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Abstract 
 
 Microbubble clouds greatly affect the acoustic behaviour of systems such as liquid-filled 

Helmholtz resonators. Gas microbubbles change the resonator’s behaviour from quasi-linear to mostly non-
linear, together with the appearance of hysteretic phenomena and desymmetrisation of the temporal response 
or a softening effect with a drop in the resonance frequencies with increasing excitation amplitudes. The 
aim of this study is to model the non-linear behaviour of a diphasic Helmholtz resonator filled with water 
containing air microbubbles. The microbubble cloud is therefore modelled with a “damped-mass-spring” 
second-order equation. The impact of the two phases is accounted for by considering both an equivalent 
stiffness and an equivalent damping value. The model is then compared to experimental data, which showed 
its ability to reproduce both linear and non-linear behaviour.  

 
 Nonlinear Resonant Acoustic Spectroscopy, Two-phase, Helmholtz Resonator, Bubble cloud, Void 

fraction, Microbubble 

 
 
1. Introduction 
 In a context where the global electricity demand continues to increase, the French Atomic Energy 

and Alternative Energies Commission (CEA) conducts research on the development of sodium-cooled fast 
nuclear reactors (SFR) within the scope of the Generation IV International Forum (GIF). 

As liquid sodium is opaque, acoustic non-destructive testing (NDT) and sodium viewing methods 
have to be developed, which requires accurate knowledge of liquid sodium’s physical properties. The 
presence of argon gaseous microbubbles in the liquid sodium - mainly due to nucleation and gas entrainment 
- largely modifies its compressibility and celerity. This has led to the development of bubbly liquid 
characterisation techniques to evaluate both the void fraction �, which represents the ratio of the gas volume 
to the total volume, and the cloud histogram, which refers to the distribution of bubble radii.  

Different bubble cloud characterisation methods exist [1]. The CEA has focused its research on 
acoustic techniques, such as mixing frequency techniques [2], attenuation and velocity spectroscopy [3], 
and low-frequency acoustic velocity measurements (LF-AVM) [4]. 

Another way of characterising a bubbly liquid is to confine the micro-bubble cloud in a resonator 
and to study the impact of the two-phase medium on the resonance.  Both the linear and non-linear resonant 
behaviour of the system depends on the properties of the cloud. First, an estimate of the void fraction and 
the mean bubble radius can be made in the linear regime (small excitation amplitudes). The resonance 
frequency of the system can be compared with that predicted either by Wood's model, which couples the 
speed of sound (and thus the system’s resonance frequency) and the void fraction [5], or by Prosperetti's 
model, which includes the impact of radii [6]. Second, a softening effect, i.e., a decrease in resonance 
frequency with increasing excitation amplitude, can be observed in the non-linear regime [12]. 
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Characterisation techniques based on this softening effect, such as the Non-linear Resonant Acoustic 
Spectroscopy (NRAS), have been developed to assess the fatigue of rocks and concrete [9-11] and might be 
transposed to the characterisation of bubble clouds. This method consists in representing the relative 
variation of the resonance frequency as a function of the excitation amplitude. Three zones can generally be 
observed: a linear zone with an almost zero variation of the resonance frequency, followed by a quadratic 
evolution and finally a linear variation of the resonance frequency, whose slope is quantified according to 
the properties of the media (fatigue state and microcracks in the case of concrete [9-11]). However, to the 
best of our knowledge, the physical parameters cannot yet be determined on the basis of this information. 
Some experimental NRAS tests on bubbly liquids [12, 13] have been undertaken without further 
characterisation.  

The absence of an analytical modelling of such two-phase resonators prevents a thorough 
investigation of the influence of each of the bubble cloud parameters on the NRAS technique. To fill this 
gap, we propose to model in this study a two-phase Helmholtz resonator, capable of reproducing both linear 
and non-linear resonant behaviour observed experimentally.  

The paper is organized as follows. We first expose the proposed model derivation, before providing 
analytical results to validate its linear resonant response with Wood’s and Prosperetti’s well-known effective 
medium models. The third part of the study compares the model with the experimental results. Future 
prospects are then discussed in the conclusion. 

 
2. Theoretical background 
 As two-phase medium compressibility is highly sensitive to void fractions, this property is used as 

the basis for our model. Moreover, since the behaviour of both microbubbles and Helmholtz resonators can 
be modelled by an analogue damped-mass-spring system [14-16], the two-phase Helmholtz resonator is 
modelled likewise. 

We adopt here a macro-micro description of the two-phase Helmholtz resonator. The entire system 
is described as an effective medium (macroscopic view), the properties of which are directly derived from 
the microbubble reaction to an external excitation (microscopic view). 

We then adopt first a macroscopic description to model the response of the effective two-phase 
Helmholtz resonator.  

The system’s behaviour can be described as the displacement of a fluid mass in the neck of length 
����� resulting from an excitation pressure �, applied to the opening of the Helmholtz resonator with a 
cross-section  �	 = ��	
  and a cavity volume �� as shown in Fig. 1. 

 
Figure 1: Two-phase Helmholtz resonator modelled as a 
damped mass spring system   

 
 
 
 
 
 
 

 
The fluid mass displacement � in the 

resonator neck is governed by a second-order 
differential equation such as 

 ������ + ����� + ���� = ��	����,   (1) 
 

 with � the excitation pulsation. The effective mass of moving fluid in the neck of length ����� , ���� =
�����	�� ,  accounts for the radiation at the openings by considering an effective length ��. Cummings [17] 
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recommends using an end correction corresponding to that of a semi-infinite tube [18] for the mouth ��� ! 
and to that of an infinite baffled piston [19] for the opening to the resonator cavity ��� ", i.e., 
 

�� = ����� + ��� ! + ��� " 

                                 = ����� + #
$% �� +  !

 !&'
�	   (2) 

 
where (	 = 2�	 is the internal opening diameter, (	&' is the external diameter, and �� is the cavity radius. 
The equivalent stiffness ��� and damping ��� are defined in sub-sections 2.1 and 2.2 respectively. 

 
Based on the elementary Helmholtz resonator model, the stiffness ��� of the two-phase resonator 

creates a restoring force at the mouth’s cross-section �	. The bubble population, which has its own 
compressibility, also acts on this restoring force. 
We then adopt a microscopic view to derive these equivalent properties from the microbubble cloud as 
schemed in Fig. 2. The polydisperse bubble population can be represented by a histogram (number of 
microbubbles versus bubble radii), which can be divided into several radius classes, *. Each population 
class gathers every single bubble whose radius falls in the range of the class. 

 
Figure 2: Microbubble population (� = 1 − 15 /m and 
� = 1012) modelled as a damped mass spring system   

 
 
 
 
 
 
 
 
 
 

 
2.1. Equivalent stiffness 

 
To derive the equivalent stiffness ��� of the 

two-phase Helmholtz resonator, a series combination 
of the equivalent springs representing the equivalent stiffness of the gaseous phase ���,3 and stiffness of the 
liquid phase ���,4 is assumed (see Fig.1) 

 

 ��� = 5 6
�&7,8 + 961:;<"=>

?!@
A16. (3) 

 
The equivalent stiffness of the gaseous phase, depicted in Fig. 2, results from a series combination 

of the stiffness of each radius range �B and of the CB identical microbubbles in the *�D class, �B�, leading 
to 

 ���3 =  E∑ 6
�GB H16, (4) 

with  

 �B =  5∑ 6
�G7

IG� A16 = �G7
IG . (5) 
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We assumed here that each bubble in the *�D class shares the same stiffness since the variation in 

volume is the same.  
 
An elementary stiffness, modelled similarly to that of a spring [21], is assumed and assigned to each 

microbubble of the cloud 

 � = ?!@
=<J , (6) 

with the subscript .B�  omitted for readability. 
 
The compressibility of each individual bubble of equilibrium radius �K from the population is 

determined by solving the Laplace equation, ��L = MNOPQ, or  
 

 R�S�	 + 
T
UJV �KL = R�S�	 + � + 
T

U V �L , (7) 

 
 so as to estimate the variation in the volume 
 

 W� = � − �K = 2%
$ 9�$ − �K$;,  (8) 

 and the variation in the internal pressure 
 

 W� = � − �K = �S�	 + 2X R6
U − 6

UJV, (9) 

where �S�	 is the ambient pressure (atmospheric pressure), X is the surface tension, .K refers to steady state, 
and Y to the polytropic coefficient. 

An isothermal behaviour is assumed considering that the average thermal penetration depth, Z =
[
 \8

� ~160 /m (with Da = 2.185.10c m2.s-1, the gaseous thermal diffusivity) is much larger than the expected 

bubble radius values in the reactor (ranging from some micrometres to a few tens of micrometres) within 
the resonance frequency range of the bubbly water filling the resonator (see Table 1). Nevertheless, to 
remain general, the polytropic coefficient Y is estimated at each step of the resolution, i.e., for each radius 
range, using Devin’s model [20]. 

Knowing the volume and pressure variations in each bubble, its compressibility can then be 
determined as such 

 d = − 6
<

e<
efg?  ≈ − 6

<J
i<
if . (10) 

 
By considering a series combination, the total displacement can be assumed to be divided into 

elementary displacements absorbed by a volume change in each phase and microbubble. 
 

2.2. Equivalent damping 
 The damping of individual bubbles has been already widely discussed [22-24] and is known to be 

due to three mechanisms: thermal exchange, radiation and viscosity. However, neither the cloud nor bubbly 
liquid damping coefficient are well defined in literature. Only Commander and Prosperetti [22] recommend 
defining a complex wave number to determine an attenuation coefficient.  

In this damping-mass-spring analogy, we propose to define the equivalent damping as a parallel 
combination of dampers, corresponding to the damping of each bubble of the same class, in series with the 
equivalent damper of each class, themselves in series with a damper corresponding to the damping of the 
Helmholtz resonator.  

This choice is motivated by the fact that the damping is directly proportional to the vibration 
velocity and therefore to the bubble radius. Bubbles of the same class have the same velocity, which leads 
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to a parallel combination of dampers. On the other hand, the velocity is different for bubbles of different 
radius classes, leading to a series combination of equivalent dampers of each class. 

The total system damping is therefore given by  

 ,
11

1
==

,reqeq

eff

eq

eq
m

b

δδ

δ
+

 (11) 

with 
req ,δ  the equivalent damping constant of the resonator defined in [16] by the three same components, 

that is  

                                     j��,k = 2 �&llm@
#%<"

+ 2 n�J
√
 U!

pnq4 + nr49s − 1;t,                             (12) 

where 
em LS /= 2Λ  is the neck’s acoustic conductivity, lν  is the kinematic viscosity and r4 is the thermal 

diffusivity of the liquid. M��� is the sound velocity of the effective medium (eq. 18), and s is the adiabatic 
index.  

As the study focuses on the Helmholtz resonance, i.e., much lower than the bubble resonance 
frequency, the low-frequency approximation of bubble damping [22] is used 
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where 
gD  is the gaseous thermal diffusivity and lµ  the liquid dynamic viscosity. 

As explained previously, to estimate the equivalent cloud damping, dampers corresponding to each 

single bubble of the 
th

w  class of the population are organised in a parallel combination 

 ,= wq

w
N

q

w δδ ∑  (14) 

while the equivalent dampers of the various classes of bubbles are organised in series 

 .
1

=
1

,

−









∑

ww

geq δ
δ  (15) 

 
3. Model validation 
  
3.1. Methods 
To check the accuracy of our microscopic modelling of the two-phase Helmholtz resonator, multiple 

analytical simulations of the model are performed to test its response in the linear and non-linear domains. 
Equation (3) is solved with a fourth-order Runge-Kutta algorithm for 5 seconds of sweep excitation in the 
[20 – 500] Hz range. 

On the one hand, linear accuracy is examined by comparing the dependence of the resonance 
behaviours predicted by our model with that given by the classical homogenisation model. On the other 
hand, we check whether the non-linear phenomena (time amplitude desymmetrization, hysteresis, harmonic 
generation and softening effect) observed experimentally on a similar system in Ref. [12] are well captured 
by the proposed analytical model. 
 

3.2. Linear regime 
 
To validate the linear behaviour predicted by the proposed model based on a microscopic 

description of the bubble cloud, we compared the bottle’s variation in linear (small excitation amplitude) 
resonance with the variation in the sound speed (resp. frequency) predicted by Wood’s model [5]. The latter 
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is based on a homogenisation scheme applied to the bubbly liquid (macroscopic view), which is seen as an 
effective fluid or mixture characterised by effective compressibility d	 and density �	  

 d	  = 91 − �;d4 +  �d3, (16) 
  

 �	 = 91 − �;�4 +  ��3.  (17) 
Subscripts .4 and .3 correspond to the liquid and the gaseous phases respectively. 

 
Using eq. (16) and eq. (17) and noting that gas compressibility is much higher than liquid 

compressibility, the effective sound velocity of the mixture M	 can be written as [25]  
 

                               
6

�!@
= �	. d	 = :@L

�8@
+ 961:;@

�>@
+ �91 − �; Ru>

fJ + �3d4V.                        (18) 

 
The effective velocity is then used in the Helmholtz resonance formula [26] 

 vk = �!

% [ ?!

w&<"
 , (19) 

 to predict Wood’s resonance frequency for the two-phase Helmholtz resonator. 
We then compare in Table 1 the linear resonance frequency given by the proposed cloud’s micro-

description model to that obtained from the Wood’s approximation for several two-phase populations, with 
different void fractions and bubble radii.  
  

Void fraction 101# 101x 1012 101
 1 

Our model for �K = y1 − 15z μ� 383.0 Hz 379.3 Hz 226.1 Hz 28.1 Hz 87.8 Hz 

Our model for �K = y1 − 79z μ� 383.0 Hz 379.5 Hz 224.3 Hz 27.6 Hz 87.8 Hz 

Wood model 382.3 Hz 378.2 Hz 215.2 Hz 26.1 Hz 87.6 Hz 

Table 1: Linear resonance frequency predicted by the two-phase Helmholtz resonator model and with Wood’s model 
 

The good agreement reached validates our equivalent stiffness and damping modelling of the two-phase 
Helmholtz resonator response for small excitation amplitudes. The slight over-estimation with our model 
can be attributed to a stiffening issue (as observed with discretisation in the finite-element method for 
example).  

Moreover, our modelling also reproduces well the limit case of a water single-phase (� = 0) 
Helmholtz resonator with a resonance at 383 Hz (382.3 Hz expected with the Helmholtz resonance formula). 

 
3.3 Non-linear regime 

 
Due to the lack of a non-linear model for this type of system, the non-linear response predicted by 

our analytical modelling cannot be compared with existing models. We therefore compare our analytical 
prediction with measurements and check whether the proposed model reproduces the non-linear response 
observed experimentally. 

 
3.3.1 Experimental set-up 
A glass bottle filled with water, acting as a Helmholtz resonator, the resonance of which is computed 

at 382.3 Hz (eq. 19), is used for this experimental study. The continuum cross-sectional variation in a 
champagne bottle is designed to avoid bubble accumulation at discontinuities and to maintain a stable void 
ratio. The neck cavity limit of the champagne bottle is defined by the cross-section for which a tangent to 
the bottle shape intersects the revolution line of the bottle’s mouth [17]. The cavity radius at this point is 
defined by �� as shown in Fig. 3. 
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The 75 cL champagne bottle is instrumented with a B&K 8103 hydrophone and a laminar 
microfluidic bubble generator. A B&K 4809 shaker mounted above the bottle’s mouth is used to produce 
sweep excitation, as shown in Fig. 3.  

By adjusting the pressure in the microfluidic generator, one can control the properties of the 
generated bubble clouds, both in terms of void fractions and radius ranges. Microfluidic generators can be 
optically characterised to create histogram abacus evaluating, for a given pressure, the radius histogram of 
the bubble population composing the cloud. 

Figure 3: Experimental set-up 

3.3.1 Experimental observation and qualitative non-linear validation 

  
Figures 4 (a,c) show respectively the measured temporal responses and their power spectral density 

estimated with a Welch periodogram, for a population of radii included in the [50, 70] µm range (measured 
by optical camera) and an excitation amplitude ranging in [14 – 494] m.s-1. 

As expected, when the excitation amplitude is increased, a softening effect [13] (coupled to 
harmonic generation, and amplitude desymmetrisation) is observed. The sweep time is now reduced to 1 s 
to ensure constant cloud characteristics during the experiments. In addition, to guarantee that the void 
fraction remains constant during the experiment, the phase of increasing the excitation amplitude is followed 
by a phase of decreasing the amplitude to ensure that the same linear resonance frequency is returned. 
Finally, between each set of measurement, the bottle is degassed. 

Thanks to Wood’s model, the void fraction can be estimated by measuring the linear resonance 
frequency decrease due to the presence of the bubble cloud, i.e., from 382.3 Hz without bubbles to 357.1 
Hz, which corresponds to a void fraction of � = 8.101x.  

The analytical model captures well this response as evidenced by Figs. 4 (b,d). It is worth noting 
here that the analytical model predicts either a softening or a hardening behaviour depending on excitation 
amplitude sign, as remarked by [27]. As the bubble radius, volume, internal pressure, and thus 
compressibility are solved in quasi-steady-state conditions (Laplace equation solved for a static excitation 
pressure), the model solution depends on the amplitude sign. Since it has been shown experimentally that 
bubbly liquid under sinusoidal sweep excitation presents a softening effect, with the resonance frequency 
progressively decreasing with increasing amplitude, only the softening solution was retained.  
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Figure 4: Measured temporal response (a) and PSD (c) of the bottle filled with bubbly water. 
Analytical temporal response (b) and PSD obtained with the proposed model with the microbubble cloud parameters 

estimated using optical characterisation and Wood’s model: R0 = 50-70 µm and τ = 8.10-6 
3.4 Toward a Non-linear Resonant Acoustic Spectroscopy characterization 

 
We now investigate the possibility of characterizing the cloud properties using the non-linear 

softening effect captured by our analytical modelling. We then test different bubble population 
characteristics (different void ratio, different bubble size) to see their influence on the non-linear response 
of the two-phase Helmholtz resonance. 

Figures 5 (a-b) shows respectively the temporal and frequency responses for a bubble cloud of radii 
�K = 1-15 µm and a void fraction of � = 1012.  

Figure 5: Analytical results of the model’s non-linear behaviour for R0 = 1-15 µm, � = 1012:  

(a) temporal response and (b) power spectral density 
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The softening effect predicted can be quantified by applying a non-linear resonant acoustic 

spectroscopy (NRAS) method [28], i.e., by representing the relative frequency variation with the excitation 
amplitude and then interpolating it, as shown in Fig. 6. 

Figure 6: Analytical NRAS for a bubble population of radii R0 = 1-15 µm and a void ratio  
τ = [10-2, 10-3, 10-4, 10-5, 10-6, 10-7, 10-8]:  (a) resonance magnitude versus frequency,  

(b) relative resonance frequency versus amplitude of excitation for 16 pressure levels [500, 80000] Pa 
 

It is clear that the non-linear softening effect depends on the void ratio. The higher the void ratio, 
the larger the gaseous phase volume, the stronger the non-linear effect and the lower the resonance 
frequency. 

Figure 7 shows the effect of the bubble radii on the NRAS for a monodispersed bubble cloud for a 
void fraction of 101c.  
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Figure 7: Analytical NRAS for τ = 10-5 and R0 = [1, 4, 10, 15, 50, 100] µm: 
(a) resonance magnitude versus frequency, (b) relative resonance frequency versus excitation amplitude for 16 

amplitudes [500, 80000] Pa 
   
The bubble size also affects the resonant behaviour of a microbubble cloud, especially for very 

small radii (below 10 µm). The NRAS method is much less sensitive in the case of larger bubbles. The 
balance between the Laplace pressure and the atmospheric pressure (eq. 7) can explain this. For wide 
bubbles, the atmospheric pressure becomes predominant compared with the ratio of the surface tension to 
the bubble radius. In a water-air bubbly liquid, radii smaller than a few micrometres are required to achieve 
a balance (surface tension of water at 298.25 K is X = 0.073), whereas the resonance behaviour of a bubbly 
liquid is sensitive up to 70 µm in a sodium-argon bubbly liquid (surface tension of liquid sodium at 773.25 
K is X = 0.156). 

 
 

4. Conclusion and future prospects 
 
 A damped-mass-spring two-phase Helmholtz resonator model was developed to reproduce both 

the linear and non-linear behaviour of a bubbly resonator with the goal to study the influence of the bubble 
cloud parameters (radius histogram, void fraction). This model has been validated in the linear domain by 
comparing its resonant behaviour with that predicted by Wood’s analytical model. The model is also able 
to predict the dependence of the non-linear effects according to the cloud histogram and the void fraction.  

The results of the model have been compared with experimental measurements performed on a 75 
cL champagne bottle. The bubble generation system does not make it possible to control the void fraction 
and population histogram separately, or to generate sufficiently small bubbles to study the relative influence 
of each parameter in depth. However, our experimental validation was successful. In the case of linear 
behaviour, good quantitative agreement was found for the resonant frequencies. In the case of non-linear 
behaviour, the model qualitatively estimated the overall behaviour, e.g. the amplitude-dependant frequency 
shift (softening), as well as the time and frequency response shapes. 

The future prospects for this work include finding a new bubble generation system to multiply the 
experimental measurements (notably with small bubbles, with radii lower than 15 µm) so the experimental 
data can be better compared with the model’s results. Other prospects include more in-depth  investigation 
of the bubble cloud’s equivalent damping, even if its impact remains small on non-linear features, as well 
as of the accuracy of the model to describe the other nonlinear phenomena observed experimentally: the 
desymmetrisation of the temporal response, the harmonic energy transfer, and hysteresis. 
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