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Abstract. Here-and-there models and equilibrium models were investigated as a
semantical framework for answer set programming by Pearce, Cabalar, Lifschitz,
Ferraris and others. The semantics of equilibrium logic is indirect in that the
notion of satisfiability is defined in terms of satisfiability in the logic of here-and-
there. We here give a direct semantics of equilibrium logic, stated in terms of a
modal language into which the language of equilibrium logic can be embedded.
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1 Introduction

A here-and-there model (HT model) is made up of two sets of propositional variables
H (‘here’) and T (‘there’) such that H ⊆ T . The logical language to talk about such
models has connectives ⊥, ∧, ∨, and⇒. The latter is interpreted in a non-classical way
and is therefore different from the material implication→:

H,T |= ϕ⇒ ψ iff H,T |= ϕ→ ψ and T,T |= ϕ→ ψ

where→ is interpreted just as in classical propositional logic. Such models were stud-
ied since Gödel in order to give semantics to an implication with strength between intu-
itionistic and material implication [7]. They were later investigated by Pearce, Cabalar,
Lifschitz, Ferraris and others as the basis of equilibrium logic, which is a semantical
framework for answer set programming [10, 9, 11, 2, 3, 6, 8]; we refer to the equilibrium
logic website1 for an overview.

Equilibrium models of a formula ϕ are defined in an indirect way that is based on
HT models: an equilibrium model of ϕ is a set of propositional variables T such that

1. T,T |= ϕ, and
2. there is no HT model (H,T ) such that H is strictly weaker than T and H,T |= ϕ,

where ‘weaker’ means that H is included in T . For example, T = ∅ is an equilibrium
model of p ⇒ ⊥ because (1) for the HT model (∅, ∅) we have ∅, ∅ |= p ⇒ ⊥ and
because (2) there is no set H that is strictly included in the empty set.

We here give a direct semantics of equilibrium logic in terms of a modal language
having two unary modal operators [T] and [S]. Roughly speaking, [T] allows to talk

1 http://www.equilibriumlogic.net



about the there-world: a valuation that is at least as strong as the actual valuation; and
[S] allows to talk about all here-worlds that are possible if we take the actual world as a
there-world: it quantifies over all valuations that are weaker than the actual world. This
language can clearly be interpreted on HT models; however, we here give a semantics
in terms of Kripke models. We call our logic MEM: the Modal logic of Equilibrium
Models.

We relate the language of equilibrium logic to our bimodal language by means of a
translation tr. The main clause of the translation is:

tr(ϕ⇒ ψ) = (tr(ϕ)→ tr(ψ)) ∧ [T](tr(ϕ)→ tr(ψ))

A first attempt to relate equilibrium logic to modal logic in the style of the present
approach was presented in [5] in terms of modal operators of contingency. The present
paper improves over it by providing a complete axiomatisation of the modal logic of
equilibrium models in terms of a bimodal language.

This paper is organised as follows. In Section 2 we introduce our modal logic of
equilibrium models MEM both semantically and axiomatically. In Section 3 we recall
the logic of here-and-there and equilibrium logic. In Section 4 we define the translation
tr from the language of the logic of here-and-there to the language of MEM; we prove
that for any formula ϕ, ϕ is HT valid if and only if tr(ϕ) is MEM valid. This paves the
way to the proof that ϕ is a consequence of χ in equilibrium logic if and only if the
modal formula

[T] (tr(χ) ∧ [S]¬tr(χ))→ [T]tr(ϕ)

is valid in MEM. Section 5 concludes.

2 The modal logic of equilibrium models: MEM

We now introduce the modal logic of equilibrium models MEM in the classical way:
we start by defining its bimodal language and its semantics and then axiomatise its
validities.

2.1 Language

Throughout the paper we suppose given a countably infinite set of propositional vari-
ables P. The elements of P are noted p, q, etc. Our language L[T],[S] is bimodal: it has
two modal operators [T] and [S]. Precisely,L[T],[S] is defined by the following grammar:

ϕF p | ⊥ | ϕ→ ϕ | [T]ϕ | [S]ϕ

where p ranges over P. [T]ϕ may be read “ϕ holds at the there world” and [S]ϕ may be
read “ϕ holds at every (strictly) weaker world”.

The set of propositional variables occurring in formula ϕ is noted Pϕ.
L[T] is the sublanguage of L[T],[S] formulas without [S], i.e., L[T] formulas are built

from [T] and the Boolean connectives only.
We employ the standard abbreviations of the Boolean connectives: > def

= ⊥ → ⊥,
¬ϕ

def
= ϕ → ⊥, ϕ ∨ ψ def

= ¬ϕ → ψ, and ϕ ∧ ψ def
= ¬(ϕ → ¬ψ). Moreover, 〈T〉ϕ and

〈S〉ϕ respectively abbreviate ¬[T]¬ϕ and ¬[S]¬ϕ.



2.2 Kripke models

We interpret the formulas of our language L[T],[S] in a class of Kripke models that has
to satisfy particular constraints. We then give an axiomatisation of the validities of that
class of models and prove its completeness.

Consider the class of Kripke models M = 〈W,T ,S,V〉 such that

– W is a non-empty set of possible worlds;
– V is a valuation on W mapping possible worlds w ∈ W to sets of propositional

variables Vw ⊆ P;
– T ,S ⊆ W ×W are relations on W such that:

(d) for every w there is a v ∈ W such that wT v;
(alt) for every w, if wT v and wT v′ then v = v′;
(heredity) for every w, u, if wSu then Vu ⊆ Vw;
(negatable) for every w, for every finite P,Q ⊆ Vw such that P is nonempty

and P ∩ Q = ∅, there is u such that: wSu,Vu ∩ P = ∅ and Q ⊆ Vu;
(mtrans) for every w, u, v, if wSu and uT v then wT v;
(wconv) for every w, v, if wT v then w = v or vSw.

The first two constraints are about the relation T , the next two are about the relation
S, and the last two are about both. Constraints (d) and (alt) say that at any world w there
is exactly one possible world that is accessible via T . The (heredity) constraint is just as
the heredity constraint of intuitionistic logic, except that the intuitionistic relation is the
inverse ofS. In the finite case, the (negatable) and the (heredity) constraints together say
basically that for every w, the set of worlds that are accessible from w via the relation S
contains all those worlds u whose valuations Vu are strictly included in Vw. The mixed
transitivity constraint (mtrans) together with (d) and (alt) entails that in S connected
parts of the graph M there is a unique there-world. The weak conversion constraint
(wconv) says that T is contained in S−1 ∪ idW , where idW is the diagonal of W.

Let us denote by T (w) the unique world that is accessible from w via T . The func-
tion T is well-defined because of constraints (d) and (alt). Note that (wconv) can then
be reformulated as: T (w) = w or T (w)Sw, for every w.

Proposition 1. The following properties hold for every Kripke model that satisfies the
constraints above.

1. For every w, T (T (w)) = T (w), i.e., T is an idempotent function.
2. For every w, u, if wSu then T (w) = T (u).
3. For every w such that Vw is finite, the set {Vu : wSu} equals either {V : V ⊆ Vw},

or {V : V ⊂ Vw}.

The last property is due to the (heredity) and the (negatable) constraints and says that
for finite Vw, the set of valuations associated to the worlds that are accessible from w
via S is either the set of subsets of Vw or the set of strict subsets of Vw: it equals either
2Vw or 2Vw \ {Vw}. This will be used in the proof of Proposition 9.



2.3 Truth conditions

The truth conditions for our bimodal logic are standard. The relation T interprets [T]
and S interprets [S]:

M,w |= p iff p ∈ Vw;
M,w 6|= ⊥;
M,w |= ϕ→ ψ iff M,w 6|= ϕ or M,w |= ψ;
M,w |= [T]ϕ iff M,T (w) |= ϕ;
M,w |= [S]ϕ iff M, u |= ϕ for every u such that wSu.

We say that ϕ has a Kripke model when M,w |= ϕ, for some model M and world w
in M. We also say that ϕ is satisfiable in Kripke models. Moreover, ϕ is valid in Kripke
models if and only if M,w |= ϕ for every model M and possible world w of M.

The next proposition says that when checking satisfaction it is enough to only con-
sider models with finite valuations.

Proposition 2. Let ϕ be a L[T],[S] formula. Let M = 〈W,T ,S,V〉 be a Kripke model
satisfying (d), (alt), (heredity), (negatable), (mtrans), and (wconv). Let the valuation Vϕ

be defined as follows:
Vϕ

w = Vw ∩ Pϕ, for every w ∈ W

Then Mϕ = 〈W,T ,S,Vϕ〉 is a Kripke model satisfying (d), (alt), (heredity), (negatable),
(mtrans), and (wconv), and M,w |= ϕ if and only if Mϕ,w |= ϕ.

Proof. That M,w |= ϕ if and only if Mϕ,w |= ϕ can be shown by straightforward
induction on the form of ϕ.

As to the constraints, those that are only about the accessibility relations are clearly
preserved because we just modify the valuation. The model Mϕ satisfies constraint
(heredity): suppose wSu; as M satisfies (heredity) we have Vu ⊆ Vw; hence Vϕ

u ⊆ Vϕ
w.

Finally, the model Mϕ satisfies (negatable): suppose P,Q ⊆ Vϕ
w = Vw ∩Pϕ are finite sets

such that P , ∅; as M satisfies (negatable) there is u such that wSu and Vu ∩ P = ∅ and
Q ⊆ Vu. Clearly, for that u we also have Vϕ

u ∩ P = ∅; and for that very u we also have
Q ⊆ Vϕ

u = Vu ∩ Pϕ. q.e.d.

We note that this property is different from the standard finite model property of
modal logics which requires a finite set of possible worlds.

2.4 Axiomatics, decidability, and complexity

We now give an axiomatisation of the MEM validities.
First we define the fragment of positive Boolean formulas of L[T],[S] by the follow-

ing grammar:
ϕ+ F p | ϕ+ ∧ ϕ+ | ϕ+ ∨ ϕ+

Observe that every positive formula is falsifiable. (Note that > is not a positive Boolean
formula.)



K([T]) the axioms and inference rules of modal logic K for [T]
K([S]) the axioms and inference rules of modal logic K for [S]

D([T]) [T]ϕ→ 〈T〉ϕ
Alt([T]) 〈T〉ϕ→ [T]ϕ

Heredity([S]) 〈S〉ϕ+ → ϕ+ for ϕ+ a positive Boolean formula
Negatable([S]) (ϕ+ ∧ ψ)→ 〈S〉(¬ϕ+ ∧ ψ) for ϕ+ a pos. Boolean formula

s.t. Pϕ+ ∩ Pψ = ∅

MTrans([T], [S]) [T]ϕ→ [S][T]ϕ
WConv([T], [S]) ϕ→ [T](ϕ ∨ 〈S〉ϕ)

Table 1. Axiomatisation of MEM

Our axiom schemas and inference rules are listed in Table 1. The axiom schemas
D([T]) and Alt([T]) are familiar from standard textbooks on modal logic. The schema
Heredity([S]) captures the heredity constraint of intuitionistic logic. Note that it could
be replaced by the axiom schema 〈S〉p→ p, for p a propositional variable, or by ¬ϕ+ →

[S]¬ϕ+, for ϕ+ a positive Boolean formula. The schema Negatable([S]) ensures that the
modal operator [S] quantifies over all strict subsets of the actual valuation. The schema
MTrans([T], [S]) is an axiom of mixed transitivity. The schema WConv([T], [S]) is a
weak conversion axiom familiar from tense logics.

The notions of a proof and of provability of a formula are defined as usual in modal
logic. For example [S]⊥ → ¬p can be proved from Negatable([S]) by K([S]), i.e., by
standard modal principles. The proof of the transitivity axiom [T]ϕ → [T][T]ϕ and its
converse is a bit longer.

Proposition 3. The schema [T]ϕ↔ [T][T]ϕ is provable.

Proof.

1. [T]ϕ→ [T]([T]ϕ ∨ 〈S〉[T]ϕ) (axiom WConv([T], [S]))
2. 〈S〉[T]ϕ→ 〈S〉〈T〉ϕ (axiom D([T]) and K([S]))
3. 〈S〉〈T〉ϕ→ 〈T〉ϕ (axiom MTrans([S], [T]))
4. 〈T〉ϕ→ [T]ϕ (axiom Alt([T]))
5. 〈S〉[T]ϕ→ [T]ϕ (from 2, 3, 4)
6. [T]ϕ→ [T]([T]ϕ ∨ [T]ϕ) (from 1 and 5)
7. [T]ϕ→ [T][T]ϕ (from 6)
8. [T][T]ϕ→ 〈T〉〈T〉ϕ (axiom D([T]) twice, and K([T]))
9. 〈T〉ϕ→ 〈T〉〈T〉ϕ (from 4, 7, 8)

10. [T]ϕ↔ [T][T]ϕ (from 7, 9)

q.e.d.

The next schema is also going to be useful.



Proposition 4. The following formula schema is provable:

Negatable′([S])
(
(
∧

p∈P p) ∧ (
∧

q∈Q q)
)
→ 〈S〉

(
(
∧

p∈P ¬p) ∧ (
∧

q∈Q q)
)

for P,Q ⊆ P finite, P nonempty, and P ∩ Q = ∅

Proof. Negatable′([S]) can be proved from Negatable([S]) as follows. Suppose P,Q ⊆ P
finite, P nonempty, and P ∩ Q = ∅. The implication

((
∧
p∈P

p) ∧ (
∧
q∈Q

q))→ ((
∨
p∈P

p) ∧ (
∧
q∈Q

q))

is valid in classical propositional logic. Then Negatable′([S]) follows with the axiom
schema Negatable([S]). q.e.d.

Our axiomatisation is sound and complete w.r.t. the set of formulas that are MEM
valid.

Theorem 1. Let ϕ be a L[T],[S] formula. ϕ is valid in Kripke models of MEM if and
only if ϕ is provable from the axioms and inference rules of MEM.

Proof.
Soundness is proved as usual. We just consider the case of axiom Negatable([S]).

Let ϕ+ be a positive Boolean formula such that Pϕ+ ∩ Pψ = ∅. Suppose M,w |= ϕ+ ∧ ψ.
Put ϕ+ in conjunctive normal form, and let κ = (

∨
P) be some clause of that CNF, for

some P ⊆ Pϕ+ , ∅. (Observe that P , ∅ by the definition of positive formulas.) Let
Pw = P ∩ Vw. We have Pw , ∅ because M,w |= κ. Let Q = Vw ∩ Pψ. As M satisfies the
constraint (negatable), there is a u ∈ W such that wSu, Vu ∩ Pw = ∅ and Q ⊆ Vu. Hence
M, u 6|= κ, and therefore M, u 6|= ϕ+. As Pϕ+ ∩ Pψ = ∅ and as Vu differs from Vw only
by variables from Pϕ+ we also have M, u |= ψ. Hence M, u |= ¬ϕ+ ∧ ψ, and therefore
M,w |= 〈S〉(¬ϕ+ ∧ ψ).

To prove completeness w.r.t. Kripke models of MEM we use canonical models [1,
4]. Consider the set W of maximal consistent sets of MEM. Define the accessibility
relations T and S on W by:

uTw iff {ϕ : [T]ϕ ∈ u} ⊆ w
uSw iff {ϕ : [S]ϕ ∈ u} ⊆ w

and define a valuation V such that Vw = w ∩ P for every w ∈ W. Let us prove that the
canonical model is a legal Kripke model of MEM.

– Axioms D([T]) and Alt([T]) ensure that T is a total function, i.e., the canonical
model satisfies constraints (d) and (alt).

– Axiom Heredity([S]) ensures that the canonical model satisfies the heredity con-
straint, viz. that wSu implies Vu ⊆ Vw. Indeed, suppose wSu and p ∈ Vu = u. As w
contains 〈S〉p→ p and is maximal consistent we have p ∈ w = Vw.



– Axiom Negatable([S]) guarantees the (negatable) constraint. To see this take any
w ∈ W with Vw , ∅ and two finite sets of propositional variables P,Q ⊆ w such that
P is nonempty and P∩Q = ∅. As w is a maximal consistent set it contains (

∧
p∈P p)∧

(
∧

q∈Q q). As by Proposition 4 w contains every instance of Negatable′([S]), it must
also contain 〈S〉((

∧
p∈P ¬p) ∧ (

∧
q∈Q q)). Hence by definition of S there is some

u ∈ W such that wSu and u contains (
∧

p∈P ¬p) ∧ (
∧

q∈Q q). Therefore P ∩ u = ∅

and Q ⊆ u.
– The weak conversion axiom WConv([T], [S]) ensures constraint (wconv).
– The mixed transitivity axiom MTrans([T], [S]) ensures constraint (mtrans).

Hence the canonical model satisfies all constraints, and is therefore a legal Kripke model
of MEM.

The proof of the truth lemma is as usual. q.e.d.

3 HT logic and equilibrium logic

In this section we recall HT logic and equilibrium logic.

3.1 The language L⇒
The language L⇒ is common to HT logic and equilibrium logic. It is defined by the
following grammar:

ϕF p | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ

where p ranges over P. The other Boolean connectives are defined as abbreviations in
the same way as for our bimodal language: negation ¬ϕ is defined as ϕ ⇒ ⊥, and > is
defined as ⊥ ⇒ ⊥.

3.2 Here-and-there logic

A HT model is a couple (H,T ) such that H ⊆ T ⊆ P. The set T is called ‘there’ and H
is called ‘here’.

Let (H,T ) be a HT model. The truth conditions for L⇒ formulas are as follows:2

H,T |= p iff p ∈ H
H,T 6|= ⊥
H,T |= ϕ ∧ ψ iff H,T |= ϕ and H,T |= ψ
H,T |= ϕ ∨ ψ iff H,T |= ϕ or H,T |= ψ
H,T |= ϕ⇒ ψ iff H,T |= ϕ→ ψ and T,T |= ϕ→ ψ

When H,T |= ϕ then we say that (H,T ) is a HT model of ϕ. A formula ϕ is HT valid
if and only if every HT model is also a HT model of ϕ.

Proposition 5. Let ϕ be a L⇒ formula and let q be a propositional variable such that
q < Pϕ. Then H,T |= ϕ iff H,T ∪ {q} |= ϕ iff H ∪ {q},T ∪ {q} |= ϕ.

2 In the last clause we use material implication ‘→’ as a shorthand in order to give a concise
formulation. To spell this out, its truth condition is: H,T |= ϕ→ ψ iff H,T 6|= ϕ or H,T |= ψ.



3.3 Equilibrium logic

An equilibrium model of a L⇒ formula ϕ is a set of propositional variables T ⊆ P such
that

1. (T,T ) is a HT model of ϕ;
2. no (H,T ) with H ⊂ T is a HT model of ϕ.

Here are three examples. First, the empty set is the only equilibrium model of both
> and ¬p: for any q ∈ P, {q} is neither an equilibrium model of > nor of ¬p. Second,
the set {p} is not an equilibrium model of ¬p⇒ q because ∅, {p} |= ¬p⇒ q. Third, {q}
is an equilibrium model of ¬p⇒ q because {q}, {q} |= ¬p⇒ q and ∅, {q} 6|= ¬p⇒ q.

Let ϕ and χ be L⇒ formulas. ϕ is a consequence of χ in equilibrium models, written
χ |=HT ∗ ϕ, if and only if for every equilibrium model T of χ, (T,T ) is an HT model of
ϕ. For example we have > |=HT ∗ ¬p and ¬p⇒ q |=HT ∗ q.

4 From HT logic and equilibrium logic to modal logic

In this section we are going to translate HT logic and equilibrium logic into our logic
MEM.

4.1 Translating L⇒ to L[T]

To start we translate the language L⇒ of both HT logic and equilibrium logic into the
language L[T] of MEM. We recursively define the mapping tr as follows:

tr(p) = p for p ∈ P
tr(⊥) = ⊥

tr(ϕ ∧ ψ) = tr(ϕ) ∧ tr(ψ)
tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ)
tr(ϕ⇒ ψ) = (tr(ϕ)→ tr(ψ)) ∧ [T](tr(ϕ)→ tr(ψ))

This translation combines the Gödel translation from intuitionistic logic to modal
logic S4 with Boolos’s splitting translation from modal logic S4 to modal logic K4. The
main clause of the former is tr(ϕ ⇒ ψ) = �(tr(ϕ) → tr(ψ)), for some S4 operator �.
The main clause of the latter is tr(�ϕ) = tr(ϕ) ∧ [T]tr(ϕ), where [T] is a K4 operator
(the operator of our bimodal logic).

Here are some examples.
tr(>) = tr(⊥ ⇒ ⊥) = (⊥ → ⊥) ∧ [T](⊥ → ⊥).

The latter is equivalent to > in any normal modal logic.
tr(¬p) = tr(p⇒ ⊥) = (p→ ⊥) ∧ [T](p→ ⊥).

This is equivalent to ¬p ∧ [T]¬p in any normal modal logic.
tr(p ∨ ¬p) = tr(p) ∨ tr(p⇒ ⊥) = p ∨ ((p→ ⊥) ∧ [T](p→ ⊥)).

This is equivalent to p ∨ [T]¬p in any normal modal logic.
Observe that translated formulas may be exponentially longer than the original for-

mulas.
Our translation will be used to relate both HT logic and equilibrium logic to MEM.



4.2 From HT logic to MEM

On HT models, the fragment L[T] of the language L[T],[S] is at least as expressive as
L⇒, modulo the translation tr.

Proposition 6. Let T be a set of propositional variables and let MT = 〈W,T ,S,V〉 be
a quadruple such that:

W = 2T ;
Vh = h, for every h ∈ W;
T = W × {T };
S = ⊃.

Then MT is a MEM model, and H,T |= ϕ if and only if MT ,H |= tr(ϕ), for every H ⊆ T
and for every L⇒ formula ϕ.

So in the last line S is defined to be the strict superset relation on 2T . For example for
the HT model (∅, ∅) we obtain M∅ = 〈W,T ,S,V〉 with W = {∅}, T = {〈∅, ∅〉}, and
S = ∅; and for the HT model (∅, {p}) we obtain M{p} = 〈W,T ,S,V〉 with W = {∅, {p}},
T = {〈∅, {p}〉, 〈{p}, {p}〉}, and S = {{p}, ∅}}.

Proof. First, MT is a legal MEM model: MT satisfies constraints (d), (alt), (heredity),
(negatable), (mtrans), and (wconv). Second, one can prove by a straightforward induc-
tion on the form of ϕ that H,T |= ϕ iff MT ,H |= tr(ϕ), for every H ⊆ T . q.e.d.

Proposition 7. Let M = 〈W,T ,S,V〉 be a MEM model. Then M,w |= tr(ϕ) if and only
if Vw,VT (w) |= ϕ, for every w ∈ W and for every L⇒ formula ϕ.

Proof. As expected the proof is by induction on the form of ϕ. The only non trivial case
is that of the intuitionistic implication ψ1 ⇒ ψ2. We have:

M,w |= tr(ψ1 ⇒ ψ2) iff M,w |= tr(ψ1)→ tr(ψ2) and M,T (w) |= tr(ψ1)→ tr(ψ2)
iff Vw,VT (w) |= ψ1 → ψ2 and VT (w),VT (w) |= ψ1 → ψ2

(by I.H. and by Prop. 1.1)
iff Vw,VT (w) |= ψ1 ⇒ ψ2

q.e.d.

Theorem 2. Let ϕ be a L⇒ formula. Then ϕ is HT valid if and only if tr(ϕ) is MEM
valid.

Proof. This follows from Proposition 6 and Proposition 7. q.e.d.



4.3 From equilibrium logic to MEM

The same construction as for HT logic allows us to turn equilibrium models into MEM
models.

Proposition 8. Let T ⊆ P and let MT = 〈W,T ,S,V〉 be a quadruple such that:

W = 2T ;
Vh = h, for every h ∈ W;
T = W × {T };
S = ⊃ (the superset relation).

Then MT is a MEM model, and T is an equilibrium model of ϕ if and only if MT ,T (H) |=
tr(ϕ) ∧ [S]¬tr(ϕ), for every H ⊆ T and for every L⇒ formula ϕ.

Proof. As we have already seen in Proposition 6, MT is a legal MEM model; we in par-
ticular have T (H) = T (cf. Proposition 1). It remains to prove that T is an equilibrium
model of ϕ iff for every H ⊆ T we have MT ,T (H) |= tr(ϕ) ∧ [S]¬tr(ϕ), where ϕ is any
L⇒ formula. We have:

T is an equilibrium model of ϕ
iff T,T |= ϕ and H,T 6|= ϕ for every H ⊂ T
iff MT ,T |= tr(ϕ) and MT ,H 6|= tr(ϕ) for every H ⊂ T (by Proposition 6)
iff MT ,T |= tr(ϕ) and MT ,H |= ¬tr(ϕ) for every H such that TSH

(because TSH iff H ⊂ T )
iff MT ,T |= tr(ϕ) and MT ,T |= [S]¬tr(ϕ)
iff MT ,T (H) |= tr(ϕ) ∧ [S]¬tr(ϕ) for every H ⊆ T

(because T = T (H) for every H ∈ W = 2T )

q.e.d.

Proposition 9. Let M = 〈W,T ,S,V〉 be a MEM model and let w ∈ W. Let ϕ be any
L⇒ formula and let q ∈ P \ Pϕ be a propositional variable not occurring in ϕ. Define
the set T (w) ⊆ P as:

T (w) =

VT (w) if Vu ⊂ VT (w) for every u such that T (w)Su
VT (w) ∪ {q} if Vu = VT (w) for some u such that T (w)Su

Then M,T (w) |= tr(ϕ) ∧ [S]¬tr(ϕ) if and only if T (w) is an equilibrium model of ϕ.

Proof. By Proposition 2 we may suppose w.l.o.g. that Vw is finite for every w ∈ W. We
have two cases.

First, when Vu ⊂ VT (w) for every u such that T (w)Su, then by Item 3 of Proposition
1, the set of the valuations of S accessible worlds equals the set of strict subsets of



VT (w). Therefore:

M,T (w) |= tr(ϕ) ∧ [S]¬tr(ϕ)
iff M,T (w) |= tr(ϕ) and M, u 6|= tr(ϕ) for every u such that T (w)Su
iff VT (w),VT (T (w)) |= ϕ and Vu,VT (u) 6|= ϕ for every u such that T (w)Su

(by Proposition 7)
iff VT (w),VT (w) |= ϕ and Vu,VT (w) 6|= ϕ for every u such that T (w)Su

(by Proposition 1.1 and 1.2)
iff VT (w),VT (w) |= ϕ and H,VT (w) 6|= ϕ for every H ⊂ VT (w)

(because {Vu : T (w)Su} = 2T (w) \ T (w), v.s.)
iff T (w),T (w) |= ϕ and H,T (w) 6|= ϕ for every H ⊂ T (w)

Second, when Vu = VT (w) for some u such that wSu then we have T (w) = VT (w)∪{q}.
Therefore:

M,T (w) |= tr(ϕ) ∧ [S]¬tr(ϕ)
iff M,T (w) |= tr(ϕ) and M, u 6|= tr(ϕ) for every u such that T (w)Su
iff VT (w),VT (T (w)) |= ϕ and Vu,VT (u) 6|= ϕ for every u such that T (w)Su

(by Proposition 7)
iff VT (w),VT (w) |= ϕ and Vu,VT (w) 6|= ϕ for every u such that T (w)Su

(by Proposition 1.1 and 1.2)
iff VT (w),VT (w) |= ϕ and H,VT (w) 6|= ϕ for every H ⊆ VT (w) (v.s.)
iff VT (w) ∪ {q},VT (w) ∪ {q} |= ϕ and H,VT (w) ∪ {q} 6|= ϕ for every H ⊂ VT (w) ∪ {q}

(by Proposition 5)
iff T (w),T (w) |= ϕ and H,T (w) 6|= ϕ for every H ⊂ T (w)

q.e.d.

For example consider the set T = ∅ and the formula ϕ = >. We have seen above
that ∅ is the only equilibrium model of >. Let MT be the Kripke model as constructed
in propositions 6 and 8. Then MT ,T |= [T] (tr(>) ∧ [S]¬tr(>)). This can be seen by
simplifying the latter:

[T] (tr(>) ∧ [S]¬tr(>))↔ [T] (> ∧ [S]¬>)
↔ [T][S]⊥

We are now ready for the grand finale where we capture equilibrium logic in our
bimodal logic.

Theorem 3. Let ϕ and χ be L⇒ formulas. Then χ |=HT ∗ ϕ if and only if

[T] (tr(χ) ∧ [S]¬tr(χ))→ [T]tr(ϕ)

is MEM valid.

Proof. This follows from Proposition 8 and Proposition 9. q.e.d.



Let us consider an example. We have seen that > |=HT ∗ ¬p, i.e., that ¬p is a conse-
quence of > in equilibrium models. We have seen in Section 4.1 that tr(>) is equivalent
to > and that tr(¬p) is equivalent to ¬p ∧ [T]¬p. Theorem 3 tells us that the formula
ϕ = [T](tr(>)∧ [S]¬tr(>))→ [T](tr(¬p)) must be provable from the axioms and infer-
ence rules of MEM. This can be established by the following sequence of equivalent
formulas:

1. [T](tr(>) ∧ [S]¬tr(>))→ [T](tr(¬p))
2. [T](> ∧ [S]¬>)→ [T](¬p ∧ [T]¬p) (v.s.)
3. [T][S]⊥ → ([T]¬p ∧ [T][T]¬p) (by K([T]))
4. [T][S]⊥ → ([T]¬p ∧ [T]¬p) (by Proposition 3)
5. [T][S]⊥ → [T]¬p

The last line is provable in our logic: indeed, we have seen that [S]⊥ → ¬p can be
proved from Negatable([S]) by standard modal principles. From this we can prove the
last formula in our list by standard modal principles. Therefore the original formula ϕ
is provable in our logic.

5 Conclusion

In this paper we have investigated the modal logic MEM that is behind equilibrium
logic. We have shown that a logic with two modal operators [T] and [S] allows to
capture the minimisation that is only expressed in the metalanguage in the standard
definition of equilibrium models. We have shown that MEM satisfiability is decidable
and that can be checked in polynomial space. We have also given a sound and complete
axiomatisation.

It remains to give a lower bound for the complexity of MEM. It also remains to
design a translation from the language of equilibrium logic to that of our bimodal logic
that avoids exponential growth of the formula length. This can however be done in a
quite straightforward way by integrating a modal operator [T]∗ whose truth condition
in HT models is:

H,T |= [T]∗ϕ iff H,T |= ϕ and T,T |= ϕ

In terms of Kripke models [T]∗ is interpreted by the reflexive closure of the accessibil-
ity relation T interpreting [T]. However, a drawback of the addition of a third modal
operator is that the formalism gets more cumbersome.
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