N

N
N

HAL

open science

Coordinating a Swarm of Micro-Robots Under Lossy
Communication

Razanne Abu-Aisheh, Francesco Bronzino, Myriana Rifai, Lou Salaun,

Thomas Watteyne

» To cite this version:

Razanne Abu-Aisheh, Francesco Bronzino, Myriana Rifai, Lou Salaun, Thomas Watteyne. Coordi-
nating a Swarm of Micro-Robots Under Lossy Communication. 2nd ACM International Workshop on
Nanoscale Computing, Communication, and Applications, Nov 2021, Coimbra, Portugal. pp.635-641,
10.1145/3485730.3494040 . hal-03470187

HAL Id: hal-03470187
https://hal.science/hal-03470187
Submitted on 13 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03470187
https://hal.archives-ouvertes.fr

Coordinating a Swarm of Micro-Robots
Under Lossy Communication

Razanne Abu-Aisheh
razanne.abu-aisheh@nokia.com
Nokia Bell Labs and Inria
Paris, France

Myriana Rifai
Lou Salaun
myriana.rifai@nokia-bell-labs.com
lou.salaun@nokia-bell-labs.com
Nokia Bell Labs
Paris, France

ABSTRACT

We envision swarms of mm-scale micro-robots to be able to carry
out critical missions such as exploration and mapping for hazard
detection and search and rescue. These missions share the need to
reach full coverage of the explorable space and build a complete
map of the environment. To minimize completion time, robots
in the swarm must be able to exchange information about the
environment with each other. However, communication between
swarm members is often assumed to be perfect, an assumption
that does not reflect real-world conditions, where impairments
can affect the Packet Delivery Ratio (PDR) of the wireless links.
This paper studies how communication impairments can have a
drastic impact on the performance of a robotic swarm. We present
Atlas 2.0, an exploration algorithm that natively takes packet loss
into account. We simulate the effect of various PDRs on robotic
swarm exploration and mapping in three different scenarios. Our
results show that the time it takes to complete the mapping mission
increases significantly as the PDR decreases: on average, halving the
PDR triples the time it takes to complete mapping. We emphasise
the importance of considering methods to compensate for the delay
caused by lossy communication when designing and implementing
algorithms for robotics swarm coordination.

1 INTRODUCTION

Exploration of post-disaster environments for target detection is
a risky, time and resource consuming mission. We envision au-
tonomous swarms of micro-robots to be tremendously beneficial
in terms of minimizing exploration time and reducing human ex-
posure to risks [12]. A swarm of micro-robots is defined as a group
of at least three robotic entities that cooperate together to achieve
a common global goal with limited to zero human operated con-
trol. During these operations, micro-robots strategically search the
environment to collect the most informative data from their sur-
roundings. Thus, the ability to leverage the collected data to the
benefit of other members of the swarm is critical to minimizing
search completion time.

The goal of a exploration expedition is for the swarm to map the
entire environment, leaving no accessible parts unexplored [8]. The
completeness of robot-built maps, as well as the speed at which

Francesco Bronzino
fbronzino@univ-smb.fr
LISTIC, Université Savoie Mont Blanc
Chambery, France

Thomas Watteyne
thomas.watteyne@inria.fr
Inria
Paris, France

Figure 1: The orchestrator and robotic swarm in an envi-
ronment, showing a partially built map of a previously un-
known environment.

this is accomplished, are major challenges [13]. Previous work has
strongly focused on minimizing completion time over other metrics
due to the urgency of the missions.

Typically, swarm robots wirelessly communicate information
about the environment they are exploring to a central “orchestrator”.
Having centralized situational awareness at an orchestrator is often
required for the effective supervision of the mission [5]. The study
of this problem is often simplified by assuming that communication
between robots is possible between any two locations. However,
such a strong assumption does not necessarily reflect real-life con-
ditions where imperfections in the communication channel can
impact the performance of the system [3].

Our previously published Atlas [1] is an algorithm which runs at
the orchestrator and coordinates the action of individual robots in
the swarm as they carry out a mapping expedition. Atlas minimizes
the time to fully map an unexplored area, and the number of micro-
robots necessary to complete the mapping. While Atlas does not
require continuous communication between all the members of the
swarm, it assumes ideal communication: there are no packet losses
or other limitations regarding communication.

We use Atlas as a representative swarm coordination algorithm,
to evaluate the impact of network connectivity on mapping algo-
rithms. Specifically, we study the impact of lossy communication
on the speed of the mapping by Atlas. We then modify Atlas so
it handles communication failures while maintaining the guaran-
tee of mapping completion. We develop and use a discrete-event
continuous time simulator that includes realistic communication

Conference’17, July 2017, Washington, DC, USA

conditions to evaluate the completion time even for extremely lossy
environments.

This paper aims at demonstrating the importance of considering
communication disturbances and losses when designing swarm
cooperation algorithms for critical exploration based missions. The
contributions of this paper are threefold:

e We develop a discrete-event, continuous-time and -space
simulator that integrates lossy communication models.

e We design a modified version of the Atlas algorithm to in-
clude packet loss tolerant exploration and mapping that
guarantees a 100% completion ratio.

e We emphasize the need for focusing on communication limi-
tations when designing exploration algorithms by signifying
the effect of packet loss on mission time-to-completion.

The remainder of this paper is organized as follows. Section 2
surveys related work. Section 3 presents our system model and the
challenge we address in this paper. Section 4 describes the commu-
nication model and its implementation in the simulator. Section 5
details the modifications made to the Atlas algorithm. Section 6.1
describes the implementation of Atlas in a simulator, taking the
work by Abu-Aisheh et al. [1] as a starting point. Section 6.2 show-
cases the impact of packet loss on the performance of Atlas. Finally,
Section 7 concludes this paper.

2 RELATED WORK

Robotic swarm exploration is often simplified by assuming that
communication between robots is always possible between any
two locations without packet loss [8]. Here, we survey the related
work that does consider lossy connectivity.

Amigoni et al. [2] categorize communication for robotic swarm
exploration to three categories: robots are not required to communi-
cate, every robot must be able to communicate with all other robots
at all times, or communication is only required either periodically
or by particular events such as the discovery of new information.

Manfredi et al. [10] propose an algorithm tolerant to packet loss.
The network of robots is composed of one leader and several fol-
lowers. The goal of the algorithm is to set the position, velocity,
and control parameters of the followers in a manner that enables
them to follow the leader. Depending on the rate of packet loss,
control inputs are corrected to reduce the error. While this algo-
rithm is packet-loss tolerant, it purely depends on maintaining a
close distance with other robots, as it assumes the existence of a
joint path from the leader to every follower across each uniformly
bounded interval.

Benavides et al. [6] also propose an exploration strategy for
multi-robot systems. Their approach consists in avoiding discon-
nection between the robots by having the robots be aware of the
connectivity. Given the position of robots and obstacles, robots
estimate the connectivity degree of a specific location. Robots can
only confirm the absence of connectivity or deliver an optimistic
estimation of connectivity. This is equivalent to either having a
100% Packet Delivery Ratio (PDR) if the robots can connect, or 0%
if not. Data losses in between are not taken into account here.

Banfi et al. [4] propose the concept of “recurrent connectivity”,
where planning is centralized and robots connect back to the central
orchestrator only when a new piece of information is available. This

R Abu-Aisheh, F Bronzino, M Rifai, L Salaun and T Watteyne

eliminates the need for a full communication graph. Packet loss
is not directly considered here: robots are assumed to be able to
communicate in line-of-sight conditions.

Few research has considered the effect of packet delivery ratio
on the overall performance of exploration and mapping. Zhivkov et
al. [14] examine the impact of degrading communication quality
in a swarm with the aim of quantifying the effects and assessing
the risks associated with poor communication quality in robotic
swarms. To do so, they conduct a series of experiments with mul-
tiple message transmission success rates. They do this using sim-
ulation and experimentation. Their simulation results show that
the exploration time increases as the packet loss percentage in-
creases. However, the increase in exploration completion time from
when no packet loss is not experienced to that of when it is 75%,
is only 10 s in simulation, while it is around 40 s in the physical
experimentation. While this added time to mapping completion
seems insignificant, the paper does not provide any details about
the exploration or communication algorithms used, and focuses
on random packet loss rates that do not align with real life packet
losses. It is therefore difficult to infer from their evaluation the
performance of the exploration algorithm, or the severity of the
impact of packet losses, in time critical exploration scenarios.

Jensen et al. [8] discuss how communication impacts online
multi-robot coverage algorithms’ viability for real-world scenarios,
and show how communication can affect the performance of vari-
ous algorithms. However, they focus more on comparing different
algorithms with different communication models, as opposed to
comparing degrading communications and losses with the same
exploration algorithm and communication model.

Similar to [14], we evaluate the effect of packet loss on the perfor-
mance of exploration and mapping. We then develop a communica-
tion and exploration algorithm that is robust to degrading network
conditions. We evaluate the performance of our mapping solution
for different PDR values. We design an event-based communication
protocol where the robots in a swarm communicate with a central
orchestrator once triggered by specific events.

3 SYSTEM MODEL AND CHALLENGE

Our system model consists of the following elements:

(1) Robots. We assume each micro-robot is small enough that it
can be modeled as a dot with (x,y) coordinates. We also assume
that each robot can move at a speed of up to 1 m/s, has sensing
capabilities limited to a bump sensor that is triggered upon
contact with an obstacle, and the ability to wirelessly commu-
nicate. We went for basic robots with minimal capabilities in
order to reduce size and cost significantly; making obtaining
and maintaining large swarms of robots more feasible.

(2) Orchestrator. This central entity is responsible for coordinat-
ing the exploration by the robots. The centralized nature of the
orchestrator enables better exploration strategies based on its
global view.

(3) Environment and communication. The environment is ini-
tially unknown to the system. All robots start the exploration
from the location of the orchestrator. The robots only report

Coordinating a Swarm of Micro-Robots under Lossy Communication

‘ Orchestrator

‘ Robot 1 ‘ ‘ Robot 2 ‘

T T T
| | |
| » | |
t=1 !w!—&)mmund 1—pp!

+ Command 1—Jp|
| | | I
t=2 :—Command 1—»{ Command 1 I : :
: : : ommand 1—’:
I I Notification 11 g, o/ imeout |
| | | |
| | | I
Command 2—Jp

=g P command 2—pp! !
t=3 : : : ommand 2—»:
|_ Notification 2 FAIL | | |
: o [T P : :
& Notification 2 | |
Lo 43— | I
t=4F omman + ommand 3—»! |
t ommand 3——»

|

i i I
| | | |
Figure 2: Communication between the orchestrator and the
swarm.

back to the controller when either of two possible events hap-
pen: a) a robot’s bump sensor is triggered, or b) a robots as-
signed moving duration timer runs out. In this manner, the
swarm behaviour is asynchronous as the orchestrator updates
the movement plan for that particular robot only when it hears
back from it. We assume communication limitation by mod-
elling packet loss into the environment in order to represent
more realistic losses in a typical environment.

(4) Exploration and mapping. We use the Atlas algorithm [1]
as a starting point, which we modify to be tolerant to packet
loss. We refer to this version as “Atlas 2.0”. The mapping is
represented by dots with (x,y) coordinates on a continuous map,
where each dot represents the location at which a robot’s bump
sensor was triggered. These dots connect into lines once they
are a certain distance apart and create an outline of all the
obstacles in an environment, see Section 5.

We focus on developing and validating a mapping algorithm
that reliably completes all of the time, even with packet loss. We
evaluate the impact of packet loss on the time it takes to complete
the mapping task.

4 COMMUNICATION PROTOCOL

We design a communication protocol that takes packet losses into
account to guarantee mapping completion with any PDR above
zero. In the protocol, communications occur between the orchestra-
tor and each robot in a swarm (and vice-versa) through two types
of packets: commands (from the orchestrator to robots) and noti-
fications (from robots to the orchestrator). The protocol is based
on an event-based communication model with recurrent connec-
tivity requirements. That is, robots only communicate back to the
orchestrator when they have new relevant data or have reached
the assigned target position they were directed to go to. Otherwise,
no connectivity is needed between the robots and the orchestrator.
Time is cut into 1 s cycles, with two steps in each cycle.

Step 1. Commands. The orchestrator transmits a packet. This
command packet contains the heading, speed, and movement du-
ration for each robot in the swarm (Fig. 3). Headings refer to the
direction a robot should take, between 0 and 360 degrees. Movement
duration is the amount of time the robot should move for. Note

Conference’17, July 2017, Washington, DC, USA

Notification Frame

Type Data CRC
Type Robot ID TimeStamp 1 TimeStamp 2 Bump CRC

L J1 JL [l I I J
2 bits 16 bits 16 bits 16 bits 2 bits 32bits

Command Frame

Type Data CRC
Robot1 Robot2 Robot-n
Type heading and heading and heading and CRC
speed speed et speed
L | I J

JL JL
2 bits 32 bits 32 bits 32 bits 32 bits

Figure 3: Packet frames for commands and notifications

start
exploration

v

Orchestrator updates plan for
all robot n's movement

!

Orchestrator sends command to
all robots

Robot n receives
command?

Robot n sends notification
to orchestrator requesting

Robot n adjusts
movement settings

new movement based on command

instructions

Figure 4: A flow chart representing the communication be-
tween each robot and the orchestrator

that broadcasting was chosen as a means for communication to
avoid the need for complex routing tables when addressing specific
robots in large swarms.

Step 2. Notifications. When a command is broadcast, all robots
that do receive the command packet check if their instructions of
movement have been updated. If not, they ignore the command
and continue moving according to their previous instructions. Oth-
erwise, they extract their next heading, movement duration and
speed, and start moving. The robots keep moving in the given di-
rection, without the need for connectivity, until an event happens,
at which point they stop moving. When an event occurs, a robot
transmits a notification packet to the orchestrator. The notification
packet contains four pieces of information (Fig. 3): the robot ID,
a first timestamp with the time at which the robot started mov-
ing, a second timestamp with the time at which the robot stopped
moving and sent the notification, and whether or not the robot had
bumped upon stopping. The logic behind using two timestamps
will be explained further on in this section.

As shown in Figs. 2 and 4, the protocol tolerates packet loss by
incorporating the following logic: In terms of commands, the head-
ings for each robot are only updated when the orchestrator receives

Conference’17, July 2017, Washington, DC, USA

a notification from the robot. These commands are transmitted
periodically every second. Robots that are still moving don’t need
to “listen” as they haven’t bumped or reached their target, and are
safe to move in the same direction. The only new information in
a command will be relevant to the robots that notified the orches-
trator in request for a new heading. As for notifications, when a
robot sends a notification, it waits to get a command back from the
orchestrator pointing it in a certain direction. If either command or
notification packets are lost and the robot doesn’t hear back from
the orchestrator with a new command, it keeps re-transmitting the
notification every second, until it receives a new command. Hence
the need for two timestamps. Without packet loss (PDR = 1), one
timestamp would suffice as the robot would report the current time
as the event time and the orchestrator would receive it on time.
Given that the orchestrator already knows the speed and headings
of all robots, as well as when and where they last stopped, when it
hears back from a robot it takes the stop time and back traces the
location of the robot. However, when packets are lost and notifi-
cations are re-transmitted, there is a gap in time between the last
time the orchestrator recorded an event, when the robot actually
started moving after stopping, and when the new event occurred.
With two timestamps, the orchestrator knows exactly when the
robot started moving from one timestamp, and exactly when it
stopped from the other, and can therefore accurately calculate the
new position at which the robot stopped. Further details on the
mapping are explained in Section 5.

5 EXPLORATION AND MAPPING

5.1 Exploration

Atlas is an exploration algorithm by Abu-Aisheh et al. [1], designed
for sparse robot swarms. Because it is centralized, it relies on ro-
bust communication between each robot and the “orchestrator”.
We choose Atlas as a starting point as any packet loss causes the
exploration and mapping expedition to fail. It uses frontier-based
systematic exploration: robots are controlled by a central orchestra-
tor which maintains a partial map throughout the exploration and
sends robots to explore the yet unexplored zones within the area.
However, in that version of Atlas, ideal lossless communication
is assumed. We modify the previous version of Atlas to make it
tolerant to lossy communications; we call that Atlas 2.0.

Atlas is synchronous: all robots start moving at the same time
and stop moving at the same time. Atlas 2.0 is asynchronous: each
robot receives a new command with movement instructions every
time it has an event occur. This is done to reduce the overall time it
takes to complete mapping and to reduce the impact of packet loss.
If one robot is stuck and hasn’t received a new packet, it does not
affect the rest of the swarm.

The orchestrator maintains an artificial overlay grid that it builds
on the go during the exploration which can be expanded infinitely.
Each grid cell belongs to one of the following categories at every
point in time:

e Open Cells (OC): containing no obstacles

o Obstacle Cells (ObC): containing obstacles

o Unexplored Cells (UC): cells that have been built during the
exploration and navigation process but have not yet been
explored.

R Abu-Aisheh, F Bronzino, M Rifai, L Salaun and T Watteyne

Algorithm 1: Setting new movement instructions in Atlas
2.0

1 OCs = empty;

2 ObCs = empty;

w

frontier_cells = empty;

N

Back track all cells traversed by robot;
5 OCs « traversed_cells ;
if Robot bumped then

ObCs « current_cell;

=)

N}

8 Add “dot” to map at robot position;

9 end

10 if current cell € OCs & connected to UC then

1 ‘ frontier_cells < current_cell,
12 else

13 Find closest frontiers to robots;

14 Find closest frontier to start point;

15 frontier_cells < selected_frontier;

16 end

17 Choose random UC connected to selected_frontier;
18 Set chosen cell as target;

19 Choose shortest path to target via A* algorithm;
20 Use vectoring to set next heading,

speed,movement duration;

21 Update command;

A robot stops and sends a notification to the orchestrator upon
the occurrence of either of two evens: (1) it bumped into an ob-
stacle and its bump sensor got triggered, (2) it reached the target
unexplored cell the orchestrator assigned it, indicated by its move-
ment duration timer running out. Once the orchestrator receives a
notification from a robot, it sends new movement instructions to
that robot.

If we apply Algorithm 1 starting from the first cell and taking that
as the current cell for robot n, as an example, the next movement
instructions would be set as follows. Given that the robot is already
inside that cell, the starting cell is an open cell. Since there are no
explored cells yet, the starting cell is considered a frontier cell. Note
that, if we have multiple frontier cell options, the one closest to the
starting cell will be chosen.

All overlay cells directly connected to this frontier - i.e. are
within its direct surrounding neighbours without having to pass
any other cells to reach it — are valid targets. A random cell out of
these is selected as the target for this robot. The A* algorithm [7]
is used to find the shortest path to that target. Vectoring is used
to set the new movement instruction for the robot. Vectoring is a
navigation service provided to aircraft by air traffic control: the
controller decides on a particular airfield traffic pattern for the
aircraft to fly, the aircraft follows this pattern when the controller
instructs the pilot to fly specific headings at appropriate times. In
Atlas 2.0, the orchestrator replaces the controller and the robot
replaces the plane. The movement pattern is the path generated by
A*. A robot moves at the speed and in the heading instructed by the
orchestrator until its allocated movement duration runs out, unless
it bumps into an obstacle.

Coordinating a Swarm of Micro-Robots under Lossy Communication

The overall behavior is that the frontier expands “away” from
the starting position: the robots are controlled to “push” the frontier
further from the starting point. In scenarios where there are many
obstacles, the swarm can be cut into subgroups as it navigates
around obstacles.

5.2 Mapping

The map represents an outline of the walls and obstacles in a
bounded unknown environment, with the assumption that obsta-
cles can be broken down into square shaped basic elements. These
basic elements are referred to as minimum obstacle features. The
orchestrator initiates exploration by sending a command contain-
ing the headings h, speeds s and movement duration (after which
it should stop to change its heading and redirect itself towards the
target) for all the robots in the swarm. The orchestrator stores the
initial positions of the robots, as well as the headings and speeds
sent for each robot per command. Once a robot bumps into an
obstacle, it stops moving and reports the time Tm it started moving
and the time Tb it bumped back to the orchestrator. It also does
this when the movement duration times out and a heading update
is due. In this case, however, the packet indicates that no bump
occurred, in order to avoid adding data to the map. The orchestrator
calculates the position of the robot it just received a notification
from, based on (1) and (2). The orchestrator then updates the next
command to include a new heading, speed and movement duration
for that robot. It also updates the last known position of this robot.

newx = (Tb —Tm) X cosh X s (1)

newy = (Tb —Tm) X sinh X s (2)

Every bump is stored as a “dot” on the map, representing the (x,y)
coordinates of the robot at which its bump sensor was triggered.
Any two dots are connected into a line if the distance between
them is less than the size of the minimum obstacle size. This is
because the two dots are on an obstacle and an obstacle can not
be smaller than that size. Any common points on two lines lead
to the two lines being connected at that point in the same method.
Mapping completion is detected once a line “loop is closed™: it has
no disconnected edges. The map builder constantly checks all edges
to see if they can be connected to one another.

6 EXPERIMENTAL RESULTS
6.1 Simulation Platform

Atlas comes with an open-source simulator, developed by Abu-
Aisheh et al. for comparing exploration and mapping algorithms.
In this paper, we build upon that simulator and improve it for the
purpose of investigating the effect of packet loss on event-based
communication models!. Fig. 1 is a screenshot of the user interface
of the simulator.

In the simulator, we represent a 2D space in a continuous manner.
The simulator is discrete-event: time updates as scheduled events
are processed, leading to a continuous time representation. We

! As an online addition to this paper, the simulator is published under and open-source
license at https://github.com/openwsn-berkeley/Atlas.

Conference’17, July 2017, Washington, DC, USA

Figure 5: Heat maps of how often robots have been present
on each cell, at the end of a simulation run. Results pre-
sented for a 50-robot swarm. The darkest cells represent
cells that have been passed by 10 or more times. The floor-
plan used for the simulations had a size of (80x21 cells). The
starting position is depicted as a red cell on the right.

assume each robot has a “bump” sensor that get triggered whenever
it hits an obstacle.

The robots are networked by the communication protocol de-
scribed in Section 4. We call PDR the portion of packets sent by a
robot that are received by another; PDR<1 means there is packet
loss.

The propagation model we implement is based on the Pister-
Hack model [9] which is used to obtain the initial Received Signal
Strength Indicator (RSSI) between the robots and the orchestrator.
This is then translated to a PDR value based on the work done by
Municio et al. [11]: subtracting a uniform variance of 40 dB from
the Friis model equation output and converting RSSI to PDR values
by a conversion table that is based on real-world deployments.

6.2 Results

Our aim is to emphasize the importance of considering more real-
istic communication while designing swarm robotic cooperation
algorithms, by demonstrating the impact communication can have
on mission time to completion.

In order to adequately demonstrate the impact of PDR, we first
run the simulations with various flat PDR rates across any point
in the environment from 0.1 to 1 in steps of 0.1. We run the sim-
ulations with a swarm of 50 robots. We then run the simulation
with the Pister-hack model which generates different PDRs based
on distances between robots and the orchestrator. All results are
presented with a 95% confidence interval.

Fig. 5 demonstrates the behaviour of the swarm during explo-
ration with various static PDRs. We can see that the behaviour does

https://github.com/openwsn-berkeley/Atlas

Conference’17, July 2017, Washington, DC, USA

7000

6000 A /‘/""
“ .
3
S 5000 1
K —+1
@ —+ 0.9
2 4000
§ —+ 08
35 —+ 07
< 3000 06
g — 05
§2000~ o 04
= - 03

1000 - -}- 02

—- 0.1
O" T T T T T T
0 1000 2000 3000 4000 5000 6000 7000

Time seconds

Figure 6: Mapping profiles for different PDRs: the number
of cells discovered over time

not vary with packet loss. The paths that seem to be taken more
than others are very similar all the way from ideal communica-
tion with a PDR of 1 (no packet loss) all the way to a PDR of 0.1
where most packets are lost. This also shows how the modified
Atlas algorithm is robust to packet loss, as the overall behaviour
and exploration strategy is not affected by packet loss.

However, as clearly seen in Fig. 6, what is significantly impacted
by PDR is the exploration time. We can see that as the PDR goes
down, the exploration rate goes down with it and the time it takes
to complete the mapping increases significantly. In the the floorplan
use case we tested, mapping completed in 6.5 min with no packet
loss, 19 min with 50% packet loss, 1.85 hours with 90% packet loss.
In critical missions such as search and rescue, hazard detection or
chemical leakage, this delay in completing the mission could cost
lives.

Fig. 7 compares the mapping profile with 100% PDR, 10% PDR,
and when using the Pister-hack model. With Pister-Hack, PDR
gets lower as the distance between the transmitter and the receiver
increases. We can therefore see how initially the mapping profile
of Pister-hack resembles that of the case with no packet loss. As
time passes, the robots get further and further away from the or-
chestrator (located at the starting point), and hence, the rate of
cells explored per second decreases and the mapping gets slower
as communication gets lost.

We conclude that the communication quality, the packet delivery
ratio, and the communication protocol drastically impact the per-
formance of the swarm. We also deduce that Atlas 2.0 is robust to
packet loss; where the overall behaviour and exploration strategy
are not affected by packet loss, neither is the accuracy of the map
built.

7 CONCLUSIONS AND FUTURE WORK

This paper introduces Atlas 2.0; an extension of the Atlas algo-
rithm by Abu-Aisheh et al., which we augment to include packet
loss tolerance. The result is an exploration and mapping solution
that guarantees a mapping completion ratio of 100% even with
lossy communication. We infer that Atlas 2.0 is robust to packet
loss; where the overall behaviour and exploration strategy are not
affected by packet loss, neither is the accuracy of the map built.

R Abu-Aisheh, F Bronzino, M Rifai, L Salaun and T Watteyne

7000
6000 —p
ke
2 7
T 5000 o
-
° Rl
o P
T 4000 1 —
o /‘
2 e
5 30004 v
= ’
] e
§ 2000 A ././
Pl —— PDR=1
1000 + Ed --{-- Pister-Hack varying PDR
—-- PDR=0.1
0 E T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000

Time seconds

Figure 7: Mapping profile with Pister-hack model.

We demonstrate the need for focusing on communication limi-
tations when designing exploration algorithms by signifying the
effect of packet loss on mapping time to completion. We run vari-
ous simulation scenarios on a discrete-event, continuous time and
space open-source simulator that integrates lossy communication
models. We show how, the higher the packet loss, the longer the
mapping takes to complete. We therefore stress the importance of
considering methods to compensate for the delay caused by lossy
communication when designing and implementing algorithms for
micro-robotic swarm exploration.

This research opens up several avenues for future work. One is
including non-ideal headings and speeds, as well as incorporating
the context of network connectivity into the logic of our algorithms.
We are currently working on experimentally validating our work
and are therefore building a swarm of 1,000 robots.

REFERENCES

[1] Razanne Abu-Aisheh, Francesco Bronzino, Myriana Rifai, Brian Kilberg, Kris

Pister, and Thomas Watteyne. 2020. Atlas: Exploration and Mapping with a

Sparse Swarm of Networked IoT Robots. In International Conference on Distributed

Computing in Sensor Systems (DCOSS). IEEE, IEEE, Marina Del Rey, CA, USA,

338-342.

Francesco Amigoni, Jacopo Banfi, and Nicola Basilico. 2017. Multirobot Explo-

ration of Communication-Restricted Environments: A Survey. IEEE Intelligent

Systems 32, 6 (2017), 48-57.

[3] Jacopo Banfi. 2019. Recent Advances in Multirobot Exploration of

Communication-Restricted Environments. Intelligenza Artificiale 13, 2 (2019),

203-230.

Jacopo Banfi, Alberto Quattrini Li, Nicola Basilico, Ioannis Rekleitis, and

Francesco Amigoni. 2016. Asynchronous Multirobot Exploration Under Re-

current Connectivity Constraints. In International Conference on Robotics and

Automation (ICRA). IEEE, IEEE, Stockholm, Sweden, 5491-5498.

[5] Jacopo Banfi, Alberto Quattrini Li, Ioannis Rekleitis, Francesco Amigoni, and

Nicola Basilico. 2018. Strategies for Coordinated Multirobot Exploration with

Recurrent Connectivity Constraints. Autonomous Robots 42, 4 (2018), 875-894.

Facundo Benavides, Caroline Ponzoni Carvalho Chanel, Pablo Monzoén, and

Eduardo Grampin. 2019. An Auto-Adaptive Multi-Objective Strategy for Multi-

Robot Exploration of Constrained-Communication Environments. Applied Sci-

ences 9, 3 (2019), 573.

[7] P.E.Hart, N.J. Nilsson, and B. Raphael. 1968. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics 4, 2 (1968), 100-107. https://doi.org/10.1109/TSSC.1968.300136

[8] Elizabeth A. Jensen and Maria Gini. 2019. Distributed Autonomous Robotic Systems.
Springer, Cham, Chapter Effects of Communication Restriction on Online Multi-
robot Exploration in Bounded Environments, 469-483.

[9] Hanh-Phuc Le, Mervin John, and Kris Pister. 2009. Energy-Aware Routing in
Wireless Sensor Networks with Adaptive Energy-Slope Control. EE290Q-2 Spring
(2009).

[2

[4

[6

https://doi.org/10.1109/TSSC.1968.300136

Coordinating a Swarm of Micro-Robots under Lossy Communication

[10] Sabato Manfredi, Enrico Natalizio, Claudio Pascariello, and Nicola Roberto Zema.
2017. A Packet Loss Tolerant Rendezvous Algorithm for Wireless Networked
Robot Systems. Asian Journal of Control 19, 4 (2017), 1413-1423.

[11] Esteban Municio, Glenn Daneels, Malisa Vuéini¢, Steven Latré, Jeroen Famaey,

Yasuyuki Tanaka, Keoma Brun, Kazushi Muraoka, Xavier Vilajosana, and Thomas

Watteyne. 2019. Simulating 6 TiSCH Networks. Transactions on Emerging Telecom-

munications Technologies 30, 3 (2019), e3494.

Bradley Woosley, Prithviraj Dasgupta, John G Rogers, and Jeffrey Twigg. 2020.

Multi-Robot Information Driven Path Planning Under Communication Con-

straints. Autonomous Robots 44, 5 (2020), 721-737.

[12

Conference’17, July 2017, Washington, DC, USA

[13] Zhi Yan, Luc Fabresse, Jannik Laval, and Noury Bouraqadi. 2017. Building A

[14

]

ROS-Based Testbed for Realistic Multi-Robot Simulation: Taking the Exploration
as an Example. Robotics 6, 3 (2017), 21.

Tsvetan Zhivkov, Eric Schneider, and Elizabeth I Sklar. 2017. Measuring the
Effects of Communication Quality on Multi-Robot Team Performance. In Annual
Conference Towards Autonomous Robotic Systems (TAROS). Springer, Guildford,
United Kingdom, 408-420.

	Abstract
	1 Introduction
	2 Related Work
	3 System Model and Challenge
	4 Communication Protocol
	5 Exploration and Mapping
	5.1 Exploration
	5.2 Mapping

	6 Experimental Results
	6.1 Simulation Platform
	6.2 Results

	7 Conclusions and Future Work
	References

