∨
i∈J ci,q) ∨ (〈q←⊥〉ϕ ∧

∨
i∈J ci,q)

〈
q
↪→J〉ϕ↔

∨
i∈J 〈

q
↪→i〉ϕ

PROOF. The proof follows the lines of that of Theorem 2, for the appropriately defined
reduction mapping red. �

The axiom schemas of Theorem 3 allow to rewrite every Q-DLPC formula to a
DLPC formula. Combining this with a decision procedure for DLPC we obtain a decision
procedure for Q-DLPC. However the rewriting step increases the length of the formula
exponentially, and the decision procedure runs in exponential space. One can do better:

Theorem 4. The model checking problem for Q-DLPC is PSPACE-complete.

PROOF. Hardness can be proved like for CL-PC by reducing QBF satisfiability [10].
It is easy to adapt the algorithm for model checking δCL-PC of [15] in order to deal

with our operators. The procedure still does not require more that |ϕ| recursive calls,
where ϕ is the input formula, and every call requires to store only one model at a time.
Hence, the algorithm runs in polynomial space. �

Theorem 5. Satisfiability in Q-DLPC is PSPACE-complete.

PROOF. Hardness can again be proved like for CL-PC [10].
As for easiness, first observe that like CL-PC and δCL-PC, Q-DLPC has the small

model property. Hence, just as in [15], given a formula ϕ we guess a model (ξ, θ) and
check whether (ξ, θ) |= ϕ. According to Theorem 4 it takes space polynomial in |ϕ|
to check whether (ξ, θ) |= ϕ. As we had guessed (ξ, θ), satisfiability checking is in
NPSPACE = PSPACE. �

The proofs of Theorem 4 and Theorem 5 are analogous to those of the complexity
results for CL-PC in [10]. The only difference is that in CL-PC a model for a formula
ϕ can be encoded in space linear in the length of ϕ, while in Q-DLPC, a model for
a formula ϕ can be encoded in space quadratic in the length of ϕ. (This is because a
propositional variable is not controlled by a single agent but by a set of agents.)

4.4 Defining van der Hoek and Wooldridge’s coalition modality in Q-DLPC

We now consider the coalition operators of CL-PC. These are normal modal operators

that we here write 〈
J
←〉.7 They intend to grasp a local (or contingent) ability. When the

set of propositional variables P is finite then the semantics is the same as that of the

above 〈P
J
←〉. As we allow for P to be infinite we have to consider 〈

J
←〉 to be primitive.

The accessibility relations are defined as follows:
7 The original notation is ^J .

(ξ, θ)R J
←

(ξ′, θ′) iff ξ′ = ξ, and if ξ(p) ∩ J = ∅ then θ′(p) = θ(p)

and the truth condition is:

(ξ, θ) |= 〈
J
←〉ϕ iff there is (ξ′, θ′) such that (ξ, θ)R J

←
(ξ′, θ′) and (ξ′, θ′) |= ϕ

The next result shows that actually there was no need to add the primitive 〈
J
←〉: we

may restrict the variables that are assigned by J, to the set Pϕ of propositional variables
occurring in ϕ.

Proposition 4. The schema 〈
J
←〉ϕ↔ 〈Pϕ

J
←〉ϕ is Q-DLPC valid.

PROOF. The right-to-left direction is straightforward.

For the other direction, suppose (ξ, θ) |= 〈
J
←〉ϕ. Hence there is a model (ξ′, θ′) such

that (ξ, θ)R J
←

(ξ′, θ′) and (ξ′, θ′) |= ϕ. Observe that ξ′ = ξ. Let (ξ′′, θ′′) be such that
ξ′′ = ξ′ and

θ′′(q) =

θ′(q) if q ∈ Pϕ
θ(q) if q < Pϕ

We have (ξ, θ)R J
←

(ξ′′, θ′′), and by Proposition 3 we have (ξ′′, θ′′) |= ϕ iff (ξ′, θ′) |= ϕ;

therefore (ξ, θ) |= 〈Pϕ
J
←〉ϕ. �

4.5 Defining Pauly’s coalition modality in Q-DLPC

As we said in the introduction, the original motivation of the inventors of CL-PC was
to reconstruct Pauly’s Coalition Logic CL. There, the CL formula 〈[J]〉ϕ reads “the
coalition J can ensure that ϕ holds next, whatever the other agents choose to do”.8

Van der Hoek and Wooldridge proposed to identify the CL formula 〈[J]〉ϕ with the

CL-PC formula 〈
J
←〉[

J
←]ϕ (where as usual in modal logic [

J
←]ϕ abbreviates ¬〈

J
←〉¬ϕ).

It represents the so-called ∃∀-ability of J for ϕ, and generally called α-ability in social
choice theory [1]. As van der Hoek and Wooldridge point out, the δCL-PC formula

[
J
←]〈

J
←〉ϕ expresses ∀∃-ability, alias β-ability.

It follows from the above Proposition 4 that 〈
J
←〉[

J
←]ϕ↔ 〈Pϕ

J
←〉[Pϕ

J
←]ϕ is Q-DLPC

valid. We are therefore entitled to consider from now on that 〈[J]〉ϕ is an abbreviation

of 〈Pϕ
J
←〉[Pϕ

J
←]ϕ.

5 DELPC: dynamic epistemic logic of propositional control

We mentioned before that the assignment operator was introduced in the context of dy-
namic epistemic logics, which are extensions of epistemic logic by dynamic operators

8 The original notation is [J]ϕ; van der Hoek and Wooldridge use 〈〈J〉〉ϕ.

such as assignments and announcements. In the same spirit we now extend our frame-
work by modal operators of knowledge and call the logic dynamic epistemic logic of
propositional control, abbreviated DELPC.

We will assume that assignments and control transfers are public events and are
therefore fully observable by the agents.

We are going to give an axiomatization and a decision procedure for our extension.

5.1 Language and semantics

We consider the extension of the language of DLPC by modal operators of knowledge
Ki, one per agent i ∈ A, and by modal operators 〈ϕ!〉 of truthful public announcement
of ϕ, where ϕ is any formula. Kiϕ is read “i knows that ϕ”, and 〈ϕ!〉ψ is read “the
announcement of ϕ is possible, and ψ holds afterwards”.

To interpret the epistemic operators we move from PC models (ξ, θ) to epistemic
PC models of the form M = (W,∼, Ξ, Θ), where

– W is a nonempty set of possible worlds
– ∼ : A −→ (W ×W) associates an equivalence relation ∼i to every agent i
– Ξ : W −→ (P −→ 2A) associates allocations to possible worlds
– Θ : W −→ (P −→ {tt,ff}) associates valuations to possible worlds

It is convenient to write Ξw(p) and Θw(p) instead of Ξ(w)(p) and Θ(w)(p). Every couple
(Ξw, Θw) is a PC model.

We now define the updates on an epistemic model. For conciseness we introduce
two notations. For δ ∈ {i

q
↪→,

q
↪→i}, we note Ξδ the function that maps every state v to

the updated allocation Ξδv . Also, Θq←τ is the function that maps every v to the valuation
Θ

q←τ
v .

Let M = (W,∼, Ξ, Θ) be a pointed model, and let w ∈ W. Its updates are defined as
follows.

Mi
q
↪→ = (W,∼, Ξi

q
↪→, Θ)

M
q
↪→i = (W,∼, Ξ

q
↪→i, Θ)

Mq←τ = (W,∼, Ξ, Θq←τ)

Mψ! = (W ′,∼′, Ξ′, Θ′) such that


W ′ = {v ∈ W : M,w |= ψ}
∼′ = ∼ ∩ (W ′ ×W ′)
Ξ′ = Ξ|W′

Θ′ = Θ|W′

According to our semantics, assignments and control transfers are public: when one
of these events occurs then every agent updates his epistemic possibilities accordingly.

The truth conditions also have to be adapted and extended accordingly; in particular:

M,w |= q iff Θw(q) = tt, for q ∈ P
M,w |= ci,q iff i ∈ Ξw(q)
M,w |= Kiϕ iff M, v |= ϕ for every v such that w ∼i v

Moreover, for every program δ ∈ {i
q
↪→,

q
↪→i, q←τ} we define:

M,w |= 〈δ〉ϕ iff Mδ,w |= ϕ
M,w |= 〈ψ!〉ϕ iff M,w |= ψ and Mψ!,w |= ϕ

Let us call the resulting logic DELPC. Examples of DELPC validities are 〈q←⊥〉Ki¬q,
〈i

q
↪→〉Ki¬ci,q, and 〈

q
↪→j〉Kicj,q, highlighting that assignments and control transfer are pub-

lic events.

Remark 2. According to our semantics, agent i does not necessarily know whether p is
allocated to j or not, and so even if i = j. In formulas, ci,q ∧ ¬Kici,q is satisfiable. One
could however easily guarantee that agents are aware of what is or is not allocated to
them, by imposing the following constraint on models: if w ∼i w′ then for every q ∈ P,
i ∈ Ξw(q) iff i ∈ Ξw′ (q). Such models validate ci,q → Kici,q.

5.2 Completeness and complexity

We are now able to formulate reduction axioms for our logic.

Proposition 5. The reduction axioms of Proposition 1 are DELPC valid, as well as the
following equivalences:

〈q←τ〉Kiϕ↔ Ki〈q←τ〉ϕ

〈j
q
↪→〉Kiϕ↔ Ki〈j

q
↪→〉ϕ

〈
q
↪→j〉Kiϕ↔ Ki〈

q
↪→j〉ϕ

〈ψ!〉ϕ↔ ψ ∧ ϕ if ϕ is of the form q, >, ⊥, or ci,q

〈ψ!〉¬ϕ↔ ψ ∧ ¬〈ψ!〉ϕ
〈ψ!〉(ϕ1 ∨ ϕ2)↔ 〈ψ!〉ϕ1 ∨ 〈ψ!〉ϕ2

〈ψ!〉Kiϕ↔ ψ ∧ Ki¬〈ψ!〉¬ϕ

In the 4th equivalence, ϕ may more generally be any formula without modal operators.
The axiom schemas of Proposition 5 together with the reduction axioms of DLPC

of Theorem 3 provide a complete set of axioms for the reduction of DELPC to standard
epistemic logic S5n. Call red(ϕ) the resulting formula.

Theorem 6. Let ϕ be a formula in the language of DELPC. Then

1. red(ϕ) has no modal operators other than epistemic operators
2. red(ϕ)↔ ϕ is DELPC valid
3. red(ϕ) is DELPC valid iff red(ϕ) is S5n valid, where the ci,q in red(ϕ) are understood

as propositional variables.

As before, the reduction axioms allow to show completeness.

Theorem 7. The validities of DELPC are axiomatized by

– the axioms and inference rules of DLPC of Theorem 1
– the axioms and inference rules of S5n, for every modal operator Ki
– the axiom schemas of Proposition 5

– the rules of equivalence for 〈ψ!〉:

from ϕ↔ ϕ′ infer 〈ψ!〉ϕ↔ 〈ψ!〉ϕ′

from ψ↔ ψ′ infer 〈ψ!〉ϕ↔ 〈ψ′!〉ϕ

PROOF. The proof uses the reduction axioms and then follows the lines of that for
Theorem 2. �

While for DLPC we were able to show that the length of the reduced formula is poly-
nomial in the length of the original formula (Proposition 2), this is no longer the case for
DELPC. This is due to the form of the reduction axioms for announcements of Proposi-
tion 5 where ϕ occurs twice on right hand sides (cf. [12]). A reduction-based decision
procedure is therefore suboptimal. However, reduction allows to establish completeness
and decidability.

Theorem 8. Satisfiability in DELPC is PSPACE-complete if there are at least two agents,
and NP-complete if there is only one agent.

PROOF. Hardness is the case because DLPC is a conservative extension of epistemic
logic (whose satisfiability problem is NP-hard for one agent and PSPACE-hard for more
than one agent).

Membership can be proved by applying the abbreviation technique of [12]. �

5.3 Authored assignment

In the end of Section 3 we had proposed the following definition 〈i
q
↪→j〉ϕ def

= ci,q ∧

〈i
q
↪→〉〈

q
↪→j〉ϕ. It identified the control transfer programs i

q
↪→j of δCL-PC, with a mere

test of ci,q followed by i
q
↪→ and

q
↪→j. Such an abbreviation is no longer intuitive in

DELPC because the events are public by assumption. The occurrence of the control
transfer being public, every agent can eliminate her epistemic possibilities where i did
not control q right before the transfer occurred. Hence, i

q
↪→j should amount to the public

announcement of ci,q followed by i
q
↪→ and

q
↪→j. This leads to the following (re)definition

that suits better.

〈i
q
↪→j〉ϕ def= 〈ci,q!〉〈i

q
↪→〉〈

q
↪→j〉ϕ

Similarly, we had identified i’s assignment of q to τ, q
i
←τ, with a test of ci,q followed

be the execution of the program q←τ. Again, the occurrence of an action q
i
←⊥ being

public, every agent eliminates his possibility where i does not control q. In formulas, we

expect 〈q
i
←⊥〉¬Kjci,j to be unsatisfiable. However, with the abbreviation of Section 3

this formula would be satisfiable. Since we assumed that events are public, q
i
←τ should

actually amount to the public announcement of ci,q followed by the public assignment
q←τ. This leads to the following (re)definition that suits better.

〈q
i
←τ〉eϕ

def
= 〈ci,q!〉〈q←τ〉ϕ

The reader may check that 〈q
i
←⊥〉¬Kjci,j is unsatisfiable in DELPC.

6 Conclusion and perspectives

We have relaxed the original assumption of exclusive and actual control of van der Hoek
and Wooldridge’s coalition logic of propositional control CL-PC and have shown that
their logic can be embedded in ours. We have moreover extended the existing logics
of propositional control by several concepts stemming from dynamic epistemic logics:
knowledge, assignments, and announcements. We have shown how the resulting logics
relate to CL-PC and its extension δCL-PC. We have also established their axiomatiza-
tion and their complexity for satisfiability and model checking.

The remaining of the section is devoted to the sketch of some possible extensions
of our logic.

The most obvious variant is to integrate PDL-style constructs to DLPC. In a nutshell,
it allows the following direct definitions of some programs we have considered in this
paper.

q
J
←
def
= >? +

(
(
∨

i∈J ci,q)?; (q←> + q←⊥)
)

q
↪→{j1 . . . jn}

def
=

q
↪→j1 + . . . +

q
↪→jn

{qi . . . qn}
J
←
def
= q1

J
←; . . . ; qn

J
←

{q1...qn}

↪→ J def=
q1
↪→J; . . . ;

qn
↪→J

i
q
↪→j def= ci,q?; i

q
↪→;

q
↪→j

Being a dynamic logic, the logic can capture the usual instructions of structured pro-
gramming. For instance, for every complex program δ1 and δ2:

if ϕ then δ1 else δ2
def
= (ϕ?; δ1) ∪ (¬ϕ?; δ2)

while ϕ do δ1
def
= (ϕ?; δ1)∗;¬ϕ

We conjecture that the resulting logic is PSPACE-complete, too. That is, it would be no
more complex than van der Hoek et al.’s δCL-PC, despite a greater expressivity and the
use of more general models.

Another straightforward generalization of PC models would be to distinguish be-
tween making a variable q false and making it true. This is related to Gerbrandy’s no-
tion of positive and negative control. In order to take that into account the function ξ has
to be split up into ξ+ and ξ−: ξ+(q) is the set of those agents which may make q true, and
ξ−(q) is the set of those agents which may make q false. In the language one may then
have control atoms ci,q

+ and ci,q
− which are interpreted as expected. Moreover, one may

have modal operators i
+q
↪→, i

−q
↪→,

+q
↪→i, and

−q
↪→i of loosing or obtaining positive or negative

control. This then may be taken into account by defining e.g. authored assignment as

〈q
i
←>〉ϕ

def
= ci,q

+ ∧ 〈q←>〉ϕ.

Concerning the epistemic extension we observe that while the extension by public
announcements is technically straightforward it does not account for announcements
that are made by agents. In a first approach one might identify the announcement of ϕ
by i with the public announcement of Kiϕ; however, a full analysis requires more work.

In a similar spirit, one might extend our logic by event models [3, 2, 6], which account
for incomplete (and even erroneous) perception of events by agents. This should be
possible without difficulties. As a teaser, it would allow to adequately handle protocols
with intricate epistemic aspects such as for instance a variant of Example 1 with double
blind reviewing, or a more realistic setting where the protocol is specified in a way such
that a reviewer neither know what the allocations of the other members of the committee
are, nor which opinions were already expressed about a paper.

Acknowledgements

Thanks for several suggestions are due to Guillaume Aucher, Pierre Marquis, Leon van
der Torre and Emil Weydert. We are also grateful to the reviewers of LIS@ESSLLI
for their comments that helped to improve the paper. Andreas Herzig’s research on
this paper is partly funded by the ANR project Social trust analysis and formalization
(ForTrust). Nicolas Troquard’s is supported by the EPSRC grant EP/E061397/1.

References

1. Joseph Abdou and Hans Keiding. Effectivity functions in social choice. Kluwer Academic,
1991.

2. Alexandru Baltag and Lawrence S. Moss. Logics for epistemic programs. Synthese,
139(2):165–224, 2004.

3. Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. The logic of public announce-
ments, common knowledge, and private suspicions. In Proc. TARK’98, pages 43–56, 1998.

4. Stefano Borgo. Coalitions in action logic. In Proc. IJCAI’07, pages 1822–1827, 2007.
5. Hans P. van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic epistemic logic

with assignment. In Proc. AAMAS’05, pages 141–148, 2005.
6. Hans P. van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic Epistemic Logic.

Kluwer Academic Publishers, 2007.
7. Jelle Gerbrandy. Logics of propositional control. In Hideyuki Nakashima, Michael P. Well-

man, Gerhard Weiss, and Peter Stone, editors, 5th International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2006), pages 193–200. ACM, 2006.

8. Wiebe van der Hoek, Dirk Walther, and Michael Wooldridge. On the logic of cooperation
and the transfer of control. J. of AI Research (JAIR), 37:437–477, 2010.

9. Wiebe van der Hoek and Michael Wooldridge. On the dynamics of delegation, cooperation
and control: a logical account. In Proc. AAMAS’05, 2005.

10. Wiebe van der Hoek and Michael Wooldridge. On the logic of cooperation and propositional
control. Artif. Intell., 164(1-2):81–119, 2005.

11. Barteld Kooi. Expressivity and completeness for public update logic via reduction axioms.
Journal of Applied Non-Classical Logics, 17(2):231–253, 2007.

12. Carsten Lutz. Complexity and succintness of public announcement logic. In Proc. AA-
MAS’06, pages 137–144, 2006.

13. Nicolas Troquard, Wiebe van der Hoek, and Michael Wooldridge. A logic of propositional
control for truthful implementations. In Proc. TARK’09, pages 237–246, 2009.

14. Nicolas Troquard, Wiebe van der Hoek, and Michael Wooldridge. A logic of games and
propositional control. In Proc. AAMAS’09, pages 961–968, 2009.

15. Dirk Walther. Strategic Logics: Complexity, Completeness and Expressivity. PhD thesis,
University of Liverpool, 2007.

