
HAL Id: hal-03470293
https://hal.science/hal-03470293

Submitted on 9 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to do social simulation in logic: modelling the
segregation game in a dynamic logic of assignments

Benoit Gaudou, Andreas Herzig, Emiliano Lorini, Christophe Sibertin-Blanc

To cite this version:
Benoit Gaudou, Andreas Herzig, Emiliano Lorini, Christophe Sibertin-Blanc. How to do social sim-
ulation in logic: modelling the segregation game in a dynamic logic of assignments. International
Workshop on Multi-Agent Systems and Agent-Based Simulation (MABS 2011), May 2011, Taipei,
Taiwan. pp.59-73, �10.1007/978-3-642-28400-7_5�. �hal-03470293�

https://hal.science/hal-03470293
https://hal.archives-ouvertes.fr

How to do social simulation in logic:
modelling the segregation game in a dynamic logic of

assignments

Benoit Gaudou, Andreas Herzig, Emiliano Lorini, and Christophe Sibertin-Blanc

University of Toulouse, France
UMR 5505, Institut de Recherche en Informatique de Toulouse(IRIT), CNRS, France

IRIT, Université Paul Sabatier, 118 Route de Narbonne, F-31062 TOULOUSE CEDEX 9
{benoit.gaudou,christophe.sibertin-blanc}@univ-tlse1.fr

{emiliano.lorini,andreas.herzig}@irit.fr

Abstract. The aim of this paper is to show how to do social simulation in logic.
In order to meet this objective we present a dynamic logic with assignments, tests,
sequential and nondeterministic composition, and boundedand non-bounded it-
eration. We show that our logic allows to represent and reason about a paradig-
matic example of social simulation: Schelling’s segregation game. We also build
a bridge between social simulation and planning. In particular, we show that
the problem of checking whether a given propertyP (such as segregation) will
emerge aftern simulation moves is nothing but the planning problem with hori-
zon n, which is widely studied in AI: the problem of verifying whether there
exists a plan of length at mostn ensuring that a given goal will be achieved.

1 Introduction

In a recent debate Edmonds [9] attacked what he saw as “empty formal logic papers
without any results” that are proposed in the field of multi-agent systems (MASs). He
opposed them to papers describing social simulations: according to Edmonds the latter
present many experimental results which are useful to better understand social phe-
nomena, while the former kind of papers only aim at studying some relevant concepts
and their mathematical properties (axiomatization, decidability, etc.), while not adding
anything new to our understanding of social phenomena. In response to Edmonds’s at-
tack, some researchers defended the use of logic in MAS in general, and in particular
in agent-based social simulation(ABSS) [10, 5, 7]. For example, in [5] it is argued that
logic is relevant for MAS because it can be used to construct amuch needed formal
social theory. In [10] it is argued that logic can be useful inABSS because a logical
analysis based on (a) a philosophical or sociological theory, (b) observations and data
about a particular social phenomenon, and (c) intuitions — or a blend of them — can
be considered to provide the requirements and the specification for an ABSS system
and more generally a MAS. Moreover, a logical system might help to check the valid-
ity of the ABSS model and to adjust it by way of having a clear understanding of the
formal model underpinning it. All these researchers consider logic and ABSS not only
as compatible, but also as complementary methodologies.

The idea we defend in this paper is much more radical than those of the above
advocates of logic-based approaches. Our aim is to show thatABSS can be directly
done in logic and that a logical specification of a given social phenomenon can be
conceived as an ABSS model of this phenomenon. We believe that the use of adequate
theorem provers will allow to obtain results that are beyondthe possibilities of existing
simulators. As a first step towards our aim we present in this paper a simple logic
calledDL-PA (Dynamic Logic of Propositional Assignments).DL-PA is an extension
of propositional logic with dynamic operators. These operators allow to reason about
assignments p←⊤ andp←⊥ changing the truth value of a propositional variablep to
‘true’ or ‘false’ and abouttestsΦ? of the truth of a Boolean formulaΦ. More generally,
DL-PA allows to reason about those facts that will be true after complex eventsπ that are
built from assignments and tests by means of the operators ofsequential composition
(π1; π2), nondeterministic composition (π1∪π2), bounded iteration (π≤n), and unbounded
iteration (π<∞).

In order to illustrate the power of our logic we show that a paradigmatic ABSS
model can be represented in our logic: Schelling’s segregation game [17]. The prob-
lem of checking whether (under some initial conditions) a given propertyP such as
segregation willpossibly emergeafter n simulation moves is reduced to the problem
of checking in our logic whether the initial conditions imply that formulaϕ encoding
propertyP will be true at the end of at least one sequence of eventsπ of length at most
n. Similarly, the problem of checking whetherP will necessarily emergeaftern simu-
lation moves is reduced to the problem of checking whether the initial conditions imply
thatϕ will be true at the end of every sequence of eventsπ of lengthn. Actually the
latter is nothing but the planning problem with horizonn, which is widely studied in
AI and is for example at the base of the state of the art plannerSatPlan [15]: the prob-
lem of verifying whether there exists a plan of length at mostn ensuring that a given
goalϕ will be achieved. In the general case this problem is known tobe in PSPACE,
i.e. decidable in polynomial space [3]. We show that our logic fitsthese boundaries. In
the past such PSPACE hard decision problems were consideredto be out of reach of
automated theorem provers. However, in the last 20 years huge progress was made on
that kind of problems: state-of-the-art theorem provers for PSPACE complete problems
were shown to be of practical interest in particular in semantic web applications even
for realistic problem instances with thousands of clauses [14].

One might wish to go beyond the simple existential and universal quantifications
that we mentioned above. This can be achieved by means of modal operators with
counting (stemming from graded modal logics [11, 21] and description logics [1]). We
briefly discuss this extension ofDL-PA and show that complexity of the star-free frag-
ment remains in PSPACE.

Simulation and logic use quite different terminologies. Table 1 summarizes the cor-
respondences between the concepts used in simulation and those used in logic. Note that
the term ‘model’ occurs in both terminologies, but has different meanings: in simulation
a model stands for a formal or conceptual model of a particular application one wishes
to investigate, such as Schelling’s segregation game in ourcase; inDL-PA, a model of

a formula is a valuation where that formula is true.1 A further difference between both
fields is that logical formulas allow to talk about the whole search space (e.g. about
what may necessarily emerges in all paths through the space of possible paths), while
simulation is only about a single path in the search space.

simulation dynamic logic
model logical language + domain laws
state state, valuation (inDL-PA also called a model)

individual action atomic event, atomic program
simulation step complex event, complex program

property logical formula
state has a property valuation is a model of a formula

model has a property domain laws imply formula
simulation engine theorem prover

Table 1.Terminologies in simulation and in logic

The rest of the paper is organized as follows. In Section 2 we describe the segre-
gation game. In Section 3 we define our basic logic, and in Section 4 we show how it
allows to reason about the segregation game. Finally we sketch some extensions (Sec-
tion 5) and conclude (Section 6).2

2 The segregation game

In this section we give an informal description of the segregation game. A formal de-
scription is given in Section 4.

2.1 The original model

Thomas C. Schelling in [17] studied the phenomenon of segregation and in particular
the conditions of its occurrence due to “discriminatory individual choices” in groups
with recognizable distinctions such as sex, age, colour, etc. The best-known example is

1 The identification of a model with a valuation is therefore just as in propositional logic, and is
proper to our logicDL-PA (and more generally to logics of propositional control). The kind
of models that are used in standard dynamic and temporal logics are more complex transition
systems having a set of possible worlds, a transition relation between possible worlds, and a
valuation for each possible worlds.

2 In the MABS pre-proceedings version of this article we gave amore general PSPACE com-
plexity result for the wholeDL-PA, but the proof turned out to be incorrect. We conjecture
that the problem ofDL-PA model checking (allowing for formulas with theπ<∞ operator) is
in fact EXPTIME hard. Specific solvers exist for problems in this complexity class, but they
are much less efficient than those for PSPACE problems. We thus chose to consider only the
star-free fragment ofDL-PA in this paper.

the formation of color-dependent residential areas, underthe influence of the individ-
ual preference of being surrounded by at most a threshold number of neighbours with
different colour: above the threshold inhabitants are unhappy and will move to another
location.

One of the main results of Schelling’s work is to show that thesegregation phe-
nomenon emerges even with a quite high tolerance threshold.For example, even if each
inhabitant accepts that the majority of the neighbours surrounding him has a colour dif-
ferent from his, there will nevertheless be a tendency to form groups of inhabitants with
the same colour.

2.2 The implemented model

The segregation model has been implemented in many languages and formalisms, in
particular in almost all agent-based simulation platforms. Good examples are NetLogo
[24, 23] and GAMA [19]. Two mains implementations have been proposed for this
model: cellular automaton models (where the cells are the active entities) and agent-
based models (where inhabitants are represented as agents and can move from one cell
to another). We represent here the Segregation model as a cellular automaton and will
discuss in the conclusion how to model the agent-based version.

The global environment of the simulation is taken as a chessboard-like gridN × N.
Each of its cells is represented by a couple of integers (k, l) ∈ [1..N] × [1..N]. A cell is
either red (inhabited by a red agent), or blue (inhabited by ablue agent), or has no colour
(uninhabited). When an unhappy inhabitant moves from one place to another free one
then the latter takes the colour of the former and the former becomes colourless.

The two main parameters of the simulation are:

– the number of inhabitants|A| and
– the tolerance threshold: the number of different inhabitants from which on an in-

habitant is unhappy, which is supposed to be the same for every inhabitant.

(Alternatively the parameters may be the density of inhabitants and the percentage of
different inhabitants. We also note that most simulation models rather use the inverse
of the tolerance threshold, called the similarity threshold.)

There is a scheduler which generates at each simulation stepa random ordering
of the set of cells and then activates the cells according to that ordering during the
step. Upon activation a cell checks its happiness: a cell is happy iff the percentage of
neighbour cells having a different colour is below its tolerance threshold. If the cell is
unhappy then its inhabitant will move to another free cell onthe grid.

The simulation stops when a stable state is reached. This is the case when every
coloured cell (i.e.every inhabitant) is happy.

A simulation may have three different behaviours: (1) the simulation loops because
the system does not reach a stable state where every cell is happy (typically when the
density of inhabitants on the grid is high and the tolerance threshold is low, which
means inhabitants are very intolerant); (2) the simulationstops but one cannot observe
any kind of segregation (this is typically the case when the similarity threshold is very
low, i.e. tolerance is high and/or density is very low); or (3) clusters of cells with the
same colour emerge.

3 Dynamic logic with assignments

This section introduces the syntax and the semantics of the logicDL-PA. It is basically
an instantiation of propositional dynamic logic PDL [13] with concrete programsp←⊤
andp←⊥ assigning propositional variables to either true or false.

3.1 Language

We suppose given a countable set of propositional variablesP with typical elements
p, q, . . . Remember that the set of Boolean formulas of classical propositional logic can
be built fromP by means of the Boolean operators of negation and disjunction (the
other connectives being defined by means of abbreviations).

For Schelling’s game we will use evocative variables such asR(k, l) and B(k, l).
Boolean formulas allow to express things such as

∧

(k,l) ¬(R(k, l)∧B(k, l)), representing
the fact that a cell cannot be both red and blue.

The set ofeventsor programsΠ is defined by the following BNF:

πF p←⊤ | p←⊥ | Φ? | π; π | π∪π | π=n | π≤n | π<∞

wherep ranges overP, Φ ranges over the set of Boolean formulas, andn ranges over
the set of natural numbersN.

The eventsp←⊤ andp←⊥ are assignments modifying the truth value of the propo-
sitional variablep: the eventp←⊤ setsp to true, and the eventp←⊥ setsp to false.Φ?
is the test ofΦ, which fails ifΦ is false.π1; π2 denotes a sequence of events.π=n denotes
iteration ofπ exactlyn times,π≤n denotes iteration ofπ up ton times, andπ<∞ denotes
arbitrary iteration ofπ. Assignments and tests are atomic events, while the other events
are called complex. An example of a complex event is a blue inhabitant’s move from
location (k, l) to location (k′, l′), written as the sequenceB(k, l)←⊥; B(k′, l′)←⊤.

The set offormulasF is defined by the following BNF:

ϕF q | ⊤ | ⊥ | ¬ϕ | ϕ ∨ ϕ | ∃π. ϕ

whereq ranges overP andπ ranges over the set of eventsΠ . (Observe that we useΦ
for Boolean formulas andϕ for formulas ofDL-PA.) The formula∃π. ϕ reads “there is
an execution of the eventπ after whichϕ is true”. Hence∃π.⊤ has to be read “π may
occur”.

The operators ‘?’, ‘;’, ‘∪ ’ and ‘<∞’ are familiar from propositional dynamic logic
PDL. (We could as well use the Kleene star and writeπ∗ instead ofπ<∞, as customary in
PDL.) In uninterpreted PDL these operators combine abstract atomic programs, while
in interpreted PDL they combine assignments of object variables to values from some
domain. In contrast, atomic programs are here assignments of truth values to proposi-
tional variables, as previously studied in the dynamic epistemic logic literature [22, 8,
2].

The formula∃(q←⊤ ∪ q←⊥). ϕ has the same interpretation as the quantified
Boolean formula (QBF)∃q.ϕ [12]. The language ofDL-PA can therefore be viewed
as a generalisation of quantification over Boolean variables to complex ‘quantification
programs’.

Thelengthof a formulaϕ, noted|ϕ|, is the number of symbols used to write downϕ
— without ‘〈’, ‘ 〉’, dots, and parentheses —, where integers are supposed to have length
1.3 For example

|∃(q←⊤)≤3. (q∨ r)| = 1+ |q←⊤| + 1+ 1+ |q∨ r | = 1+ 3+ 2+ 3 = 9.
The logical operators∧ and→ are defined as abbreviations; for exampleϕ→ ψ ab-

breviates¬ϕ ∨ ψ. Moreover,∀π. ϕ abbreviates¬∃π.¬ϕ. Hence∀π.⊥ has to be read
“π cannot occur”. Familiar program constructions can also be defined as abbrevia-
tions: Theskip event (‘nothing happens’) is defined as an abbreviation of⊤?, and
if ϕ then π1 else π2 is defined as an abbreviation of (ϕ?;π1)∪(¬ϕ?;π2).

Remark 1.Note that could define programsπk as abbreviations of the sequential com-
position ofπ, k times,4 and then defineπ≤n as abbreviations of

⋃

0≤k≤n π
k. However, the

expansion of these abbreviations would exponentially increase formula length. For the
same reason we have avoided to introduce ‘↔’ as an abbreviation.

We useτ as a placeholder for either⊤ or ⊥, and writeq←τ in order to talk about
q←⊤ andq←⊥ in an economic way.

3.2 Semantics

A valuationis nothing but a model of classical propositional logic,viz. a subset of the
set of propositional variablesP.

A valuationV provides truth values for propositional variables. These truth values
are modified by events: to each eventπ we associate a binary relation on valuationsRπ

that is inductively defined as follows:

Rp←⊤ = {(V,V′) : V′ = V ∪ {p}}
Rp←⊥ = {(V,V′) : V′ = V \ {p}}
Rπ1;π2 = Rπ1 ◦ Rπ2

Rπ1∪π2 = Rπ1 ∪ Rπ2

Rϕ? = {(V,V) : V |= ϕ}
Rπ=n = (Rπ)n

Rπ≤n =
⋃

0≤m≤n(Rπ)m

Rπ<∞ =
⋃

0≤m(Rπ)m

We call the valuationsV′ such that (V,V′) ∈ Rπ thepossible updates of V byπ. Observe
thatR⊤? is indeed the ‘nothing happens’ event relating every valuation to itself.

Then the truth conditions are the usual ones for⊤,⊥, negation and disjunction, plus
one for∃π. ϕ in terms of possible updates:

V |= p iff p ∈ V
V |= ⊤
V 6|= ⊥
V |= ¬ϕ iff V 6|= ϕ
V |= ϕ ∨ ψ iff V |= ϕ or V |= ψ
V |= ∃π. ϕ iff there isV′ such thatVRπV′ andV′ |= ϕ

3 Precisely, the length of an integern should be logn. Our hypothesis is however without harm.
4 The precise definition is inductive:π0

= skip, andπk+1
= πk; π.

A valuationV is amodel ofϕ if and only if V |= ϕ. A formulaϕ is satisfiable if and
only if there exists a model ofϕ, andϕ is valid if and only if every valuation is a model
of ϕ.

3.3 Reduction axioms for the star-free fragment

The fragment ofDL-PA without arbitrary iterations (called the ‘star-free fragment’ in
PDL) can be axiomatised by means of reduction axioms. These axioms allow to elimi-
nate all the dynamic operators from formulas. However, thatelimination might result in
an exponential blowup due to the operator of nondeterministic composition∪ . We will
therefore later on characterize the complexity of validitychecking by other means.

Proposition 1. The following equivalences areDL-PA valid.

∃π=n. ϕ ↔

ϕ if n = 0

∃π=n−1.∃π. ϕ if n > 0

∃π≤n. ϕ ↔

ϕ if n = 0

∃π≤n−1. (ϕ ∨ ∃π. ϕ) if n > 0

∃ϕ?. ψ ↔ ϕ ∧ ψ

∃π1∪π2. ϕ ↔ ∃π1. ϕ ∨ ∃π2. ϕ

∃π1;π2. ϕ ↔ ∃π1.∃π2. ϕ

∃p←τ.¬ϕ ↔ ¬∃p←τ. ϕ
∃p←τ. (ϕ1 ∨ ϕ2)↔ ∃p←τ. ϕ1 ∨ ∃p←τ. ϕ2

∃p←τ.⊤ ↔ ⊤

∃p←τ.⊥ ↔ ⊥

∃p←τ. q ↔

τ if q = p

q if q , p

These equivalences provide a complete set of reduction axioms for∞-free dynamic
operators∃π. Call red the mapping onDL-PA formulas which iteratively applies the
above equivalences from the left to the right, starting fromone of the innermost modal
operators. It allows to first eliminate complex events, thenpush the dynamic operators
inside the formula, and finally eliminate them when facing anatomic formula. For ex-
ample, consider the complex formula∃p←⊥2. (p∨ q). First the complex eventp←⊥2

is eliminated, then the innermost modal operator is distributed over∨ and eliminated,
and finally the outermost modal operator is distributed and eliminated:

∃p←⊥2. (p∨ q)↔ ∃p←⊥.∃p←⊥. (p∨ q)
↔ ∃p←⊥. (∃p←⊥. p∨ ∃p←⊥. q)
↔ ∃p←⊥. (⊥ ∨ q)
↔ ∃p←⊥. q
↔ q

We have simplified a bit between the 3rd and 4th line, replacing the subformula⊥ ∨ q
by the equivalentq.

Proposition 2. Let ϕ be a formula in the language ofDL-PA without the arbitrary
iteration operatorπ<∞. Then

1. red(ϕ) has no modal operators;
2. red(ϕ)↔ ϕ is DL-PA valid;
3. red(ϕ) is DL-PA valid iff red(ϕ) is valid in classical propositional logic.

Proposition 2 indicates a close relationship between star-freeDL-PA and proposi-
tional logic. The merit of former over the latter is to provide a model theory and an
intuitive and more succinct language. Both are valuable from a modelling perspective.

3.4 Complexity for the star-free fragment

Proposition 2 tells us that star-freeDL-PA is not more expressive than classical propo-
sitional logic. However, reduction may exponentially increase the length of the formula
because of the event operators∪ andπ≤n. But this is a suboptimal procedure, as we
shall see now.

We first give the complexity result for model checking. The inputs of the model
checking problem are a valuationV and a formulaϕ, and the problem is to decide
whetherV |= ϕ.

Theorem 1. The problem of star-freeDL-PA model checking is PSPACE-complete.
PROOF. We first establishhardnessby reducing the problem of validity of QBFs to

star-freeDL-PA model checking. Consider a fully quantified Boolean formula

Φ = ∃q1∀q2∃q3 . . .∃qm−1∀qm. ϕ

wherem ≥ 0 is even and whereϕ(q1, . . . , qm) is a propositional formula containing no
variables other thanq1, . . . , qm. (The hypothesis that the number of quantifiers is even
is without loss of generality: it suffices to add a dummy variableqm not occurring inϕ.)
We define

ΦDL-PA
= ∃π1.∀π2. . . .∃πm−1.∀πm. ϕ

whereπk = qk←⊤∪qk←⊥, for 1 ≤ k ≤ m. Consider the valuation over the setP =
{q1, . . . , qm} of propositional variables such that, say,V(qi) = ff for all qi. It is readily
checked thatΦ is valid in Quantified Boolean Logic iffΦDL-PA is true inV. Since both
the size ofΦDL-PA and the size of the model are linear in the size ofΦ, we conclude that
free-starDL-PA model checking is PSPACE-hard.

Proof ofmembershiprequires a recursive definition of the set of sequences of atomic
eventsadmittedby a complex eventπ.

adm(p←τ) = {p←τ}
adm(Φ?) = {Φ?}
adm(π1; π2) = {α1;α2 : α1 ∈ adm(π1) andα2 ∈ adm(π2)}
adm(π1∪π2) = adm(π1) ∪ adm(π2)
adm(π=0) = {⊤?}
adm(π=n+1) = {α1;α2 : α1 ∈ adm(π=n) andα2 ∈ adm(π)}
adm(π≤0) = {⊤?}
adm(π≤n+1) = adm(π≤n) ∪

{α1;α2 : α1 ∈ adm(π≤n) andα2 ∈ adm(π)}

The main point in the proof is that every possible update of a valuationV by a complex
eventπ can also be reached by a sequence of atomic events that is admitted byπ and
that is at most as long asπ. Based on that one can prove that membership of a couple of
valuations (V,V′) in Rπ can be decided in polynomial space. Finally one can prove that
a formulaϕ can be evaluated in space polynomial in the size ofϕ. �

Theorem 2. The problem of star-freeDL-PA validity checking is PSPACE-complete.

PROOF. Hardness can be proved by translating QBF formulas to star-freeDL-PA in the
same way as in Theorem 1. Membership can be proved for the star-freeDL-PA satisfi-
ability checking problem as follows: givenϕ we guess a modelV. (V can be supposed
to be of polynomial size because we may restrict our attention to the propositional vari-
ables occurring inϕ, and neglect those that don’t.) Then we check whetherV |= ϕ,
which can be done in polynomial space by mirroring the truth conditions. This shows
that star-freeDL-PA satisfiability can be checked in NPSPACE. Now by Savitch’s theo-
rem NPSPACE = PSPACE, and therefore star-freeDL-PA satisfiability can be checked
in polynomial space. It follows that the complementary star-freeDL-PA validity prob-
lem can be checked in polynomial space, too. �

The above result shows thatDL-PA is more succinctthan propositional logic: there
areDL-PA formulas (and even star-freeDL-PA formulas) such that every equivalent
propositional formula is exponential longer.

4 The segregation game inDL-PA

In Section 2 we introduced Schelling’s segregation game in an informal way. Let us
now model it inDL-PA as a cellular automaton. We start by describing agents whose
tolerance threshold is 0.

4.1 Propositional variables

We need three kinds of propositional variables:

R(k, l) “cell (k, l) is red”
B(k, l) “cell (k, l) is blue”
Done(k, l) “it was already cell (k, l)’s turn in the present step”

where every (k, l) is a location in the grid [1..N] × [1..N]. The following abbreviations
will be useful:

NB<1(k, l)
def
=

∧

k′ ,l′≤N : |k′−k|,|l′−l|≤1¬B(k′, l′)

NR<1(k, l)
def
=

∧

k′ ,l′≤N : |k′−k|,|l′−l|≤1¬R(k′, l′)

UnH<1(k, l)
def
= (R(k, l) ∧ ¬NB<1(k, l)) ∨ (B(k, l) ∧ ¬NR<1(k, l))

Free(k, l)
def
= ¬R(k, l) ∧ ¬B(k, l)

Segreg<1
def
= ¬
∨

k,l UnH<1(k, l)

NB<1(k, l) can be read “location (k, l) has no blue neighbour” and similarly for
NR<1(k, l). UnH<1(i, k, l) can be read “location (k, l) is inhabited and has some neigh-
bour with a different colour”.Free(k, l) can be read “location (k, l) is free”. Finally, the
property of segregation holds —notedSegreg<1— if and only if “every inhabitant has
no neighbour with a different colour”.

Let us compute the length of these formulas. The length of both NB<1(k, l) and
NR<1(k, l) is inO(1), i.e. it is constant (the quantification over the locations (k′, l′) being
void because there are exactly eight neighbour locations of(k, l)). The same holds for
the length of¬UnH<1(k, l). Finally, the length ofSegreg<1 is inO(N2).

4.2 Describing inhabitants’ moves

The move of an inhabitant from a location (k, l) to the location (k′, l′) is modelled by
the swap of color between cells (k, l) and (k′, l′). It can be described by a complex event
in our language of events.

move(k, l)
def
=

⋃

k′ ,l′ (¬B(k′, l′) ∧ ¬R(k′, l′))? ;
((B(k, l)? ; B(k, l)←⊥ ; B(k′, l′)←⊤) ∪

(R(k, l)? ; R(k, l)←⊥ ; R(k′, l′)←⊤))

Then a move of the simulation is described by a nondeterministic composition of
agent moves (plus some turn taking management):

move def
=

(

⋃

k,l ¬Done(k, l)?; (UnH<1(k, l)?;move(k, l)) ∪ ¬UnH<1(k, l)?);Done(k, l)←⊤
)

;
(

((
∧

k,l Done(k, l))? ;initialize) ∪ (¬
∧

k,l Done(k, l))?
)

Using if-then-else this can be written in a way that is perhaps more understandable as:

move
def

=

(

⋃

k,l ¬Done(k, l)?; (if UnH<1(k, l) then move(k, l) else skip) ; Done(k, l)←⊤
)

;
(

if (
∧

k,l Done(k, l)) then initialize else skip
)

The initialize event starts a new simulation step, setting theDone(k, l) variables of
the inhabited cells to false: after it, none of the inhabitedcells has played yet.

initialize
def
= (B(k1, l1) ∨ R(k1, l1))? ;Done(kn, ln)←⊥ ; . . . ;

(B(kn, ln) ∨ R(kn, ln))? ;Done(kn, ln)←⊥

Nondeterministic choice of a location in themove formula corresponds to the
scheduler in simulation platforms such as NetLogo or GAMA. The latter generates
at the beginning of each step a random ordering of the set of agents and then activates
the agents according to that ordering during the step. A simulation step consists inN2

executions ofmove.
The lengths of bothmove(k, l) andinitialize are inO(N2). The length ofmove is in

O(N2 × N2) = O(N4).

4.3 Initial state

In order to properly analyse the segregation model, we must describe theinitial statein
our formalism:

Init =
(

∧

(k,l)∈JR
R(k, l)

)

∧
(

∧

(k,l)∈JB
B(k, l)

)

∧
(

∧

(k,l)∈JR∪JB
¬Done(k, l)

)

whereJR ⊆ N2 is the set of red cells andJB ⊆ N2 the set of blue cells. As a cell cannot
be blue and red these two sets have to be disjoint,i.e. we require thatJR ∩ JB = ∅.
Moreover, the numbers of colored cells must be smaller than the total number of cells:
|JR|+ |JB| ≤ N2. Finally, note that we do not say anything about the status ofuninhabited
cells: we do not care whetherDone(k, l) is true or false there. The length ofInit is in
O(N2).

4.4 Describing and proving properties

Properties to be maintained (invariants). During the execution of a simulation, sev-
eral properties should be maintained and thus be always true. In the case of Schelling’s
game, a cell cannot be both red and blue:

χ1 =
∧

k,l ¬ (B(k, l) ∧ R(k, l))

We need an auxiliary definition which expresses that at leastn individuals have prop-
ertyP:

atleast (n,P) =

∨

(k1,l1),...,(kn,ln) : (ki ,l i),(kj ,l j) if i,j

P(k1, l1) ∧ . . . ∧ P(kn, ln)

This allows us to state that the numbers of red and blue cells are exactly|JR| and |JB|
just as in the initial state:

χ2 = atleast (|JR|,R) ∧ ¬atleast (|JR| + 1,R) ∧ atleast (|JB|,B) ∧ ¬atleast (|JB| + 1,B)

Together these formulas make up the invariants of Schelling’s game:

Invs = χ1 ∧ χ2

The length ofχ1 is inO(N2), while that ofχ2 is inO(2N2
) (which means that will be is

costly to check the latter property).
The difference betweenInit andInvs is that whileInit has just to be true in the initial

state, the laws must be true in the initial state and in any update of the current state. In
order to ensure that our modelling works properly the first things to do is to check that
the invariants hold verified in the initial state and are thenpreserved by any sequence of
events frommove. In order to prove this it suffices to prove that the formulas

Init→ Invs
Invs→ ∀move. Invs

are bothDL-PA valid. From this it follows by standard principles of modal logic that
Invs→ ∀moven. Invs andInvs→ ∀move≤n. Invs areDL-PA valid.

Properties to be achieved.In our language we can express things such as “segregation
will always occur aftern moves” (ϕ1), “segregationmayoccur withinn moves” (ϕ2),
“when segregation occurs then none of the agents will move” (ϕ3), etc.:

ϕ1 = ∀move=n.Segreg<1
ϕ2 = ∃move≤n.Segreg<1
ϕ3 = Segreg<1 → ∀move.⊥

Other kinds of properties will be discussed in Section 5.
Given a property described by a formulaϕ, what we are interested in is to check

whether the formula
Init→ ϕ

is DL-PA valid, whereϕ is one of the above properties.
It is important to note that the lengths of the formulasSegreg<1, ¬UnH<1(k, l),

Init and of the complex eventmove are polynomial in the domain size parameterN;
precisely, their maximum length is inO(N4). Therefore the length of the formulasInit→
Invs, Invs → ∀move. Invs andInit → ϕk is polynomial inN; precisely, their length is
in O(N4). The validity problem in star-freeDL-PA being in PSPACE we obtain the
following results.

Proposition 3. The validity ofInit→ ϕk, for ϕk ∈ {ϕ1, ϕ2, ϕ3}, can be checked in space
polynomial in N.

We note that checking whether the invariantsInvs hold is more expensive because
of the combinatorial explosion in the expression of the constraint that the number of red
and blue agents is constant.

All our decision problems being in PSPACE, we can envisage touse existing the-
orem provers for PSPACE problems to check the above properties, such as provers for
modal logic K, for description logic ALC, or for Quantified Boolean Formulas. This
requires a polynomial transformation of the formulas to be checked into the language
of the respective logic.5

4.5 Varying the inhabitants’ tolerance

The inhabitants modelled here are extremely intolerant. More tolerant inhabitants can
be described as follows:

NB<2(k, l)
def
=

∧

(k1,l1),(k2,l2) : |k1−k|,|l1−l|,|k2−k|,|l2−l|≤1¬(B(k1, l1) ∧ B(k2, l2))

NB<p(k, l)
def
=

∧

(k1,l1),...,(kp,lp) : |km−k|,|lm−l|≤1¬(B(k1, l1) ∧ . . . ∧ B(kp, lp))

NB<p(k, l) is read “location (k, l) has less thanp blue neighbours”.NR<p(k, l) is defined
accordingly.UnH<1(k, l) andSegreg<1 can be generalised toUnH<p(k, l) andSegreg<p
in the obvious way. One may also stipulate that an agent is happy if the percentage of
agents in his neighbourhood with a colour different from hisis below some threshold.

5 While we know that such a transformation exists because all these problems are in the same
complexity class, it remains to find an elegant such transformation.

For the same reason as forNB<1, the length ofNB<2 and of anyNB<p (p ≤ 8) is in
O(1). It follows that the length ofUnH<2(k, l) (andUnH<p(k, l)) is still in O(N2), that
of Segreg<2 (andSegreg<p) is still in O(N2), and that ofmove is still in O(N4). So
complexity does not increase for these generalisations andjust as in Section 4.4 such
properties can still be checked in polynomial space.

5 More expressive languages

We now discuss some generalisations of our logic that allow to naturally express other
properties one would like to check in simulations.

Let us introduce two new modal operators≥k π and≥ 1
2 π, where≥k π. ϕ reads “ϕ

is true in at leastk of the possible updates byπ” and≥ 1
2 π. ϕ reads “ϕ is true in most of

the states afterπ”. So the formula∃π. ϕ of Section 3 is nothing but≥1 π. ϕ.

V |= ≥k π. ϕ iff |{V′ : (V,V′) ∈ Rπ andV′ |= ϕ}| ≥ k
V |= >1

2 π. ϕ iff |{V′ : VRπV′ & V′ |= ϕ}| > |{V′ : VRπV′ & V′ 6|= ϕ}|

This allows to formulate interesting properties of segregation game such as:

– “segregation will occur withinn movesat least ktimes” (ψ1);
– “segregation will occur withinn movesexactly ktimes” (ψ2);
– “segregation will occur aftern moves in most of the cases” (ψ3).

In formulas:

ψ1 = ≥k move≤n.Segreg<p

ψ2 = ≥k move≤n.Segreg<p ∧ ¬≥k+1 move≤n.Segreg<p

ψ3 = >
1
2 move=n.Segreg<p

Model checking requires some more bookkeeping in order to count valuations, but can
still be done in polynomial space. We obtain a PSPACE completeness result for the
validity checking problem by using Savitch’s theorem in thesame way as we did in the
proof of Theorem 2.

6 Conclusion

In this paper we have shown how to do social simulation in a dynamic logic with as-
signments, tests, sequential and nondeterministic composition, and bounded and non-
bounded iteration. In Section 5 we have shown that our logic allows to study interesting
properties of segregation game. For instance, it allows to test whether, given a certain
initial configuration of the grid, segregation will emerge at some point in the future at
leastk times (or exactlyk times). In order to test such properties by standard simulation
methods it would be necessary to run several computer simulations and to then perform
a statistical analysis of the results that have been observed. This allows then to esti-
mate the frequency with which segregation emerges at some point of the simulation. In
this sense, the approach proposed in this work offers a novelmethod for social simula-
tion studies and analysis. We have started to implement the segregation game in QBF
provers [6].

In this paper, we focused on a cellular automaton version of the segregation model.
We did so in order to reduce the length of our formulas describing the segregation game.
We present now a sketch of formalization of the agent-based model in order to illustrate
the possible use of our logic not only in cellular automaton-based simulations but also
in agent-based simulations. In the agent-based version of the model, every inhabitant
would be represented by an individual (typically notedi, j, . . .) who is situated on a grid
cell that is described by its coordinates (k, l). Each of these agents can move on the grid
from one cell to another one. Each agent is characterized by his colour (e.g.red or blue)
and his location on the grid. We thus have to adapt the propositional variables in order
to take into account this new representation. We do so by introducingAt(i, k, l) variables
expressing that agenti is at location (k, l). The variablesR(k, l) andDone(k, l) will be
changed toR(i) andDone(i), because agents and no more cells will have a color and
perform actions. The simulation will stop when every agent is happy (UnH<1(k, l) will
thus becomeUnH<1(i, k, l)). This new formalization will induce a noticeable increase
of complexity of some of our formulas; for example, the length of the formulamove
is currently inO(N4), while it will be in O(N22) in the agent version when we take the
parameterp = 8. Nevertheless, the possibility to represent an agent-based simulation
model in our logic opens us much more possibilities of interesting applications.

Instead of our logic we could also have used other logical approaches to reasoning
about actions such as the Situation Calculus [16], the Fluent Calculus [20], or the Event
Calculus [18]. However, while these formalisms allow to represent more or less the
same things, their mathematical analysis is less developed: while there are some decid-
ability results, there are no complexity results that couldbe compared to the PSPACE
completeness result for our logic.

As we have said in the introduction the kind of properties we want to prove can be
viewed as finite horizon planning problems. To witness, the way we prove our PSPACE
complexity results matchese.g.the Chapman’s TWEAK [4]. We could therefore have
used existing finite horizon planners in order to prove properties of simulations. It has
to be noted that planners typically build plans, while we areonly interested in prov-
ing plan existence. However, it is an interesting research avenue to exploit a possible
convergence of the fields of simulation and planning.

7 Acknowledgements

We wish to thank Philippe Balbiani and Charles Cultien for their useful comments on
the complexity aspects ofDL-PA and on the logical modeling of the segregation game.
This work was partially supported by the French RTRA STAE project MAELIA.

References

1. F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider, editors.De-
scription Logic Handbook. Cambridge University Press, 2003.

2. J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication and change.Information
and Computation, 204(204):1620–1662, 2006.

3. T. Bylander. The computational complexity of propositional strips planning.Artificial Intel-
ligence, 69:165–204, 1994.

4. D. Chapman. Planning for conjunctive goals.Artificial Intelligence, 32(3):333–377, 1987.
5. R. Conte and M. Paolucci. Responsibility for societies ofagents.Journal of Artificial Soci-

eties and Social Simulation, 7(4), 2004.
6. C. Cultien. Implementing dynamic logic of propositionalassignments in a QBF solver.

Master’s thesis, Université de Toulouse, sep 2011.
7. F. Dignum, B. Edmonds, and L. Sonenberg. Editorial: The use of logic in agent-based social

simulation.Journal of Artificial Societies and Social Simulation, 7(4), 2004.
8. H. P. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic epistemic logic with assign-

ment. InProceedings of AAMAS’05, pages 141–148. ACM Press, 2005.
9. B. Edmonds. How formal logic can fail to be useful for modelling or designing MAS. In

G. Lindeman, editor,Proceedings of the International Workshop on Regulated Agent-Based
Social Systems: Theories and Applications (RASTA’02), LNAI, pages 1–15. Springer-Verlag,
2004.

10. M. Fasli. Formal systems and agent-based social simulation equals null?Journal of Artificial
Societies and Social Simulation, 7(4), 2004.

11. M. Fattorosi-Barnaba and F. de Caro. Graded modalities I. Studia Logica, 44:197–221, 1985.
12. M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman Co., 1979.
13. D. Harel, D. Kozen, and J. Tiuryn.Dynamic Logic. MIT Press, Cambridge, 2000.
14. I. Horrocks. Using an expressive description logic: Fact or fiction? InProceedings of KR’98,

pages 636–649, 1998.
15. H. A. Kautz and B. Selman. Planning as satisfiability. InProceedings of ECAI’92, pages

359–363, 1992.
16. R. Reiter.Knowledge in Action: Logical Foundations for Specifying and Implementing Dy-

namical Systems. MIT Press, 2001.
17. T. C. Schelling. Dynamic Models of Segregation.Journal of Mathematical Sociology,

1:143–186, 1971.
18. M. Shanahan.Solving the frame problem: a mathematical investigation ofthe common sense

law of inertia. MIT Press, 1997.
19. P. Taillandier, A. Drogoul, D.A. Vo, and E. Amouroux. GAMA: a simulation platform that

integrates geographical information data, agent-based modeling and multi-scale control. In
Proceedings of PRIMA’10, 2010.

20. M. Thielscher. The logic of dynamic systems. InProceedings of the 14th International Joint
Conference on Artificial Intelligence (IJCAI’95), pages 1956–1962, Montreal, Canada, 1995.

21. W. van der Hoek. On the semantics of graded modalities.Journal of Applied Non-Classical
Logics, 2(1), 1992.

22. J. van Eijck. Making things happen.Studia Logica, 66(1):41–58, 2000.
23. U. Wilensky. Netlogo segregation model. Technical report, Center for Connected Learning

and Computer-Based Modeling, Northwestern University, Evanston, IL, 1997.
24. U. Wilensky. Netlogo. Technical report, Center for Connected Learning and Computer-

Based Modeling, Northwestern University, Evanston, IL, 1999.

