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Microbubble clouds greatly affect the acoustic behaviour of systems such as liquid-filled Helmholtz resonators. Gas microbubbles change the resonator's behaviour from quasi-linear to mostly nonlinear, together with the appearance of hysteretic phenomena and desymmetrisation of the temporal response or a softening effect with a drop in the resonance frequencies with increasing excitation amplitudes. The aim of this study is to model the non-linear behaviour of a diphasic Helmholtz resonator filled with water containing air microbubbles. The microbubble cloud is therefore modelled with a "damped-mass-spring" second-order equation. The impact of the two phases is accounted for by considering both an equivalent stiffness and an equivalent damping value. The model is then compared to experimental data, which showed its ability to reproduce both linear and non-linear behaviour.

Introduction

In a context where the global electricity demand continues to increase, the French Atomic Energy and Alternative Energies Commission (CEA) conducts research on the development of sodium-cooled fast nuclear reactors (SFR) within the scope of the Generation IV International Forum (GIF).

As liquid sodium is opaque, acoustic non-destructive testing (NDT) and sodium viewing methods have to be developed, which requires accurate knowledge of liquid sodium's physical properties. The presence of argon gaseous microbubbles in the liquid sodium -mainly due to nucleation and gas entrainment -largely modifies its compressibility and celerity. This has led to the development of bubbly liquid characterisation techniques to evaluate both the void fraction , which represents the ratio of the gas volume to the total volume, and the cloud histogram, which refers to the distribution of bubble radii.

Different bubble cloud characterisation methods exist [START_REF] Leighton | The detection of tethered and rising bubbles using multiple acoustic techniques[END_REF]. The CEA has focused its research on acoustic techniques, such as mixing frequency techniques [START_REF] Cavaro | Microbubble cloud characterization by nonlinear frequency mixing[END_REF], attenuation and velocity spectroscopy [START_REF] Cavaro | A void fraction characterisation by low frequency acoustic velocity measurements in microbubble clouds[END_REF], and low-frequency acoustic velocity measurements (LF-AVM) [START_REF] D'hondt | Mensah -Acoustical characterisation and monitoring of microbubble clouds[END_REF].

Another way of characterising a bubbly liquid is to confine the micro-bubble cloud in a resonator and to study the impact of the two-phase medium on the resonance. Both the linear and non-linear resonant behaviour of the system depends on the properties of the cloud. First, an estimate of the void fraction and the mean bubble radius can be made in the linear regime (small excitation amplitudes). The resonance frequency of the system can be compared with that predicted either by Wood's model, which couples the speed of sound (and thus the system's resonance frequency) and the void fraction [START_REF] Wood | A textbook of sound[END_REF], or by Prosperetti's model, which includes the impact of radii [START_REF] Prosperetti | The speed of sound in a gas-vapour bubbly liquid[END_REF]. Second, a softening effect, i.e., a decrease in resonance frequency with increasing excitation amplitude, can be observed in the non-linear regime [START_REF] Coste | Acoustic resonances in a liquid with vapor bubbles: Effect of liquid-vapor transition on sound velocity and attenuation[END_REF].
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Characterisation techniques based on this softening effect, such as the Non-linear Resonant Acoustic Spectroscopy (NRAS), have been developed to assess the fatigue of rocks and concrete [START_REF] Payan | Caracterisation non destructive du beton : etude du potentiel de l'acoustique non lineaire[END_REF][START_REF] Johnson | Nonlinear resonant ultrasound spectrocopy[END_REF][START_REF] Abeele | On the quasi-analytic treatment of hysteretic nonlinear response in elastic wave propagation[END_REF] and might be transposed to the characterisation of bubble clouds. This method consists in representing the relative variation of the resonance frequency as a function of the excitation amplitude. Three zones can generally be observed: a linear zone with an almost zero variation of the resonance frequency, followed by a quadratic evolution and finally a linear variation of the resonance frequency, whose slope is quantified according to the properties of the media (fatigue state and microcracks in the case of concrete [START_REF] Payan | Caracterisation non destructive du beton : etude du potentiel de l'acoustique non lineaire[END_REF][START_REF] Johnson | Nonlinear resonant ultrasound spectrocopy[END_REF][START_REF] Abeele | On the quasi-analytic treatment of hysteretic nonlinear response in elastic wave propagation[END_REF]). However, to the best of our knowledge, the physical parameters cannot yet be determined on the basis of this information. Some experimental NRAS tests on bubbly liquids [START_REF] Coste | Acoustic resonances in a liquid with vapor bubbles: Effect of liquid-vapor transition on sound velocity and attenuation[END_REF][START_REF] Cavaro | Linear and nonlinear resonant acoustic spectroscopy of micro bubble clouds[END_REF] have been undertaken without further characterisation.

The absence of an analytical modelling of such two-phase resonators prevents a thorough investigation of the influence of each of the bubble cloud parameters on the NRAS technique. To fill this gap, we propose to model in this study a two-phase Helmholtz resonator, capable of reproducing both linear and non-linear resonant behaviour observed experimentally.

The paper is organized as follows. We first expose the proposed model derivation, before providing analytical results to validate its linear resonant response with Wood's and Prosperetti's well-known effective medium models. The third part of the study compares the model with the experimental results. Future prospects are then discussed in the conclusion.

Theoretical background

As two-phase medium compressibility is highly sensitive to void fractions, this property is used as the basis for our model. Moreover, since the behaviour of both microbubbles and Helmholtz resonators can be modelled by an analogue damped-mass-spring system [START_REF] Leighton | The Acoustic Bubble[END_REF][START_REF] Alster | Improved calculation of resonant frequencies of helmholtz resonators[END_REF][START_REF] Howe | On the helmholtz resonator[END_REF], the two-phase Helmholtz resonator is modelled likewise.

We adopt here a macro-micro description of the two-phase Helmholtz resonator. The entire system is described as an effective medium (macroscopic view), the properties of which are directly derived from the microbubble reaction to an external excitation (microscopic view).

We then adopt first a macroscopic description to model the response of the effective two-phase Helmholtz resonator.

The system's behaviour can be described as the displacement of a fluid mass in the neck of length resulting from an excitation pressure , applied to the opening of the Helmholtz resonator with a cross-section = and a cavity volume as shown in Fig. 1. The fluid mass displacement in the resonator neck is governed by a second-order differential equation such as

+ + = , (1) 
with the excitation pulsation. The effective mass of moving fluid in the neck of length , = , accounts for the radiation at the openings by considering an effective length . Cummings [START_REF] Cummings | Acoustics of a cider bottle[END_REF] and to that of an infinite baffled piston [19] for the opening to the resonator cavity " , i.e.,

= + ! + " = + # $% + ! ! &' (2) 
where ( = 2 is the internal opening diameter, ( &' is the external diameter, and is the cavity radius. The equivalent stiffness and damping are defined in sub-sections 2.1 and 2.2 respectively.

Based on the elementary Helmholtz resonator model, the stiffness of the two-phase resonator creates a restoring force at the mouth's cross-section . The bubble population, which has its own compressibility, also acts on this restoring force. We then adopt a microscopic view to derive these equivalent properties from the microbubble cloud as schemed in Fig. 2. The polydisperse bubble population can be represented by a histogram (number of microbubbles versus bubble radii), which can be divided into several radius classes, *. Each population class gathers every single bubble whose radius falls in the range of the class. (
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The equivalent stiffness of the gaseous phase, depicted in Fig. 2, results from a series combination of the stiffness of each radius range B and of the C B identical microbubbles in the * D class, B , leading to
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with

B = 5∑ 6 G7 I G A 16 = G7 I G . ( 5 
)
We assumed here that each bubble in the * D class shares the same stiffness since the variation in volume is the same.

An elementary stiffness, modelled similarly to that of a spring [START_REF] Bernardot | Un archetype d'oscillateur : le resonateur acoustique de helmholtz[END_REF], is assumed and assigned to each microbubble of the cloud
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with the subscript . B omitted for readability.

The compressibility of each individual bubble of equilibrium radius K from the population is determined by solving the Laplace equation, L = MNOPQ, or
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so as to estimate the variation in the volume
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and the variation in the internal pressure
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where S is the ambient pressure (atmospheric pressure), X is the surface tension, . K refers to steady state, and Y to the polytropic coefficient. An isothermal behaviour is assumed considering that the average thermal penetration depth
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~160 /m (with D a = 2.185.10 c m 2 .s -1 , the gaseous thermal diffusivity) is much larger than the expected bubble radius values in the reactor (ranging from some micrometres to a few tens of micrometres) within the resonance frequency range of the bubbly water filling the resonator (see Table 1). Nevertheless, to remain general, the polytropic coefficient Y is estimated at each step of the resolution, i.e., for each radius range, using Devin's model [START_REF] Devin | Survey of thermal, radiation, and viscous damping of pulsating air bubbles in water[END_REF].

Knowing the volume and pressure variations in each bubble, its compressibility can then be determined as such
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By considering a series combination, the total displacement can be assumed to be divided into elementary displacements absorbed by a volume change in each phase and microbubble.

Equivalent damping

The damping of individual bubbles has been already widely discussed [START_REF] Commander | Linear pressure waves in bubbly liquids: Comparison between theory and experiments[END_REF][START_REF] Prosperetti | Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids[END_REF][START_REF] Medwin | Counting bubbles acoustically: a review[END_REF] and is known to be due to three mechanisms: thermal exchange, radiation and viscosity. However, neither the cloud nor bubbly liquid damping coefficient are well defined in literature. Only Commander and Prosperetti [START_REF] Commander | Linear pressure waves in bubbly liquids: Comparison between theory and experiments[END_REF] recommend defining a complex wave number to determine an attenuation coefficient.

In this damping-mass-spring analogy, we propose to define the equivalent damping as a parallel combination of dampers, corresponding to the damping of each bubble of the same class, in series with the equivalent damper of each class, themselves in series with a damper corresponding to the damping of the Helmholtz resonator.

This choice is motivated by the fact that the damping is directly proportional to the vibration velocity and therefore to the bubble radius. Bubbles of the same class have the same velocity, which leads to a parallel combination of dampers. On the other hand, the velocity is different for bubbles of different radius classes, leading to a series combination of equivalent dampers of each class.

The total system damping is therefore given by , 1 1 1 = = ,r eq eq eff eq eq m b δ δ δ + [START_REF] Abeele | On the quasi-analytic treatment of hysteretic nonlinear response in elastic wave propagation[END_REF] with r eq , δ the equivalent damping constant of the resonator defined in [START_REF] Howe | On the helmholtz resonator[END_REF] by the three same components, that is
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where
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is the neck's acoustic conductivity, l ν is the kinematic viscosity and r 4 is the thermal diffusivity of the liquid. M is the sound velocity of the effective medium (eq. 18), and s is the adiabatic index.

As the study focuses on the Helmholtz resonance, i.e., much lower than the bubble resonance frequency, the low-frequency approximation of bubble damping [START_REF] Commander | Linear pressure waves in bubbly liquids: Comparison between theory and experiments[END_REF] is used 

Model validation

Methods

To check the accuracy of our microscopic modelling of the two-phase Helmholtz resonator, multiple analytical simulations of the model are performed to test its response in the linear and non-linear domains. Equation ( 3) is solved with a fourth-order Runge-Kutta algorithm for 5 seconds of sweep excitation in the [20 -500] Hz range.

On the one hand, linear accuracy is examined by comparing the dependence of the resonance behaviours predicted by our model with that given by the classical homogenisation model. On the other hand, we check whether the non-linear phenomena (time amplitude desymmetrization, hysteresis, harmonic generation and softening effect) observed experimentally on a similar system in Ref. [START_REF] Coste | Acoustic resonances in a liquid with vapor bubbles: Effect of liquid-vapor transition on sound velocity and attenuation[END_REF] are well captured by the proposed analytical model.

Linear regime

To validate the linear behaviour predicted by the proposed model based on a microscopic description of the bubble cloud, we compared the bottle's variation in linear (small excitation amplitude) resonance with the variation in the sound speed (resp. frequency) predicted by Wood's model [START_REF] Wood | A textbook of sound[END_REF]. The latter is based on a homogenisation scheme applied to the bubbly liquid (macroscopic view), which is seen as an effective fluid or mixture characterised by effective compressibility d and density d = 91 -;d 4 + d 3 ,
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(17) Subscripts . 4 and . 3 correspond to the liquid and the gaseous phases respectively. Using eq. ( 16) and eq. ( 17) and noting that gas compressibility is much higher than liquid compressibility, the effective sound velocity of the mixture M can be written as [START_REF] Lamarre | Instrumentation for the measurement of sound speed near the ocean surface[END_REF] 6 ! @ = . d =
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The effective velocity is then used in the Helmholtz resonance formula [START_REF] Mechel | Formulas of acoustics[END_REF] 
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to predict Wood's resonance frequency for the two-phase Helmholtz resonator.

We then compare in Table 1 the linear resonance frequency given by the proposed cloud's microdescription model to that obtained from the Wood's approximation for several two-phase populations, with different void fractions and bubble radii. The good agreement reached validates our equivalent stiffness and damping modelling of the two-phase Helmholtz resonator response for small excitation amplitudes. The slight over-estimation with our model can be attributed to a stiffening issue (as observed with discretisation in the finite-element method for example). Moreover, our modelling also reproduces well the limit case of a water single-phase ( = 0) Helmholtz resonator with a resonance at 383 Hz (382.3 Hz expected with the Helmholtz resonance formula).

Non-linear regime

Due to the lack of a non-linear model for this type of system, the non-linear response predicted by our analytical modelling cannot be compared with existing models. We therefore compare our analytical prediction with measurements and check whether the proposed model reproduces the non-linear response observed experimentally.

Experimental set-up

A glass bottle filled with water, acting as a Helmholtz resonator, the resonance of which is computed at 382.3 Hz (eq. 19), is used for this experimental study. The continuum cross-sectional variation in a champagne bottle is designed to avoid bubble accumulation at discontinuities and to maintain a stable void ratio. The neck cavity limit of the champagne bottle is defined by the cross-section for which a tangent to the bottle shape intersects the revolution line of the bottle's mouth [START_REF] Cummings | Acoustics of a cider bottle[END_REF]. The cavity radius at this point is defined by as shown in Fig. 3.

The 75 cL champagne bottle is instrumented with a B&K 8103 hydrophone and a laminar microfluidic bubble generator. A B&K 4809 shaker mounted above the bottle's mouth is used to produce sweep excitation, as shown in Fig. 3.

By adjusting the pressure in the microfluidic generator, one can control the properties of the generated bubble clouds, both in terms of void fractions and radius ranges. Microfluidic generators can be optically characterised to create histogram abacus evaluating, for a given pressure, the radius histogram of the bubble population composing the cloud. 

Experimental observation and qualitative non-linear validation

Figures 4 (a,c) show respectively the measured temporal responses and their power spectral density estimated with a Welch periodogram, for a population of radii included in the [50, 70] µm range (measured by optical camera) and an excitation amplitude ranging in [14 -494] m.s -1 .

As expected, when the excitation amplitude is increased, a softening effect [START_REF] Cavaro | Linear and nonlinear resonant acoustic spectroscopy of micro bubble clouds[END_REF] (coupled to harmonic generation, and amplitude desymmetrisation) is observed. The sweep time is now reduced to 1 s to ensure constant cloud characteristics during the experiments. In addition, to guarantee that the void fraction remains constant during the experiment, the phase of increasing the excitation amplitude is followed by a phase of decreasing the amplitude to ensure that the same linear resonance frequency is returned. Finally, between each set of measurement, the bottle is degassed.

Thanks to Wood's model, the void fraction can be estimated by measuring the linear resonance frequency decrease due to the presence of the bubble cloud, i.e., from 382.3 Hz without bubbles to 357.1 Hz, which corresponds to a void fraction of = 8.10 1x .

The analytical model captures well this response as evidenced by Figs. 4 (b,d). It is worth noting here that the analytical model predicts either a softening or a hardening behaviour depending on excitation amplitude sign, as remarked by [START_REF] Doc | Nonlinear acoustic propagation in bubbly liquids: Multiple scattering, softening and hardening phenomena[END_REF]. As the bubble radius, volume, internal pressure, and thus compressibility are solved in quasi-steady-state conditions (Laplace equation solved for a static excitation pressure), the model solution depends on the amplitude sign. Since it has been shown experimentally that bubbly liquid under sinusoidal sweep excitation presents a softening effect, with the resonance frequency progressively decreasing with increasing amplitude, only the softening solution was retained. 

Toward a Non-linear Resonant Acoustic Spectroscopy characterization

We now investigate the possibility of characterizing the cloud properties using the non-linear softening effect captured by our analytical modelling. We then test different bubble population characteristics (different void ratio, different bubble size) to see their influence on the non-linear response of the two-phase Helmholtz resonance. The softening effect predicted can be quantified by applying a non-linear resonant acoustic spectroscopy (NRAS) method [START_REF] Van Damme | Nonlinear Resonant Acoustic Spectroscopy[END_REF], i.e., by representing the relative frequency variation with the excitation amplitude and then interpolating it, as shown in Fig. 6. It is clear that the non-linear softening effect depends on the void ratio. The higher the void ratio, the larger the gaseous phase volume, the stronger the non-linear effect and the lower the resonance frequency.

Figure 7 shows the effect of the bubble radii on the NRAS for a monodispersed bubble cloud for a void fraction of 10 1c . The bubble size also affects the resonant behaviour of a microbubble cloud, especially for very small radii (below 10 µm). The NRAS method is much less sensitive in the case of larger bubbles. The balance between the Laplace pressure and the atmospheric pressure (eq. 7) can explain this. For wide bubbles, the atmospheric pressure becomes predominant compared with the ratio of the surface tension to the bubble radius. In a water-air bubbly liquid, radii smaller than a few micrometres are required to achieve a balance (surface tension of water at 298.25 K is X = 0.073), whereas the resonance behaviour of a bubbly liquid is sensitive up to 70 µm in a sodium-argon bubbly liquid (surface tension of liquid sodium at 773.25 K is X = 0.156).

Conclusion and future prospects

A damped-mass-spring two-phase Helmholtz resonator model was developed to reproduce both the linear and non-linear behaviour of a bubbly resonator with the goal to study the influence of the bubble cloud parameters (radius histogram, void fraction). This model has been validated in the linear domain by comparing its resonant behaviour with that predicted by Wood's analytical model. The model is also able to predict the dependence of the non-linear effects according to the cloud histogram and the void fraction.

The results of the model have been compared with experimental measurements performed on a 75 cL champagne bottle. The bubble generation system does not make it possible to control the void fraction and population histogram separately, or to generate sufficiently small bubbles to study the relative influence of each parameter in depth. However, our experimental validation was successful. In the case of linear behaviour, good quantitative agreement was found for the resonant frequencies. In the case of non-linear behaviour, the model qualitatively estimated the overall behaviour, e.g. the amplitude-dependant frequency shift (softening), as well as the time and frequency response shapes.

The future prospects for this work include finding a new bubble generation system to multiply the experimental measurements (notably with small bubbles, with radii lower than 15 µm) so the experimental data can be better compared with the model's results. Other prospects include more in-depth investigation of the bubble cloud's equivalent damping, even if its impact remains small on non-linear features, as well as of the accuracy of the model to describe the other nonlinear phenomena observed experimentally: the desymmetrisation of the temporal response, the harmonic energy transfer, and hysteresis.
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 1 Figure 1: Two-phase Helmholtz resonator modelled as a damped mass spring system

Figure 2 :

 2 Figure 2: Microbubble population ( = 1 -15 /m and = 10 12 ) modelled as a damped mass spring system

  is the gaseous thermal diffusivity and l µ the liquid dynamic viscosity.As explained previously, to estimate the equivalent cloud damping, dampers corresponding to each single bubble of the th w class of the population are organised in a parallel combination dampers of the various classes of bubbles are organised in series .

Figure 3 :

 3 Figure 3: Experimental set-up

Figure 4 :

 4 Figure 4: Measured temporal response (a) and PSD (c) of the bottle filled with bubbly water. Analytical temporal response (b) and PSD obtained with the proposed model with the microbubble cloud parameters estimated using optical characterisation and Wood's model: R0 = 50-70 µm and τ = 8.10 -6

Figures 5 (

 5 Figures 5 (a-b) shows respectively the temporal and frequency responses for a bubble cloud of radii K = 1-15 µm and a void fraction of = 10 12 .

Figure 5 :

 5 Figure 5: Analytical results of the model's non-linear behaviour for R0 = 1-15 µm, = 10 12 :

Figure 6 :

 6 Figure 6: Analytical NRAS for a bubble population of radii R0 = 1-15 µm and a void ratio τ = [10 -2 , 10 -3 , 10 -4 , 10 -5 , 10 -6 , 10 -7 , 10 -8 ]: (a) resonance magnitude versus frequency, (b) relative resonance frequency versus amplitude of excitation for 16 pressure levels [500, 80000] Pa

Figure 7 :

 7 Figure 7: Analytical NRAS for τ = 10 -5 and R0 = [1, 4, 10, 15, 50, 100] µm: (a) resonance magnitude versus frequency, (b) relative resonance frequency versus excitation amplitude for 16 amplitudes [500, 80000] Pa

Table 1 :

 1 Linear resonance frequency predicted by the two-phase Helmholtz resonator model and with Wood's model

	Void fraction	10 1#	10 1x	10 12	10 1	1
	Our model for K = y1 -15z μ Our model for K = y1 -79z μ	383.0 Hz 383.0 Hz	379.3 Hz 379.5 Hz	226.1 Hz 224.3 Hz	28.1 Hz 27.6 Hz	87.8 Hz 87.8 Hz
	Wood model	382.3 Hz	378.2 Hz	215.2 Hz	26.1 Hz	87.6 Hz
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