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Bayesian approach for multi gamma radionuclide
quantification applied on weakly attenuating nuclear

waste drums
A. Clement, N. Saurel, G. Perrin and N. Gombert

Abstract—Gamma spectrometry is a passive non-destructive
assay method used to quantify radionuclides present in nuclear
objects. Basic methods using empirical calibration with a stan-
dard to quantify the activity of nuclear materials by determining
the calibration coefficient are ineffective on non-reproducible
nuclear objects such as waste packages. Package specifications
such as composition or geometry change from one package to
another and exhibit large variability of objects. The current
standard quantification process uses numerical modelling of the
measured scene with few available data such as geometry or
composition, in particular density, material, screen, geometric
shape, matrix composition, matrix and source distribution. Some
of them are strongly dependent on package data knowledge and
operator backgrounds. The French Atomic Energy Commission
(CEA) is developing a methodology to quantify nuclear materials
in waste packages and waste drums without operator adjustment
and internal package configuration knowledge. This method
suggests combining a stochastic approach which uses, among
others, surrogate models available to simulate the gamma atten-
uation behaviour, a Bayesian approach considering conditional
probability densities and prior information of problem inputs,
and Markov Chain Monte Carlo algorithms (MCMC) which
solve inverse problems, with gamma ray emission radionuclide
spectra, and the outside dimensions of the objects of interest.
The methodology has been tested to quantify actinide activity
with a low bulk density matrix, weakly attenuating compositions,
without information on the distribution of the source in terms
of actinide masses and materials composing the drums. Activity
uncertainties are taken into account.

Index Terms—Nuclear quantification, Bayes Theorem, MCMC,
Monte Carlo sampling

I. INTRODUCTION

THE quantification of nuclear materials is crucial in
many branches of the nuclear industry such as nuclear

power plants, in nuclear criticality safety or in nuclear
decommissioning. Many nuclear detection techniques such
as neutron detection methods and gamma spectrometry
are carried out to accurately quantify radionuclide masses
included in a large number of more or less complex objects.
Some of the most widely used measurement systems for
quantifying mass/activity of these materials are high-purity
germanium (HPGe) gamma-ray detectors [1]. Compared to
NaI detectors, the dominant feature of HPGe detectors is their
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excellent energy resolution around 1 keV at 662 keV, which
is a very usefull feature for identification and quantification of
radionuclides such as 239Pu or 241Am. A numerical method
[2] has been developed to propose reliable and accurate
characterization of HPGe detectors by combining 3D Monte
Carlo particle transport simulation codes such as MCNP 6.2
[3] with applied mathematical tools. This numerical detector
model is constructed in order to reduce global uncertainties
of final quantification results by increasing the detection
capability knowledge of HPGe detectors.

To identify and quantify gamma emitting nuclides included
in different kind of objects, such as nuclear waste packages,
one needs to calculate the activity A by :

A =
S(E)

ε(E)tIγ(E)
, (1)

where:
• E : Energy (MeV)
• A : Activity of a radionuclide of interest (Bq)
• S(E) : Net counting area of the full energy peak at the

energy E (counts)
• Iγ(E) : Branching ratio of radionuclide at the energy E
• t : Acquisition duration (s)
• ε(E) : Absolute efficiency coefficient at the energy E,

also called attenuation law

which allows the mass m of the radionuclide of interest to
be calculated with:

m =
A

Am
, (2)

where:
• m : Mass of the radionuclide of interest included in the

measured object (g)
• A : Activity of the radionuclide of interest (Bq)
• Am : Specific activity of the radionuclide of interest

(Bq/g)

The ε(E) coefficient is related to the capability of a
measured object to reduce the gamma signal coming from a
nuclear material of interest. It depends on object features such
as internal layout, screens, density, position of the gamma
source relative to the HPGe detector, internal materials
and energy. Though the S(E) spectrum net extracted areas
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can be easily determined with accuracy [5], calculation of
ε(E) is a difficult process for complex objects in terms
of internal layout and composition such as nuclear waste
drums [2]. Current and common calculation methods use
Monte Carlo simulation codes as MCNP6 [3] to model
measured scenes and approach as precisely as possible the
real values of the ε(E) coefficient. Several years ago, new
kinds of nuclear numerical quantification methods dealing
with applied mathematics and stochastic approaches [6]
proposed emulating outcomes of interest such as ε(E) to
solve the inverse problem of quantification and to estimate
the mass distribution of a radionuclide of interest included in
objects such as nuclear waste drums. In this way, Carasco [7]
proposes to couple gamma ray spectrometry and tomography
in a Bayesian framework to characterize radionuclides of
interest such as 239Pu in nuclear waste. Moreover, Laloy et
al. [8] introduce a Bayesian approach to characterise activities
of radioactive waste from Segmented Gamma Scanning (SGS).

Section II presents a new approach to the mass quantification
problem by considering data of interest as random variables
using an MCNP-based surrogate for Bayesian inversion
through an MCMC algorithm. Section III gives experimental
results considering a measurement database of nuclear waste
drums. Section IV provides discussions and conclusions.

II. BAYESIAN THEORY APPLIED TO GAMMA
SPECTROMETRY

A. Statistical quantification approach

The quantification process that is considered here aims
to estimate the probability density function (PDF) of a
radionuclide of interest of mass m. Let us suppose the
radionuclide of interest is a multi gamma-emitter. Via specific
software for gamma spectrum analysis [9] [10], we obtain
net extracted areas from a measured gamma spectrum. Let
us assume there are N net extracted areas gathered in vector
S = {S(En), n ∈ [1, N ]}, relative to (En)n∈[1,N ] energies
of the multi gamma-emitter radionuclide, and X ∈ ΞD
represents a D-dimension vector of inputs needed for the
calculation of the absolute efficiency calibration coefficients
vector ε(X) = {εn(X), n ∈ [1, N ]} estimation.The X vector
is composed of variables impacting the detection efficiency:
measurement distance, cylindrical dimensions (radius, height),
proportion of materials composing the cylinder (vinyl, iron,
plutonium), bulk density, etc. Details are available in [6].

Hence, (1) and (2) lead to the following equation:

∀n ∈ [1, N ], S(En) = Aεn(X) Inγ t = mAm εn(X) Inγ t (3)

Let us suppose that Yobs is the observation vector with Iγ ,
t and Am deterministic and known, defined as:

Yobs =
S

IγtAm
+ ξ = mε(X) + ξ, ξ ∼ N (0, σobs). (4)

In (4), ξ represents the Yobs observation uncertainty vector.
Let us assume that all of its coefficients are related to normal
distributions centered at zero with σobs = (σobs,n)n∈[1,N ] as

standard deviation vector. This condition is verified with a
sufficient number of counts (central limit theorem).

In considering Yobs, m, ε(X), and X as random variables,
or vectors composed of random variables, the marginal PDF
for m mass given Yobs, expressed as f(m|Yobs), is given by
Bayes theorem written in terms of PDFs [11]. The probability
density f(m|Yobs) depends on joint PDF f(m,Yobs) and
fYobs(Yobs) the marginal PDF of Yobs [2], as expressed in
the following equation:

f(m|Yobs) =
f(m,Yobs)

fYobs(Yobs)
∝ f(Yobs|m)π(m). (5)

The distribution π(m) is called prior distribution [11] and
is typically based on hypotheses, experience, or subjective
opinion about m mass. Taking dependencies upon X into
account leads to (6):

f(m|Yobs) ∝
∫
X

f(Yobs|m,X)π(m|X)π(X)dX. (6)

B. Hypotheses

The objective is to obtain an estimation of f(m|Yobs), the
probability density of m mass given the Yobs vector. Let us
assume some hypotheses about necessary PDFs to provide the
mass distribution:
• Yobs is a vector composed of N independent random

variables Y obsn related to normal distributions:

∀n ∈ [1, N ], Y obsn |m ∼ N (µn(m,X), σn(m,X)2), (7)

with µn(m,X) and σn(m,X) respectively the mean and
standard variation ;

• Let us assume there is a priori no dependence between
m and X, and between the components of X. Hence, the
efficiency ε(X) does not depend on the m radionuclide
mass. In this case, the prior distribution X = (Xd)d∈[1,D]

can be expressed as:

π(m|X)π(X) = π(m)π(X) = π(m)

D∏
d=1

π(Xd); (8)

• Each prior distribution provides information about its
own random variable [11]. A well-known variable is
associated with tight normal prior distribution N (µ0, σ0),
and thus it provides information about variable behaviour.
A variable with no real information, such as m mass or
ρ density of the object, is associated with uniform prior
distribution U(xmin, xmax). This method makes it possi-
ble to control real knowledge about the measured object
and test different hypotheses on unknown variables.

C. MCMC sampling and surrogate models

The calculation of the conditional PDF of m f(m|Yobs)
leads to the evaluation of the integral over X appearing in
(6). When the dimension of X is relatively high, directly com-
puting the integral given by (6) is hardly feasible. A solution
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to get around the problem is to sample m mass conditional
PDF by using Markov Chain Monte Carlo (MCMC) methods
[12] [13]. The Metropolis-Hastings algorithm allows us to
sample the mass m and X components PDFs by using Markov
Chain theory [14]. This method typically needs several tens of
thousands of calls to the simulation code providing evaluations
of the forward model provided by (4), in which the efficiency
should be evaluated by a Monte Carlo particle transport
simulation, e.g. with MCNP. Because of the computational
intractibility to rapidly evaluate ε(X) directly with the particle
transport code MCNP6, a Kriging surrogate model [15] [16]
[17] is proposed to emulate it. A surrogate model [18] requires
a limited number of calls to the code, which are gathered in a
design of experiments (DoE), in order to first accurately and
quickly build an outcome of interest function M , and finally
predict new values of interest such as:

∀X ∈ ΞD, ε(X) ≈M(X). (9)

A practical and well-known DoE building technique is Latin
Hypercube Sampling (LHS) [19] [20]. This kind of DoE
gives very interesting space filling properties by dealing with
different criterion maximization such as the minimax criterion
[21]. The M model construction required 500 experiments
with MCNP and around 16 hours of total computation time
with 72 processing cores (Intel®Xeon(R) CPU E5-2699 v3
@ 2.3 GHz x16 (x2)). The Kriging computation time was
about 1 second (1 core). It was built with DiceKriging and
DiceOptim libraries [15] using the R programming language
[22]. The surrogate is built with the Matern 5/2 covariance
function without nugget effect.

D. Calculation of the f(m|Yobs) conditional probability den-
sity

The objective is to obtain m mass conditional PDF
f(m|Yobs). Considering (6-8-9) and the given hypotheses
detailed below, f(Yobs|m) can be written as :

f(Yobs|m) =

N∏
n=1

f(Y obsn |m) =

N∏
n=1

1√
2πσn

e
− (µobsn −µn)2

2σ2n ,

(10)
where (µn)n∈[1,N ] and (σn)n∈[1,N ] are determined by

considering the uncertainty of the net extracted area vector
S from (4). Here, (µobsn )n∈[1,N ] vector represents observation
inputs coming from the areas extracted from the gamma
spectrum.

Due to its calculation process, which uses the Kriging
emulation method presented above, the ε(X) random variable
vector can be written as following:

ε(X) = νM (X) + σM (X)δσ + emodel(X)δe, (11)

δσ ∼ N (0,1N), δe ∼ N (0, σ2
model),

with νM (X) = (νMn (X))n∈[1,N ] the predictive mean vector
of ε(X) and σM (X) = (σMn (X))n∈[1,N ] its standard deviation
vector coming from the M Kriging surrogate model from

(9). emodel(X) represents the model error. It should be
noted that this uncertainty is assumed to be insignificant but
it is retained in the calculation process. It should also be
noted that uncertainties on the necessary MCNP6 values for
Kriging model construction are taken into account on a point
by point basis. Consequently, this error does not appear in (11).

Hence, (4-11) let us express Yobs PDF from Y obsn PDFs:

∀n ∈ [1, N ], Y obsn |m ∼ N (µn, σ
2
n),

µn = mνMn (X), (12)

σ2
n = m2(σMn (X)2 + σ2

model) + σ2
obs,n. (13)

To finish, considering (6-8-11-12-13), the m mass condi-
tional PDF can be expressed as follows:

f(m|Yobs) ∝
∫
X

N∏
n=1

1√
2πσn

e
− (µobsn −µn)2

2σ2n π(m)

D∏
d=1

π(Xd)dX.

(14)
The desired m mass conditional PDF may also be estimated

by Metropolis-Hastings algorithm as explained below.

E. About the ξ random variable

Henceforth, the aim is to consider m mass PDF and to
sample it with MCMC methods such as the Metropolis-
Hastings algorithm. Nevertheless, a remaining variable has
to be approached. Because of the difficulty to accurately
quantify the σobs standard deviation vector appearing in (4)
and depending on the spectrum area extraction method, two
hypotheses (H1 and H2) about it are possible :

H1 : ξ ∼ N (0, σobs = αYobs), α ∈ [0, 1], (15)
H2 : ξ ∼ N (0, σobs = σ1N), σ ∈ R. (16)

The first hypothesis H1 proposes making the σobs vector
proportional to observable values (15). In the second hypoth-
esis H2, σobs is constant and equal to an arbitrary value σ for
all N components (16).

III. EXPERIMENTAL RESULTS

A. Hypotheses

The stochastic quantification method has been coded with
Python3.7 [23]. The MCMC algorithm is a Random Walk
Metropolis-Hastings algorithm. [13] A custom implementation
was entirely coded by ourselves without an existing package.
The first hypothesis H1 (15) is considered with α = 0.05. All
of the net extracted area uncertainties considered here are less
than 5%. This uncertainty was also fixed to 5% to simplify the
calculations. To test the proposed Bayesian approach of multi
gamma-emitter radionuclide quantification, a nuclear waste
drum measurements database was used. This database comes
from MADAGASCAR, a Segmented Gamma Scanning [24]
[25] nuclear measurement system used by the CEA to identify
and quantify radionuclide activities in waste drums before
sending them to appropriate outlets. The technical features of
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the drums to be considered by the MADAGASCAR system
are :

1) Detection limit about 1 MBq with maximum accepted
activity about 200 GBq

2) Relative bulk density of drums in [0, 0.4]
3) 100 and 200 litre nuclear waste drum type
4) Fixed measuring distance
5) The standard deviations of measurements is set at ±

42% (2σ)

The standard deviations about ±42% is a standard value
provided by a global validation study of MADAGASCAR.
The system uses a radioactive source to obtain transmission
coefficients of drums and to evaluate the standard calibration
efficiency. The MADAGASCAR quantification method is
COFRAC [26] accredited.

The multi gamma-emitter radionuclide of interest to
be quantified is 239Pu. Here, the objective is to test
the capabilities of the stochastic method by comparing
quantification results of 239Pu activities between the
described Bayesian approach and the MADAGASCAR
system quantification results.

To do so, a database of 242 measurements obtained by
MADAGASCAR in 2017 on 100 litre drums was used. The
HPGe detector of MADAGASCAR was a Broad Energy
Germanium detector (BEGe) sold by Canberra (BE2820).
The distribution and the form of the 239Pu masses in
drums are unknown. Moreover, the method ignores the
materials composing the drums of the database. The drums
are composed of lightweight materials (vinyl plastics, papers,
PVC, etc.) and heavier materials such as metals (iron, steel,
aluminium, etc.).

Each MADAGASCAR measurement considered in the base
leads to :

1) APu
239

M : MADAGASCAR declared activity of 239Pu
2) Gross and net weights of 100 litre drums

Moreover, each measurement of the database has its own
acquisition gamma spectrum derived from MADAGASCAR.
Also, the input data of the stochastic method are :

1) S
239Pu
i : Net extracted areas of the ith 239Pu energies

of interest
2) Acquisition duration
3) Measurement distances
4) Drum volume (100 litres) and dimensions (radius and

height)
5) Bulk density

The 239Pu energies of interest are 94.66, 129.29, 203.55,
345.01, 375.05 and 413.71 keV. Peaks that are absent are
ignored by the calculation procedure. The measurement
distance and drum dimensions are identical for all elements
of the database, respectively 58.4 cm and 23 cm of radius
and 68 cm of height. These data are used by the method as

a priori objective, i.e. related to Gaussian prior probability
densities with known variances (II-B).

Concerning the efficiency response of the germanium
detector, this is obtained by modelling with a Kriging
surrogate model. The design of experiments used is similar
to that built for modelling the efficiency of the measurement
scene (LHS). The MCNP6 calculation code is used to build
a digital twin of the detector via the use of As Built plans of
the detector provided by the manufacturer.

B. About statistics

The convergence process of the MCMC chains is
investigated visually in Fig. 1.

The experimental validation process is based on the follow-
ing objectives :

1) Repeatability, reproducibility
2) Linearity - Validation
3) Coverage
4) Comparison
Each item is definied in Table I.

The statistical estimators used to evaluate the stochastic
method quantification results and to compare to the MADA-
GASCAR measurement results are :

1) The mode of the 239Pu estimated mass probability
distribution obtained via a log-normal fit : the data
obtained by the stochastic method represent the posterior
probability density functions of 239Pu masses, the mode
estimator of such distributions therefore represents the
most probable mass proposed by the stochastic method.
The capability of the fit to properly describe the prob-
ability density is assessed using Quantile-Quantile plot
(QQ-plot), Probability-Probability plot (PP-plot) and by
comparing the empirical and theoretical Cumulative
Density Functions (CDF).

2) The 2.5% and 97.5% quantile values, leading to
the 95% confidence interval : these two estimators
were chosen due to the skewness of the probability
distributions obtained by the stochastic method.

The effective posterior samples considered for the log-nor-
mal fit were chosen in getting 1% of the estimated poste-
rior PDF, composed by the 35 independent MCMC chains.
These samples are considered to be independent after appro-
priate thinning (one sample every hundred). The burn-in of the
MCMC chains have been removed. The MCMC algorithm was
tweaked to have an acceptance rate around 30% [14]leading
to around 15000 iterations per chain. The number of effective
posterior samples forming the estimated posterior PDF is about
5000.

C. Repeatability, reproducibility

This part proposes checking the criterion of reproducibility
(repeatability) of the stochastic quantification method. The
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Fig. 1. Convergence visualization. On the top : the 35 MCMC chains of 1
of the 242 measurements of the MADAGASCAR system. On the bottom :
the estimated mass of plutonium of the 35 MCMC chains for four different
values of the MCMC iteration. In red, the maximum and minimum values
of the estimated mass of plutonium. In dotted, the mean of the 35 estimated
mass of plutonium.

objective is to quantify the standard deviation associated with
the use of the described stochastic method. This involves
using the method on the same objects several times in order
to observe estimator variations.

In order to statistically cover the domain of definition of
standard deviations of the estimators sought, the method is
repeated at least 35 times (>30 for normal law conditions) on
the 10 randomly selected items. The calculation time is set at

TABLE I
EXPERIMENTAL STATISTICAL CRITERIA

Criteria Methodology Data

Repeatability,
reproducibility

Repeat the method for 10 ram-
domly selected cases and anal-
yse standard deviations (1σ) of
the mode estimator.

MADAGASCAR
database (10 items).

Linearity -
Validation

239Pu mass PDF evaluation
of a set of standard sources
without matrix effect (empty
drums). Calculation of 68%CI
of mass PDF.

239Pu standard sources
(6 items)

Coverage Mass PDF recovery assess-
ment obtained by the stochas-
tic method with the 95%CI re-
turned in by MADAGASCAR.

MADAGASCAR
database (242 items)

Comparison 239Pu PDF mass evaluation
and verification of the presence
of MADAGASCAR results in
estimated PDF.

MADAGASCAR
database (242 items)

PDF = Probability Density Function, 68%CI = 68% Confidence Interval,
95%CI = 95% Confidence Interval

15 min per sample and per measurement, i.e. 8 h 45 min for
each item (35 samples). The results are summarized in Table
II.

TABLE II
REPRODUCTIBILITY AND REPEATABILITY RESULTS

Item MMod(g) SDMod(%) MQ1(g) SDQ1(%) MQ2(g) SDQ2(%)

1. 3.22 3.16 1.89 1.87 7.85 12.1

2. 2.45 5.05 1.32 3.30 5.73 6.98

3. 4.73 7.08 2.71 3.38 12.1 22.1

4. 1.01 1.10 0.59 0.88 2.28 2.72

5. 0.63 0.97 0.37 0.79 1.37 1.80

6. 4.92 10.0 2.82 4.07 13.1 28.1

7. 2.39 2.31 1.42 1.69 5.30 5.47

8. 3.48 6.76 1.96 2.00 10.2 25.9

9. 1.41 1.96 0.80 1.19 3.40 6.02

10. 0.59 1.82 0.30 0.71 1.60 3.46

MMod = Mean of modes, SDMod = Relative standard deviation of modes,
MQ1 = Mean of quantiles at 2.5%, SDQ1 = Relative standard deviation of
quantiles at 2.5%, MQ2 = Mean of quantiles at 97.5%, SDQ2 = Relative
standard deviation of quantiles at 97.5%

Fig. 2 shows the results of one of the ten measurements of
the reproductibility study. The mean and standard deviation of
the standard deviations of the mode estimator are respectively
4.02% and 3.06%. Fig. 3 represents the standard deviations
of the three estimators tested as a function of the mode mass
of plutonium estimated by the stochastic method.

Fig. 3 shows a strong dependence of tested estimator
standard deviations on the mean of the estimated mode masses.
These standard deviations increase as the mean of the es-
timated mode mass increases. The standard devation of the
estimated mean mode mass is less than or equal to 10% for
all 10 tested measurement cases. The standard deviations of
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Fig. 2. Example of reproducibility study results for one of the ten mea-
surements. Black circles represent estimated modes. Red circles represent
estimated quantiles of 2.5% and 97.5%. Lines represent means of each
estimator.

Fig. 3. Standard deviations of mode and 2.5% and 97.5% quantile estimators
as a function of the mean of the estimated mode masses (Table II). Dotted
curves represent second order polynomial fits of each of the three sets of data.

the quantile estimators vary from a few percent to almost 30%.
Attempts were made with a computation time of 15 min. An
increase in the computation time (approximately one hour)
would significantly reduce the standard deviations of the three
tested estimators. This study makes it possible to analyze the
behavior of the variances of the three estimators. On one hand,
the results allow to have a great confidence in two estimators
(modal and quantile at 2.5%). On the other hand, the variance
of the quantile at 97.5% must be considered with care.

D. Linearity - Validation

This section aims to check the linearity criterion of the
stochastic method as defined in Table I and to validate
the method. To do this, 6 measurements of plutonium
standard sources placed in empty drums were used. These
measurements were carried out on the MADAGASCAR

Fig. 4. Linearity - validation study results of the stochastic method applied
to six plutonium standard masses from 0 to 60 g. Red and blue segments
represent respectively the 68% and 95% CI of estimated PDF of the total
plutonium mass by the method. The circle on each segment represents the
estimated mode.

system validation process. The total plutonium masses of
standard sources are : 0.400, 0.800, 2.104, 5.619, 19.731
and 59.541 grams. The isotopy of plutonium is taken into
account. The six energies of interest of the 239Pu used in
the stochastic method are unchanged [III-A]. For each of the
plutonium standard sources, the stochastic method processes
for 60 min with 35 cores about of computing power. We used
the same CPU as in Section. II-C. The calculation time of
one hour makes it possible to limit the effects on the standard
deviation of the estimators observed in the reproducibility
study.Fig. 4 and Table III summarize the linearity study results.

TABLE III
LINEARITY AND VALIDATION RESULTS

Item MPu(g) MQ1(g) MQ2(g) MMod(g) MQ3(g) MQ4(g)

1. 0.400 0.26 0.39 0.55 0.93 1.42

2. 0.800 0.36 0.69 0.98 1.95 2.94

3. 2.104 1.35 1.79 2.26 3.72 5.22

4. 5.619 2.93 3.94 5.27 7.91 11.3

5. 19.731 7.71 12.2 16.9 26.0 36.4

6. 59.541 20.8 33.3 45.6 71.0 99.8

MPu = Plutonium total mass of standard source, MQ1 =
Estimated plutonium mass at 2.5% quantile, MQ2 = Estimated
plutonium mass at 16% quantile, MMod = Estimated mode
of plutonium mass, MQ3 = Estimated plutonium mass at 84%
quantile, MQ4 = Estimated plutonium mass at 97.5% quantile

For all six measurement cases, the total plutonium mass
is included in the 68% confidence interval (68%CI) of the
estimated mass PDF, i.e. in the interval bounded by the 16%
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and 84% quantiles. This is similar to 1σ interval of a normal
distribution. Since the drums are empty, the effect tested is
the self-absorption of plutonium. This effect increases as the
amount of plutonium increases. The results show the capacity
of the stochastic method to take this effect into account for
relatively large quantities of plutonium. This study also makes
it possible to validate the method on standards.

E. Coverage

The purpose of this section is to verify the conformity
of the coverage criterion as defined in Table I. To do so,
the 242 measurements of the MADAGASCAR database are
used throughout the stochastic method. For each measurement,
the 239Pu net extracted areas of energies of interest are
used throughout the stochastic method. The three estimators
proposed in III-B are used for each item. As a reminder,
these are the mode of the estimated probability distribution
and quantiles at 2.5% and 97.5%. A reduced mass is obtained
for each of the 242 samples by dividing the three estimators
tested by the mass of 239Pu returned by the MADAGASCAR
system. We have:

M i
Red =

M i
Mod

M i
MADA

(17)

Note that for item #i, M i
Red represents the reduced pluto-

nium mass, MMod is the estimated mode plutonim mass of
the stochastic method and M i

MADA is the MADAGASCAR
estimated plutonium mass. Fig. 5 summarizes the coverage
study results. A recovery rate Ri is calculated for all items in
the database. This rate represents the capability of the 95%
CI of the estimated conditional PDF to cover the 95% CI
of MADAGASCAR results, i.e. ± 42% [III-A]. This rate is
defined as follows:

Ri =


min(

qi97.5−0.58M
i
MADA

0.84Mi
MADA

, 1), if qi97.5 ≥ 0.58M i
MADA

min(
1.42Mi

MADA−q
i
2.5

0.84Mi
MADA

, 1), if qi2.5 ≤ 1.42M i
MADA

0, otherwise
(18)

Note that for item #i, qi2.5 and qi97.5 represent respectively
the 2.5% and 97.5% quantiles of the estimated posterior
PDF. The calculation results indicate that 92.3% of the tested
measurements have a recovery rate greater than 0.5. In other
words, in more than 9 out of 10 cases, the 95% CI returned by
the stochastic method represents at least 50% of that returned
by MADAGASCAR system. The results are presented in
Fig. 6.

The results presented in Fig. 5 show a good response
of the stochastic method between 0 and 2 g of plutonium.
The mode estimator is consistent and correctly represents the
mass of plutonium obtained on the MADAGASCAR system.
Nevertheless, an average positive bias about 25% appears for
increasing mode values of estimated plutonium mass.

F. Comparison

The purpose of this part is to check the comparison criterion
as defined in Table I. To do so, the 242 measurements of the

Fig. 5. Coverage study results. 1 - On top : Representation of the reduced
plutonium mass for the 242 measurements. Solid blue lines represent limits of
the 95% CI reported by the stochastic method for all items from the database;
the dotted blue line represents the average of estimated modes. Solid red lines
represent the 95% CI limits of all items from the database. 2 - On the bottom
: Representation of the estimated mode mass in function of the estimated
MADAGASCAR mass for all items from the database.

MADAGASCAR database are used. For each measurement,
the mass mode is estimated by the stochastic method and
we check its presence in the 95% CI of MADAGASCAR
mass results. We obtain that 91% of mass modes estimated
by the stochastic method are included in the 95% CI of
MADAGASCAR mass results, so more than 9 out of 10 cases.

IV. DISCUSSIONS AND CONCLUSIONS

The results obtained through the study of criteria as defined
in Table I make it possible to estimate the PDF of plutonium
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Fig. 6. Recovery rate results. In blue, the estimated conditional PDF of
the plutonium masses (95% CI). In red, the standard deviations of the
MADAGASCAR measurements, i.e ± 42% (2σ).

masses. This quantification is possible for low bulk density
objects with a homogeneous emission source and considering
gamma multi-emitter radionuclides to quantify. The described
stochastic method makes it possible to estimate the activity
or mass PDF of a radionuclide to be quantified. Although the
experimental data describe distributions with larger variances
than traditional nuclear measurement uncertainties, PDF
are obtained without a priori information about measured
objects. The information supplied to the method comes from
the acquisition spectrum or objective information sources as
measurement distance, object volume, etc. Beyond estimating
a mass of radionuclide, the method makes it possible to
estimate the efficiency curve of the measurement scene. With
this, it should be possible to use the proposed method to
quantify mono gamma-emitter radionuclides. Concerning the
positive bias on the estimated mass of plutonium, we have
clearly identified it and are currently investigating potential
causes.

The first difficulty of this study is that the MADAGASCAR
data are measurements and not standards. Due to the
difficulty in generating standard sources of plutonium, this
MADAGASCAR database was used. The second difficulty
was finding the right comparison tools. Indeed, the problem
was to compare scalars (mass of MADAGASCAR plutonium
and uncertainties) with estimated conditional PDFs. The four
proposed studies allow a correct comparison of the measured
and estimated data. Additional tools can be added.

Finally, the alpha value defined in Eq. 15 and set to 5%, to
simplify the calculations, slightly overestimates the uncertainty
of the net extracted areas used. An automatic integration of
these uncertainties within the code must be carried out to refine

the calculations.
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Ed. France, 2013, pp. 159-173

[19] Park, Jeong-Soo., “Optimal Latin-hypercube designs for computer ex-
periments,” in Journal of Statistical Planning and Inference, vol. 39, pp.
95-111, 1994.

[20] R. Faivre, B. Iooss, et al., “Echantillonage en grande dimension,”
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