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Abstract. The aim of this paper is to show how to do social simulatioromid.
In order to meet this objective we present a dynamic logibadéisignments, tests,
sequential and nondeterministic composition, and bourahednon-bounded it-
eration. We show that our logic allows to represent and reasout a paradig-
matic example of social simulation: Schelling’'s segregratiame. We also build
a bridge between social simulation and planning. In pdaicwe show that
the problem of checking whether a given propdptysuch as segregation) will
emerge aften simulation moves is nothing but the planning problem withi-ho
zon n, which is widely studied in Al: the problem of verifying wiedr there
exists a plan of length at mostensuring that a given goal will be achieved.

1 Introduction

In a recent debate Edmonds [9] attacked what he saw as “erophaf logic papers
without any results” that are proposed in the field of mudfeat systems (MASSs). He
opposed them to papers describing social simulationsrditgpto Edmonds the latter
present many experimental results which are useful to ibettderstand social phe-
nomena, while the former kind of papers only aim at studyimge relevant concepts
and their mathematical properties (axiomatization, deuility, etc.), while not adding
anything new to our understanding of social phenomena.dparse to Edmonds’s at-
tack, some researchers defended the use of logic in MAS iarggrand in particular
in agent-based social simulatigABSS) [10, 5, 7]. For example, in [5] it is argued that
logic is relevant for MAS because it can be used to construatieh needed formal
social theory. In [10] it is argued that logic can be usefuABBSS because a logical
analysis based on (a) a philosophical or sociological th€b) observations and data
about a particular social phenomenon, and (c) intuitionsr-a blend of them — can
be considered to provide the requirements and the spemficftr an ABSS system
and more generally a MAS. Moreover, a logical system might bkeecheck the valid-
ity of the ABSS model and to adjust it by way of having a cleadenstanding of the
formal model underpinning it. All these researchers cagrsidgic and ABSS not only
as compatible, but also as complementary methodologies.



The idea we defend in this paper is much more radical tharetbbshe above
advocates of logic-based approaches. Our aim is to showABBES can be directly
done in logic and that a logical specification of a given dopl'enomenon can be
conceived as an ABSS model of this phenomenon. We believéhthaise of adequate
theorem provers will allow to obtain results that are beytivedpossibilities of existing
simulators. As a first step towards our aim we present in thjgep a simple logic
calledDL-PA (Dynamic Logic of Propositional Assignment§)L-PA is an extension
of propositional logic with dynamic operators. These opmmaallow to reason about
assignments ¢ T andp«_L changing the truth value of a propositional variaplt®
‘true’ or ‘false’ and aboutests®? of the truth of a Boolean formuta. More generally,
DL-PA allows to reason about those facts that will be true aftemderevents: that are
built from assignments and tests by means of the operat@smfential composition
(m1; m2), nondeterministic compositionr{Ur,), bounded iterations("), and unbounded
iteration @<>).

In order to illustrate the power of our logic we show that agoigmatic ABSS
model can be represented in our logic: Schelling’s segi@yatame [17]. The prob-
lem of checking whether (under some initial conditions) #egipropertyP such as
segregation willpossibly emergafter n simulation moves is reduced to the problem
of checking in our logic whether the initial conditions ingghat formulay encoding
propertyP will be true at the end of at least one sequence of evenfdength at most
n. Similarly, the problem of checking whethBrwill necessarily emergaftern simu-
lation moves is reduced to the problem of checking whetreeirtiial conditions imply
that will be true at the end of every sequence of eventf lengthn. Actually the
latter is nothing but the planning problem with horizanwhich is widely studied in
Al and is for example at the base of the state of the art plaBat?lan [15]: the prob-
lem of verifying whether there exists a plan of length at moshsuring that a given
goal ¢ will be achieved. In the general case this problem is knownetin PSPACE,
i.e. decidable in polynomial space [3]. We show that our logictfiesse boundaries. In
the past such PSPACE hard decision problems were consitetelout of reach of
automated theorem provers. However, in the last 20 years prggress was made on
that kind of problems: state-of-the-art theorem prover®®PACE complete problems
were shown to be of practical interest in particular in seticameb applications even
for realistic problem instances with thousands of clau%és [

One might wish to go beyond the simple existential and usalequantifications
that we mentioned above. This can be achieved by means oflropdeators with
counting (stemming from graded modal logics [11, 21] anccdp8on logics [1]). We
briefly discuss this extension &fL-PA and show that complexity of the star-free frag-
ment remains in PSPACE.

Simulation and logic use quite different terminologiesl&l summarizes the cor-
respondences between the concepts used in simulation@seliked in logic. Note that
the term ‘model’ occurs in both terminologies, but has défe meanings: in simulation
a model stands for a formal or conceptual model of a parti@palication one wishes
to investigate, such as Schelling’s segregation game icasg; inDL-PA, a model of



a formula is a valuation where that formula is tdud.further difference between both
fields is that logical formulas allow to talk about the whoesmasch space (e.g. about
what may necessarily emerges in all paths through the sgguessible paths), while
simulation is only about a single path in the search space.

simulation dynamic logic
model logical language + domain laws
state state, valuation (ifbL-PA also called a model
individual action atomic event, atomic program
simulation step complex event, complex program
property logical formula
state has a property valuation is a model of a formula
model has a property domain laws imply formula
simulation engine theorem prover

Table 1. Terminologies in simulation and in logic

The rest of the paper is organized as follows. In Section 2 eseiibe the segre-
gation game. In Section 3 we define our basic logic, and ini@edtwe show how it
allows to reason about the segregation game. Finally welslsetme extensions (Sec-
tion 5) and conclude (Section ).

2 The segregation game

In this section we give an informal description of the segtim game. A formal de-
scription is given in Section 4.

2.1 The original model

Thomas C. Schelling in [17] studied the phenomenon of sedi@yand in particular
the conditions of its occurrence due to “discriminatoryividbial choices” in groups
with recognizable distinctions such as sex, age, coloar;léte best-known example is

! The identification of a model with a valuation is thereforstjas in propositional logic, and is
proper to our logidL-PA (and more generally to logics of propositional control)eTkind
of models that are used in standard dynamic and temporaid@ge more complex transition
systems having a set of possible worlds, a transition meldietween possible worlds, and a
valuation for each possible worlds.

2 In the MABS pre-proceedings version of this article we gavaeae general PSPACE com-
plexity result for the wholeDL-PA, but the proof turned out to be incorrect. We conjecture
that the problem oDL-PA model checking (allowing for formulas with the™ operator) is
in fact EXPTIME hard. Specific solvers exist for problemshistcomplexity class, but they
are much less efficient than those for PSPACE problems. Wedhase to consider only the
star-free fragment dDL-PA in this paper.



the formation of color-dependent residential areas, uttgeinfluence of the individ-
ual preference of being surrounded by at most a thresholdeauof neighbours with
different colour: above the threshold inhabitants are ppliand will move to another
location.

One of the main results of Schelling’s work is to show that skgregation phe-
nomenon emerges even with a quite high tolerance thredhotézxample, even if each
inhabitant accepts that the majority of the neighbourssurding him has a colour dif-
ferent from his, there will nevertheless be a tendency tmfgroups of inhabitants with
the same colour.

2.2 The implemented model

The segregation model has been implemented in many lang@ageformalisms, in
particular in almost all agent-based simulation platfar@sod examples are NetLogo
[24,23] and GAMA [19]. Two mains implementations have beeappsed for this
model: cellular automaton models (where the cells are tkigeaentities) and agent-
based models (where inhabitants are represented as agdrdaramove from one cell
to another). We represent here the Segregation model akiacaluitomaton and will
discuss in the conclusion how to model the agent-basedoversi

The global environment of the simulation is taken as a chesshlike gridN x N.
Each of its cells is represented by a couple of integen$ € [1..N] x [1..N]. A cell is
either red (inhabited by a red agent), or blue (inhabitedibye agent), or has no colour
(uninhabited). When an unhappy inhabitant moves from oaeeplo another free one
then the latter takes the colour of the former and the forreeotnes colourless.

The two main parameters of the simulation are:

— the number of inhabitantd| and
— the tolerance threshold: the number of different inhaltitdrom which on an in-
habitant is unhappy, which is supposed to be the same foy eveabitant.

(Alternatively the parameters may be the density of intzati# and the percentage of
different inhabitants. We also note that most simulatiordeis rather use the inverse
of the tolerance threshold, called the similarity thredhol

There is a scheduler which generates at each simulationastapdom ordering
of the set of cells and then activates the cells accordindyab ¢rdering during the
step. Upon activation a cell checks its happiness: a celpph iff the percentage of
neighbour cells having a different colour is below its talece threshold. If the cell is
unhappy then its inhabitant will move to another free celttogrid.

The simulation stops when a stable state is reached. Thirisase when every
coloured cell ;e. every inhabitant) is happy.

A simulation may have three different behaviours: (1) tmewation loops because
the system does not reach a stable state where every ceppy (igpically when the
density of inhabitants on the grid is high and the toleramreghold is low, which
means inhabitants are very intolerant); (2) the simulasitmps but one cannot observe
any kind of segregation (this is typically the case when thelarity threshold is very
low, i.e. tolerance is high and/or density is very low); or (3) clustef cells with the
same colour emerge.



3 Dynamic logic with assignments

This section introduces the syntax and the semantics obtfie DL-PA. It is basically
an instantiation of propositional dynamic logic PDL [13}tkvtoncrete prograns—T
andp«_L assigning propositional variables to either true or false.

3.1 Language

We suppose given a countable set of propositional varigblegh typical elements
p, g, ... Remember that the set of Boolean formulas of classical mitipoal logic can
be built fromP by means of the Boolean operators of negation and disjun¢tie
other connectives being defined by means of abbreviations).

For Schelling’s game we will use evocative variables suciR@sl) andB(k, |).
Boolean formulas allow to express things suchi\as) ~(R(k, I) A B(k, 1)), representing
the fact that a cell cannot be both red and blue.

The set ofeventor programs/7 is defined by the following BNF:

ri=peT | pe—L| P?| mx | aUn | 77" | 7" | 7=

wherep ranges oveP, @ ranges over the set of Boolean formulas, andnges over
the set of natural numbeks

The eventp«—T andp«_L are assignments modifying the truth value of the propo-
sitional variablep: the evenp«—T setsp to true, and the evempk— L setsp to false.®?
is the test ofp, which fails if @ is falser1; 7, denotes a sequence of events' denotes
iteration ofr exactlyn times,n<" denotes iteration of up ton times, andr=> denotes
arbitrary iteration ofr. Assignments and tests are atomic events, while the otleaitev
are called complex. An example of a complex event is a bluabitant's move from
location (, I) to location K, I’), written as the sequen@&k, [)«—L; B(k',1")«T.

The set oformulas# is defined by the following BNF:

p=q|TIL|l-@leVe|ldre

whereq ranges oveP andx ranges over the set of everis (Observe that we us@
for Boolean formulas and for formulas ofDL-PA.) The formuladr. ¢ reads “there is
an execution of the eventafter whichg is true”. Hencedn. T has to be reads' may
occur”.

The operators ‘?’, ';’, U’ and <’ are familiar from propositional dynamic logic
PDL. (We could as well use the Kleene star and writehstead ofr<, as customary in
PDL.) In uninterpreted PDL these operators combine altstitaenic programs, while
in interpreted PDL they combine assignments of object temto values from some
domain. In contrast, atomic programs are here assignméistlo values to proposi-
tional variables, as previously studied in the dynamictepisc logic literature [22, 8,
2].

The formulad(g—T U g<.Ll).¢ has the same interpretation as the quantified
Boolean formula (QBFHg.¢ [12]. The language oDL-PA can therefore be viewed
as a generalisation of quantification over Boolean vargatiecomplex ‘quantification
programs’.



Thelengthof a formulay, noted|y|, is the number of symbols used to write doywn
— without ‘(’, * )", dots, and parentheses —, where integers are supposeddteimgth
1.3 For example

[Ag=T)=.(qVvr)=1+|g=T|+1+1+lqvr=1+3+2+3=0.

The logical operators and— are defined as abbreviations; for example> y ab-
breviates—¢ Vv . Moreover,¥r. ¢ abbreviates-ar. —¢. HenceVYr. L has to be read
“m cannot occur”. Familiar program constructions can also &fndd as abbrevia-
tions: Theskip event (‘nothing happens’) is defined as an abbreviatiormr ®f and
if ¢ then 71 else m; is defined as an abbreviation f ;1) U(—¢?;72).

Remark 1.Note that could define program as abbreviations of the sequential com-
position ofr, k times? and then defing=" as abbreviations dfj,.,., 7¢. However, the
expansion of these abbreviations would exponentiallygase formula length. For the
same reason we have avoided to introdueéas an abbreviation.

We user as a placeholder for either or L, and writeqer in order to talk about
g<T andg« L in an economic way.

3.2 Semantics

A valuationis nothing but a model of classical propositional logiiz. a subset of the
set of propositional variablés

A valuationV provides truth values for propositional variables. Theathtvalues
are modified by events: to each evenwe associate a binary relation on valuatiéhs
that is inductively defined as follows:

Rocr ={(V,V") 1 V' =V U {p}}
Rocr ={(V,V") 1 V' =V \ {p}}
Reim, = Rey o Ry,

Reur, = Ry, U Ry,

R ={(V,V) : VE ¢}

Ren = (Ry)"

Resn = UOsmsn(Rn)m

Rre = Uoem(Re)™

We call the valuation¥” such thatV, V') € R, thepossible updates of V hy Observe
thatR.» is indeed the ‘nothing happens’ event relating every vaunab itself.

Then the truth conditions are the usual onestfor, negation and disjunction, plus
one fordr. ¢ in terms of possible updates:

VEpP iff peV

VET

VIEL

VE-p iff Vg

VEeVvyiff VEgpoOrVEY

V E dn. ¢ iff there isV’ such thaVR,V’ andV’ E ¢

3 Precisely, the length of an integeshould be log. Our hypothesis is however without harm.
4 The precise definition is inductive® = skip, andz**! = 7*; 7.



A valuationV is amodel ofy if and only if V | ¢. A formulay is satisfiable if and
only if there exists a model @f, andy is valid if and only if every valuation is a model
of ¢.

3.3 Reduction axioms for the star-free fragment

The fragment oDL-PA without arbitrary iterations (called the ‘star-free fragnt’ in
PDL) can be axiomatised by means of reduction axioms. Thdeena allow to elimi-
nate all the dynamic operators from formulas. However,éliatination might resultin
an exponential blowup due to the operator of nondeterniérdsimpositioru . We will
therefore later on characterize the complexity of validitgcking by other means.

Proposition 1. The following equivalences aL-PA valid.

- @ ifn=0
I "o © o1 .
A= . dn.¢ ifn>0
ifn=0
" o 1 .
At (e v An.p) ifn>0
Jp?.y S QAY
An1Umo. o dAr.o VvV Am. @
EI7T1;72'2.90 <—)37Z'1.E|7T2.Q0
dper. —¢ o —dpet.@
Ap—7.(p1 V ¢2) & ApT. 1 V Ap—T. 2
dpe—7. T T
dper. L o1
ifq=
dp<t.q o’ . a=p
q ifg#p

These equivalences provide a complete set of reductiomesdor *-free dynamic
operatorsiz. Call red the mapping orDL-PA formulas which iteratively applies the
above equivalences from the left to the right, starting fiame of the innermost modal
operators. It allows to first eliminate complex events, thash the dynamic operators
inside the formula, and finally eliminate them when facingagmmic formula. For ex-
ample, consider the complex formuip«— 12. (p v q). First the complex evemi— 12
is eliminated, then the innermost modal operator is distetd overv and eliminated,
and finally the outermost modal operator is distributed dimdieated:

Ap—12.(pVv Q) < dp—L.Ap—L.(pV Q)
o dp—L. (Ap—L.pV IAp—L.0Q)
o dp—1.(L V)
o dp—_L.q
< q

We have simplified a bit between the 3rd and 4th line, reptatie subformula. v q
by the equivalend.



Proposition 2. Let ¢ be a formula in the language @L-PA without the arbitrary
iteration operatorr<=. Then

1. red(y) has no modal operators;
2. red(p) & ¢ is DL-PA valid;
3. red(yp) is DL-PA valid iff red(y) is valid in classical propositional logic.

Proposition 2 indicates a close relationship betweenfstabL-PA and proposi-
tional logic. The merit of former over the latter is to progid model theory and an
intuitive and more succinct language. Both are valuablefaomodelling perspective.

3.4 Complexity for the star-free fragment

Proposition 2 tells us that star-fr&4_-PA is not more expressive than classical propo-
sitional logic. However, reduction may exponentially isase the length of the formula
because of the event operatasrsandz=". But this is a suboptimal procedure, as we
shall see now.

We first give the complexity result for model checking. Theuts of the model
checking problem are a valuation and a formulap, and the problem is to decide
whethetV E ¢.

Theorem 1. The problem of star-fre®L-PA model checking is PSPACE-complete.
PrROOF We first establisthardnessby reducing the problem of validity of QBFs to

star-freeDL-PA model checking. Consider a fully quantified Boolean formula
@ = A VA3 . . . Iqm-1Y0m. ¢

wherem > 0 is even and wherg(q, . . ., m) iS & propositional formula containing no
variables other thaq, .. ., gm. (The hypothesis that the number of quantifiers is even
is without loss of generality: it suffices to add a dummy Valeay, not occurring inp.)

We define

@PYPA = Jr0 Vo, L. A1 Ym. @

wheren, = QT UQgk—L, for 1 < k < m. Consider the valuation over the det=
{as, .- .,0m} of propositional variables such that, s&q;) = £f for all g;. It is readily
checked thatp is valid in Quantified Boolean Logic if®®- is true inV. Since both
the size of®P-PA and the size of the model are linear in the sizépfve conclude that
free-staiDL-PA model checking is PSPACE-hard.

Proof ofmembershipequires a recursive definition of the set of sequences ofiato
eventsadmittedby a complex event.
adn(pe—r) = {p7}
adm@®?) = {d?
adn'(ﬂl;ﬂz) ={ay;a2 . a1 € adn(nl) andas € adn'(ﬂz)}
adm(m Um,) = adm(ry) U adn(ry)
adm(z=%) ={T7?
adm(z=™Y) = {a1; @2 : a1 € adm(z™") anda, € adn(r)}
adm(z=%) ={77%
adm(z="1) = adm(z=") U
{ar;a2 @ a1 € adn“(nsn) anday € adm(n)}



The main point in the proof is that every possible update cflaationV by a complex
eventr can also be reached by a sequence of atomic events that igediiny and

that is at most as long as Based on that one can prove that membership of a couple of
valuations ¥/, V') in R, can be decided in polynomial space. Finally one can proue tha
a formulayp can be evaluated in space polynomial in the size.of ]

Theorem 2. The problem of star-freBL-PA validity checking is PSPACE-complete.

PROOF. Hardness can be proved by translating QBF formulas tdistabL-PA in the
same way as in Theorem 1. Membership can be proved for théretdbL-PA satisfi-
ability checking problem as follows: givemwe guess a mod&l. (V can be supposed
to be of polynomial size because we may restrict our attatishe propositional vari-
ables occurring inp, and neglect those that don’t.) Then we check whethes ¢,
which can be done in polynomial space by mirroring the trthditions. This shows
that star-free@dL-PA satisfiability can be checked in NPSPACE. Now by Savitchéoth
rem NPSPACE = PSPACE, and therefore star-ibéePA satisfiability can be checked
in polynomial space. It follows that the complementary-$tae DL-PA validity prob-
lem can be checked in polynomial space, too. ]

The above result shows that -PA is more succincthan propositional logic: there
are DL-PA formulas (and even star-frdgl-PA formulas) such that every equivalent
propositional formula is exponential longer.

4 The segregation game iDL-PA

In Section 2 we introduced Schelling’s segregation gameniiméormal way. Let us
now model it inDL-PA as a cellular automaton. We start by describing agents whose
tolerance threshold is 0.

4.1 Propositional variables
We need three kinds of propositional variables:

R(k, 1) “cell (k,I) is red”
B(k, 1) “cell (k,I) is blue”
Done(k,l) “itwas already cellk,1)’s turn in the present step”

where everyK, ) is a location in the grid [IN] x [1..N]. The following abbreviations
will be useful:

NB(k 1) % Ak <N - ek r—ti<1 "B(K', 1)

NRa(k 1) E Awpen: k—k.—ti<1 ~R(K', 1)

UnHZa(k, 1) &F (R(k, 1) A =NBZa (k. 1)) V (B(k, 1) A =NR1(k, 1))
Free(k,I) " -R(k 1) A -B(k 1)

Segreg.; = Vi UnH (k1)



NB.i(k,1) can be read “locationk(l) has no blue neighbour” and similarly for
NR.1(k,1). UnH_1(i, k,1) can be read “locatiork(l) is inhabited and has some neigh-
bour with a different colour’Free(k, |) can be read “locatiork(l) is free”. Finally, the
property of segregation holds —not8dgreg_,— if and only if “every inhabitant has
no neighbour with a different colour”.

Let us compute the length of these formulas. The length dfi b&.; (k,1) and
NR.1(k 1) isinO(1),i.e.itis constant (the quantification over the locatiokisl() being
void because there are exactly eight neighbour locatiork, ). The same holds for
the length of~-UnH_;(k, I). Finally, the length oSegreg_, is in O(N?).

4.2 Describing inhabitants’ moves

The move of an inhabitant from a locatiok k) to the location K, 1) is modelled by
the swap of color between cellg () and &/, 1’). It can be described by a complex event
in our language of events.

move(k. 1) € U, (-B(K,1") A =R(K,1))? ;
(B 1)?; Bk )L ; BK,I")eT) U
(R(k,1)?: R(k, )L ; R(K,1)T))

Then a move of the simulation is described by a nondetertidrdemposition of
agent moves (plus some turn taking management):

def

move = (Uy ~Done(k, 1)2; (UnH.1(k 1)2;move(k, 1)) U =UnH.y(k,1)?);Done(k, 1)—T) ;
(((Ai Done(k, 1))? ;initialize ) U (= A\, Done(k, |))'.>)

Using if-then-else this can be written in a way that is pegrapre understandable as:

move % (Ui =Done(k, 1)?; (f UnH.a (k. 1) then move(k,I) else skip) ; Done(k, 1)) ;
(if (A Done(k, 1)) then initialize else skip)

Theinitialize event starts a new simulation step, settingdoae(k, |) variables of
the inhabited cells to false: after it, none of the inhabitels has played yet.

initialize " (B(ky, 1) V R(K1, 11))? ;:Done(Kn, ln)—L ;... :
(B(Kn, In) V R(Kn, 1n))? ;Done(kn, In) L

Nondeterministic choice of a location in thmove formula corresponds to the
scheduler in simulation platforms such as NetLogo or GAMAegTatter generates
at the beginning of each step a random ordering of the setasftagnd then activates
the agents according to that ordering during the step. Alsitiom step consists iN?
executions ofnove.

The lengths of botmove(k, I) andinitialize are inO(N?). The length ofnove is in
O(N? x N?) = O(N%).



4.3 |Initial state

In order to properly analyse the segregation model, we nesstribe thenitial statein
our formalism:

Init = (/\(k,neJR R(k, |)) A (/\(k,l)eJB B(k, |)) A (/\(k,l)eJRUJB —Done(k, |))

whereJg € N2 is the set of red cells anty € N? the set of blue cells. As a cell cannot
be blue and red these two sets have to be disjomtwe require thatlir N Jg = 0.
Moreover, the numbers of colored cells must be smaller thandtal number of cells:
|Jrl+Jg] < N2. Finally, note that we do not say anything about the statusofhabited
cells: we do not care wheth@one(k, I) is true or false there. The length it is in
O(N?).

4.4 Describing and proving properties

Properties to be maintained (invariants). During the execution of a simulation, sev-
eral properties should be maintained and thus be alwaysltrtige case of Schelling’s
game, a cell cannot be both red and blue:

x1= A = Bk ARKD)

We need an auxiliary definition which expresses that at leasdividuals have prop-
erty P:

atleast (n, P) = v P(ky, 1) A ... A P(Kn, 1)
(Kal1)seees(knuln) = (ki li)# (K1) if i)

This allows us to state that the numbers of red and blue cedlexactly|Jg| and|Jg|
just as in the initial state:

x2 = atleast (|Jrl, R) A —atleast (|Jr| + 1, R) A atleast (|Jg|, B) A —atleast (|Jg| + 1, B)

Together these formulas make up the invariants of Sch&lgame:
Invs = xy1 A x2

The length ofy; is in O(N?), while that ofy, is in ()(2’\‘2) (which means that will be is
costly to check the latter property).

The difference betweenit andinvs is that whilelnit has just to be true in the initial
state, the laws must be true in the initial state and in anyatedf the current state. In
order to ensure that our modelling works properly the firstgh to do is to check that
the invariants hold verified in the initial state and are thegserved by any sequence of
events frommove. In order to prove this it suffices to prove that the formulas

Init — Invs
Invs — Ymove. Invs

are bothDL-PA valid. From this it follows by standard principles of modagic that
Invs — Ymove". Invs andinvs — Ymove=". Invs areDL-PA valid.



Properties to be achieved.In our language we can express things such as “segregation
will always occur aftem moves” (p1), “segregatiormayoccur withinn moves” (o),
“when segregation occurs then none of the agents will mayg); étc.:

@1 = VYmove™. Segreg_,
@2 = Amove=". Segreg_,
3 = Segreg., — Ymove. L

Other kinds of properties will be discussed in Section 5.
Given a property described by a formuylawhat we are interested in is to check
whether the formula
Init - ¢

is DL-PA valid, wherey is one of the above properties.

It is important to note that the lengths of the formuBegreg_;, —UnH.1(k, 1),
Init and of the complex evemhove are polynomial in the domain size parameter
precisely, their maximum length is @N*). Therefore the length of the formulbst —
Invs, Invs — ¥Ymove. Invs andInit — ¢ is polynomial inN; precisely, their length is
in O(N%). The validity problem in star-fre®L-PA being in PSPACE we obtain the
following results.

Proposition 3. The validity ofinit — ¢, for ¢k € {¢1, @2, @3}, can be checked in space
polynomial in N.

We note that checking whether the invariaimigs hold is more expensive because
of the combinatorial explosion in the expression of the t@ast that the number of red
and blue agents is constant.

All our decision problems being in PSPACE, we can envisagestoexisting the-
orem provers for PSPACE problems to check the above pregesiich as provers for
modal logic K, for description logic ALC, or for Quantified Bean Formulas. This
requires a polynomial transformation of the formulas to beaked into the language
of the respective logie.

4.5 Varying the inhabitants’ tolerance

The inhabitants modelled here are extremely intoleranteMolerant inhabitants can
be described as follows:

def

NBo(k, 1) = Akt (karla) - k=K =L ko—kifl—t1<1 ~(B(Ke, [1) A B(kz, 12))
def

NBp(k, 1) = Al )oekolp) : kn—Killm-ti<2 7(B(Ke, [1) Ao A B(Kp, [p))

NB.,(k, 1) is read “locationk, I) has less thap blue neighbours"NR,(k, 1) is defined
accordinglyUnH.4(k,I) andSegreg_, can be generalised tdnHp(k, 1) andSegreg_,,
in the obvious way. One may also stipulate that an agent ipyhiiphe percentage of
agents in his neighbourhood with a colour different fromikiselow some threshold.

5 While we know that such a transformation exists becausdedlet problems are in the same
complexity class, it remains to find an elegant such transdtion.



For the same reason as ¥B.1, the length oNB., and of anyNB_, (p < 8) isin
O0(1). It follows that the length obnH.»(k, 1) (andUnHp(k, 1)) is still in O(N?), that
of Segreg_, (andSegreg_,) is still in O(N?), and that ofmove is still in O(N*). So
complexity does not increase for these generalisationgumtds in Section 4.4 such
properties can still be checked in polynomial space.

5 More expressive languages

We now discuss some generalisations of our logic that akomaturally express other
properties one would like to check in simulations.

Let us introduce two new modal operatetis andz% n, where>k 7. ¢ reads
is true in at leask of the possible updates ly and 2% 7. @ reads @ is true in most of
the states after”. So the formuladn. ¢ of Section 3 is nothing butl . ¢.

VE >kro iff (V@ (V,V)eR, andV’ E ¢} > k
Vi >Ingiff (V@ VRV &V Egll > [V @ VRV & V' I ¢l

This allows to formulate interesting properties of segtiegegame such as:

— “segregation will occur withim movesat least ktimes” (41);
— “segregation will occur withim movesexactly ktimes” (42);
— “segregation will occur aftem moves in most of the casesl).

In formulas:

1 = >k move=". Segreg_,,
2 = >k move=". Segreg_, A ~>k+1 move=". Segreg_,
Y3 = >3 move™. Segreg_,,

Model checking requires some more bookkeeping in order timcealuations, but can
still be done in polynomial space. We obtain a PSPACE corapkss result for the
validity checking problem by using Savitch’s theorem in slame way as we did in the
proof of Theorem 2.

6 Conclusion

In this paper we have shown how to do social simulation in aadyin logic with as-
signments, tests, sequential and nondeterministic coitgpgsand bounded and non-
bounded iteration. In Section 5 we have shown that our Idipwa to study interesting
properties of segregation game. For instance, it allowegbwhether, given a certain
initial configuration of the grid, segregation will emergesame point in the future at
leastk times (or exactlk times). In order to test such properties by standard sironlat
methods it would be necessary to run several computer siimigsand to then perform
a statistical analysis of the results that have been obdefrgs allows then to esti-
mate the frequency with which segregation emerges at soimeqfdhe simulation. In
this sense, the approach proposed in this work offers a mogtod for social simula-
tion studies and analysis. We have started to implementeieegation game in QBF
provers [6].



In this paper, we focused on a cellular automaton versioh@segregation model.
We did so in order to reduce the length of our formulas deswithe segregation game.
We present now a sketch of formalization of the agent-bas®tbhin order to illustrate
the possible use of our logic not only in cellular automab@ased simulations but also
in agent-based simulations. In the agent-based versidmeofriiodel, every inhabitant
would be represented by an individual (typically notgd. . .) who is situated on a grid
cell that is described by its coordinatéslj. Each of these agents can move on the grid
from one cell to another one. Each agent is characterizedstyolour €.g.red or blue)
and his location on the grid. We thus have to adapt the prtpoal variables in order
to take into account this new representation. We do so byduotringAt(i, k, I) variables
expressing that agents at location k, ). The variable®R(k, 1) andDone(k, ) will be
changed tdR(i) andDone(i), because agents and no more cells will have a color and
perform actions. The simulation will stop when every agsrtiappy UnH.1(k, 1) will
thus becoménH_.4(i, k, I)). This new formalization will induce a noticeable increas
of complexity of some of our formulas; for example, the léngf the formulamove
is currently inO(N*), while it will be in O(N??) in the agent version when we take the
parametep = 8. Nevertheless, the possibility to represent an ageraebsisnulation
model in our logic opens us much more possibilities of irgéng applications.

Instead of our logic we could also have used other logicat@gghes to reasoning
about actions such as the Situation Calculus [16], the El@afculus [20], or the Event
Calculus [18]. However, while these formalisms allow toregent more or less the
same things, their mathematical analysis is less develogdt there are some decid-
ability results, there are no complexity results that cdagdcompared to the PSPACE
completeness result for our logic.

As we have said in the introduction the kind of properties vemtito prove can be
viewed as finite horizon planning problems. To witness, tag we prove our PSPACE
complexity results matchesg.the Chapman’s TWEAK [4]. We could therefore have
used existing finite horizon planners in order to prove pridge of simulations. It has
to be noted that planners typically build plans, while we ané interested in prov-
ing plan existence. However, it is an interesting reseaveimae to exploit a possible
convergence of the fields of simulation and planning.
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