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Introduction

A Hom-diassociative algebra (A, ⊣, ⊢, α) consists of a vector space, two multiplications, and a linear self map. It may be viewed as a deformation of an associative algebra, in which the associativity condition is twisted by a linear map α and such that when α = id, the Hom-associative dialgebra degenerates to exactly a associative dialgebra. The aim of this paper is the study of the structure of Hom-associative dialgebras. Let A be a n-dimensional K-linear vector space and {e 1 , e 2 , • • • , e n } be a basis of A where K will always be an algebraically closed field of characteristic 0. A Homdialgebra structure on A with products ⊣ and ⊢ are determined by 2n 3 structure constants γ k i j and δ k i j , were e i ⊣ e j = ∑ n k=1 γ k i j e k , e i ⊢ e j = ∑ n k=1 δ k i j e k and by α which is given by n 2 structure constants a i j , where α(e i ) =

∑ n j=1 a ji e j . Requiring the algebra structure to be Hom-diassociative and unital gives rise to sub-variety Hd n of k 2n 3 +n 2 . Basis changes in A result in the natural transport of structure action of GL n (K) on Hd n . Thus isomorphism classes of n-dimensional Hom-dialgebras are in oneto-one correspondence with the orbits of the action of GL n (K) on Hd n .

In this paper we deal with the problem of classification. We give an algorithm to compute classification. We apply the algorithm in low-dimensional cases. We obtain the classification results of two and three-dimensional complex associative dialgebras from Rikhsiboev [START_REF] Ikrom | Basri Classification of 3-dimensional Complex diassociative algebras[END_REF] and revised list of four-dimensional nilpotent diassociative algebras from Rakhimov and Fiidov [START_REF] Basri | Four-Dimension Nilpotent Diassociative algebras[END_REF]. The classification of two and three-dimensional Hom-associative algebras from A. Zahari and A. Makhlouf [START_REF] Zahari | Structure and Classification of Hom-Associative Algebras[END_REF] and the classification of 3-dimensional BiHom-associative and BiHom-bialgebras [START_REF] Zahari | Classification of 3-dimensional BiHom-Associative and BiHom-Bialgebras[END_REF] by Ahmed Zahari. We obtain the classification of BiHom-associative dialgebra by Ahmed Zahari and Ibrahima Bakayoko in On BiHom-associative dialgebra [START_REF] Zahari | On BiHom-Associative dialgebras[END_REF].

Furthermore, we shall consider the class of Hom-associative dialgebras. We shall also give a classification of these algebras up to isomorphism in low dimension n ≤ 4.

The paper is organized as follows. In the first section we give the basics about Hom-associative dialgebras and provide some new properties. Section 2 is the algebraic varieties of Hom-diassociative algebras, and we provide classifications, up to isomorphism, of two-dimensional, three-dimensional and four-Hom-associative dialgebras. The section 3, we give the derivation of Hom-dialgbras.

1 Structure of BiHom-associative dialgebras Definition 1.1. A Hom-associative dialgebras is a 4-truple (A, ⊣, ⊢, α) consisting of a linear space A linear maps ⊣, ⊢, : A × A -→ A and α : A -→ A satisfying, for all x, y, z ∈ A the following conditions :

(x ⊣ y) ⊣ α(z) = α(x) ⊣ (y ⊣ z), (1.1) 
(x ⊣ y) ⊣ α(z) = α(x) ⊣ (y ⊢ z), (1.2) 
(x ⊢ y) ⊣ α(z) = α(x) ⊢ (y ⊣ z), (1.3) 
(x ⊣ y) ⊢ α(z) = α(x) ⊢ (y ⊢ z), (1.4) 
(x ⊢ y) ⊢ α(z) = α(x) ⊢ (y ⊢ z). (1.5)
We called α ( in this order ) the structure maps of A. If in addition, α is an endomorphism with respect to ⊣ and ⊢, then A is said to be a multiplicative Hom-dialgebra :

α(x ⊣ y) = α(x) ⊣ α(y) and α(x ⊢ y) = α(x) ⊢ α(y) (1.6)
for x, y, z in A.

Since we are dealing only with multiplicative Hom-associative dialgebras, we shall call them Hom-diassociative algebras for simplicity. We denote the set of all Hom-associative dialgebras by Hd. The kernel and the image of homomorphism is defined naturally. One of the main problems in structure theory of algebras is the problem of classification. The classification means the description of the orbits under base change linear transformations and list representatives of the orbits.

Definition 1.2. Let (A 1 , ⊣ 1 , ⊢ 1 , α 1 ) and (A 2 , ⊣ 2 , ⊢ 2 , α 2 ) be a Hom-associative dialgebras over a field K. Then a homomorphism of Hom-associative dialgebras A 1 to A 2 is a K-linear mapping Φ : A 1 -→ A 2 such that Φ(x ⊣ 1 y) = Φ(x) ⊣ 2 Φ(y), Φ(x ⊢ 1 y) = Φ(x) ⊢ 2 Φ(y), Φ • α 1 (x) = α 2 • Φ(x), (1.7) 
for all x, y ∈ A. A bijective homomorphism is said to be an isomorphism. Definition 1.5. A Hom-dendrifom algebras is a quadriple (A, ≺, ≻, α) consisting of a vector pace A on which the operations ≺, ≻: A × A -→ A and α : A -→ A are linear maps satisfying :

Definition 1.3. A bar unit in A is an element 1 ∈ A such that x ⊣ 1 = 1 ⊢ x = α(x)
(x ≺ y) ≺ α(z) = α(x) ≺ (y ≺ z + y ≻ z), α(x) ≻ (y ≻ z) = (x ≺ y + x ≻ y) ≺ α(z), (x ≻ y) ≺ α(z) = α(x) ≻ (y ≺ z), (1.8) 
for all x, y, z ∈ A.

Which translate into the following relations amongst the structure constants :

           C p i j α qk C s pq = α pi C q jk C s pq + α pi γ q jk C s pq α pi γ q jk γ s pq = C p i j α qk C s pq + γ q i j α qk C s pq γ q i j α qk C s pq = α pi C q jk γ s pq .
(1.9)

Example 1.6. Let A be a 3-dimensional vector space over K with a basis {e 1 , e 2 , e 3 }. The following multiplications ≺, ≻ and the linear map α algebra on A define a Hom-dendrifom algebra : Definition 1.7. A Hom-Zinbiel algebra is a triple (R, ◃▹, α) consisting of vector space A on which ◃▹: A ⊗ A -→ A and α : A -→ A are linear maps satisfying 2. e 1 ◃▹ e 2 = ce 1 , e 2 ◃▹ e 1 = de 1 , e 2 ◃▹ e 2 = f e 1 , α(e 1 ) = ae 1 , α(e 2 ) = be 2 .

(x ◃▹ y) ◃▹ α(z) = α(x) ◃▹ (y ◃▹ z) + α(x) ◃▹ (z ◃▹ y) (1.
3. e 1 ◃▹ e 1 = e 2 , e 2 ◃▹ e 1 = -e 2 , α(e 1 ) = e 1 , α(e 2 ) = e 1 + e 2 .

Proposition 1.9. Let R be a Hom-Zinbiel algebra and put x ≺ y = x ◃▹ y, x ≻ y = y ◃▹ x, x, y ∈ R. Then (R, ≺, ≻, α) is a Hom-dendriform algebra. Conversely, a commutative Hom-dendriform algebra (i.e a Hom-dendriform algebra for which x ≺ y = y ≻ x) is a Hom-dendriform algebra.

Proof. Indeed, (i

) (x ≺ y) ≺ α(z) = (x ◃▹ y) ◃▹ α(z). But α(x) ≺ (y ≺ z) + α(x) ≺ (y ≻ y) = α(x) ◃▹ (y ◃▹ z) + α(x) ◃▹ (z ◃▹ y). So (i) holds. (ii) (x ≻ y) ≺ α(z) = (y ◃▹ x) ◃▹ α(z) and α(x) ≻ (y ≺ z) = (y ◃▹ z) ◃▹ α(x)
. But these two expressions are the same according to the axioms of Hom-Zinbiel algebras.

(iii) (x ≺ y) ≻ α(z) + (x ≻ y) ≻ α(z) = α(z) ◃▹ (x ◃▹ y) + α(z) ◃▹ (y ◃▹ x).
Which is equal to (z ◃▹ y) ◃▹ α(z) = α(x) ≻ (y ≻ z). So (iii) also holds.

Proposition 1.10. Let (R, •, α) be a Hom-Zinbiel algebra. Then the symmetrized product x • y = x ◃▹ y + y ◃▹ x is Hom-associative (ie. under the symmetrized product R becomes a Hom-associative and commutative algebra.

Proof. Indeed,

(x • y)α(z) = (x ◃▹ y + y ◃▹ x)α(z) = (x ◃▹ y + y ◃▹ x) ◃▹ α(z) + α(z) ◃▹ (x ◃▹ y + y ◃▹ x) ◃▹ α(z) = (x ◃▹ y) ◃▹ α(z) + (y ◃▹ x) ◃▹ α(z) + α(z) ◃▹ (x ◃▹ y) + (y ◃▹ x) ◃▹ α(z) . Next α(x)(y • z) = α(x)(y ◃▹ z + z ◃▹ y) = α(x) ◃▹ (y ◃▹ z + z ◃▹ y) + (y ◃▹ z + z ◃▹ y)α(x) = α(x) ◃▹ (y ◃▹ z) + α(x) ◃▹ (z ◃▹ y) + (y ◃▹ z) ◃▹ α(x) + (z ◃▹ y) ◃▹ (x).
. Now if take into account Hom-Zinbiel indentity and its consequence

(y ◃▹ x) ◃▹ α(z) = (y ◃▹ z)α(z) then we get required equality (x • y)α(z) = (x • y)α(z).
Definition 1.11. A Hom-dipterous algebra is a quadruple (Z, ≺, * , α) consisting of a vector space A on with the operations ≺, * : A ⊗ A -→ A and α : A -→ A are linear maps satisfying

(x * y) ≻ α(z) = α(x) ≻ (y ≻ z), (x * y) * α(z) = α(x) * (y * z) (1.12)
for all x, y, z ∈ A. Similarly, a right Hom-dipterous algebra is defined by the following relations

(x ≺ y) ≺ α(z) = α(x) ≺ (y * z), (x * y) * α(z) = α(x) * (y * z), (1.13) 
for all x, y, z ∈ A.

Example 1.12. Let A be a 3-dimensional vector space over K with a basis {e 1 , e 2 , e 3 }. The following multiplicative * , ≺ and the map α on A define a Hom-dipterous algebra :

1 Proposition 1.13. Let (A, * , ≻) be a dipterous algebra and α : A -→ A be a dipterous algebra endomorphism. Then A α = (A, * α , ≻ α , α), where

* α = α • * and ≻ α = α• ≻, is a Hom-dipterous algebra. Proof. Observe that (x * α y) ≻ α α(z) = α 2 ((x * y) ≻ z) α(x) ≻ α (y ≻ α z) = α 2 (x ≻ (y ≻ z)) (x * α y) * α α(z) = α 2 ((x * y) * z) α(x) * α (y * α z) = α 2 (x * (y * z)).
and similarly

(x ≺ α y) ≺ α α(z) = α 2 ((x ≺ y) ≺ z) α(x) ≺ α (y * α z) = α 2 (x ≺ (y * z)) (x * α y) * α α(z) = α 2 ((x * y) * z) α(x) * α (y * α z) = α 2 (x * (y * z)).
Therefore the identities (1.12) and (1.13) obviously follow from the identities satisfied by (A, * , ≻ ).

Definition 1.14. Let (A, ⊣, ⊢, α) be a Hom-associative dialgebra. If there is an associative dialgebra

(A, ⊣ ′ , ⊢ ′ ) such that ⊣ ′ = α• ⊣ and ⊢ ′ = α• ⊢, we say that (A, ⊣ ′ , ⊢ ′ ) is the untwist of (A, ⊣, ⊢, α).
Proposition 1.15. Let (A, ⊣, ⊢, α) be an n-dimensional Hom-associative dialgebra and Φ : A → A be an invertible linear map. Then there is an isomorphism with an n-dimensional Hom-associative dialgebra (A, ⊣ ′ , ⊢ ′ , ΦαΦ -1 ) where

⊣ ′ = Φ• ⊣ •(Φ -1 ⊗ Φ -1 ) and ⊢ ′ = Φ• ⊢ •(Φ -1 ⊗ Φ -1 ).
Proof. We prove for any invertible linear map Φ :

A → A, (A, ⊣ ′ , ⊢ ′ , ΦαΦ -1 ) is a Hom-associative dialgebra. (x ⊣ ′ y) ⊣ ′ ΦαΦ -1 (z) = (Φ • (Φ -1 (x) ⊣ Φ -1 (y))) ⊣ ′ Φ • α • Φ -1 (z) = Φ • (Φ -1 (x) ⊣ Φ -1 (y)) ⊣ α • Φ -1 (z) = Φ • Φ -1 ((x) ⊣ (y)) ⊣ α(z) = Φ • Φ -1 (α(x) ⊣ (y)) ⊢ z) = Φ • (αΦ -1 (x) ⊣ Φ -1 (y)) ⊢ Φ -1 (z)) = Φ • ((Φ -1 ⊗ Φ -1 )(Φ ⊗ Φ)αΦ -1 (x) ⊣ Φ -1 (y)) ⊢ Φ -1 (z)) = Φ • (Φ • αΦ -1 (x)) ⊣ Φ • (Φ -1 (y) ⊢ Φ -1 (z)) = Φ • αΦ -1 (x) ⊣ ′ (y ⊢ ′ z). (x ⊢ ′ y) ⊣ ′ ΦαΦ -1 (z) = Φ • (Φ -1 (x) ⊢ Φ -1 (y)) ⊣ ′ Φ • α • Φ -1 (z) = Φ • (Φ -1 (x) ⊢ Φ -1 (y)) ⊣ α • Φ -1 (z) = Φ • (Φ -1 ((x ⊢ y) ⊣ α(z))) = Φ • Φ -1 ((α(x) ⊢ (y ⊢ z))) = Φ • (αΦ -1 (x) ⊢ (Φ -1 (y) ⊣ Φ -1 (z))) = Φ • ((Φ -1 ⊗ Φ -1 )(Φ ⊗ Φ)αΦ -1 (x) ⊢ (Φ -1 (y) ⊣ Φ -1 (z))) = Φ • ((Φ -1 ⊗ Φ -1 ) • ΦαΦ -1 (x)) ⊢ Φ • (Φ -1 (y) ⊣ Φ -1 (z))) = Φ • αΦ -1 (x) ⊢ ′ (y ⊣ ′ z). (x ⊢ ′ y) ⊢ ′ ΦαΦ -1 (z) = Φ • (Φ -1 (x) ⊢ Φ -1 (y)) ⊢ ′ Φ • α • Φ -1 (z) = Φ • (Φ -1 (x) ⊢ Φ -1 (y)) ⊢ α • Φ -1 (z) = Φ • (Φ -1 ((x ⊢ y) ⊢ α(z))) = Φ • Φ -1 ((x ⊣ y) ⊢ z))) = Φ • (Φ -1 (x) ⊣ (Φ -1 y)) ⊢ Φ -1 (z))) = Φ • ((Φ -1 ⊗ Φ -1 )(Φ ⊗ Φ) • (Φ -1 (x) ⊣ Φ -1 (y)) ⊢ Φ -1 (z))) = Φ • ((Φ -1 ⊗ Φ -1 ) • Φ(Φ -1 (x) ⊣ Φ -1 (y)) ⊢ Φ • α • Φ -1 (z))) = (x ⊣ ′ y) ⊢ Φ • αΦ -1 (z). So (A, ⊣ ′ , ⊢ ′ , ΦαΦ -1
) is a Hom-associative dialgebra.It is also multiplicative. Indeed, for α

ΦαΦ -1 • (x ⊣ ′ y) = ΦαΦ -1 Φ • x ⊣ (Φ -1 ⊗ Φ -1 )(y) = Φα • x ⊣ (Φ -1 ⊗ Φ -1 )(y) = Φα • Φ -1 (x) ⊣ Φ -1 (y) = Φ • (αΦ -1 (x) ⊣ αΦ -1 (y)) = Φ • (Φ -1 ⊗ Φ -1 )(Φ ⊗ Φ)(αΦ -1 (x) ⊣ αΦ -1 (y)) = Φ • (Φ -1 ⊗ Φ -1 )(ΦαΦ -1 (x) ⊣ αΦΦ -1 (y)) = ΦαΦ -1 (x) ⊣ ′ ΦαΦ -1 (y). Next ΦαΦ -1 • (x ⊢ ′ y) = ΦαΦ -1 Φ • x ⊢ (Φ -1 ⊗ Φ -1 )(y) = Φα • x ⊢ (Φ -1 ⊗ Φ -1 )(y) = Φα • Φ -1 (x) ⊢ Φ -1 (y) = Φ • (αΦ -1 (x) ⊢ αΦ -1 (y)) = Φ • (Φ -1 ⊗ Φ -1 )(Φ ⊗ Φ)(αΦ -1 (x) ⊢ αΦ -1 (y)) = Φ • (Φ -1 ⊗ Φ -1 )(ΦαΦ -1 (x) ⊢ αΦΦ -1 (y)) = ΦαΦ -1 (x) ⊢ ′ ΦαΦ -1 (y). Therefore Λ : (A, ⊣, ⊢, α) → (A, ⊣ ′ , ⊢ ′ , ΦαΦ -1 ) is a Hom-associative dialgebras morphism, since Φ• ⊣= Φ• ⊣ •(Φ -1 ⊗ Φ -1 ) • (Φ ⊗ Φ) =⊣ ′ •(Φ ⊗ Φ) and (ΦαΦ -1 ) • Φ = Φ • α.
Proposition 1.16. Let (A, ⊣, ⊢, α) be a Hom-associative dialgebra over K. Let (A, ⊣ ′ , ⊢ ′ , ΦαΦ -1 ) be its isomorphic Hom-associative dialgebra described in Proposition 1.15. If ψ is an automorphism of (A, ⊣, ⊢, α), then ΦψΦ -1 is an automorphism of (A, ⊣, ⊢, ΦαΦ -1 ).

Proof. Note that γ = ΦαΦ -1 . We have

ΦψΦ -1 γ = ΦψΦ -1 ΦαΦ -1 = ΦψαΦ -1 = ΦαψΦ -1 = ΦαΦ -1 ΦψΦ -1 = γΦψΦ -1 .
For any x, y ∈ A,

ΦψΦ -1 • (Φ(x) ⊣ ′ Φ(y)) = ΦψΦ -1 • Φ • (x ⊣ y) = Φ • ψ • (x ⊣ y) = Φ • (ψ(x) ⊣ ψ(y)) = Φ • ψ(x) ⊣ ′ Φ • ψ(y)) = ΦψΦ -1 Φ(x) ⊣ ′ ΦψΦ -1 Φ(y) Next, ΦψΦ -1 • (Φ(x) ⊢ ′ Φ(y)) = ΦψΦ -1 • Φ • (x ⊢ y) = Φ • ψ • (x ⊢ y) = Φ • (ψ(x) ⊢ ψ(y)) = Φ • ψ(x) ⊢ ′ Φ • ψ(y)) = ΦψΦ -1 Φ(x) ⊢ ′ ΦψΦ -1 Φ(y)
By Definition, ΦψΦ -1 is an automorphism of (A, ⊣ ′ , ⊢ ′ , ΦαΦ -1 ).

Classification in low dimensions

Let Hd n (F) denote the variety of n dimensional Hom-associative dialgebras over a field F. If A is an n-dimensional algebra then the product of any two elements x and y can be expressed by the product of basis elements e 1 , e 2 , . . . , e n . Recall that a Hom-diassociative structure on A can then be defined by two bilinear mappings : ⊣: A × A -→ A representing the left product ⊣: A × A -→ A representing the left product ⊢ and α : A -→ A representing a linear map, all satisfying the above-mentionend identities whence a Hom-associative dialgebra D can be seen as a quadruplet D = (A, ⊣, ⊢, α) where ⊣, ⊢ and α are Hom-associative dialgebra laws on A.

Let us denote by γ k i j , δ q st and a i j , where i, j, k, s, t, q = 1, 2, 3, . . . , n, the structure constants of a Hom-associative dialgebra with respect to the basis e 1 , e 2 , . . . , e n of A. Then Hd can be considered as closed subset of 2n 3 + n 2 -dimensional affine space specified by the following system of polynomial equations with respect to the structure constants γ k i j , δ q st and a ji :

                                   ∑ n p=1 ∑ n q=1 (γ t i j a pk γ q tp -a ti γ p jk γ q tp ) = 0, i, j, t ∈ {1, . . . , n} , (1.1) ∑ n p=1 ∑ n q=1 (γ t i j a pk γ q tp -a ti δ p jk γ q tp ) = 0, i, j, t ∈ {1, . . . , n} , (1.2) ∑ n p=1 ∑ n q=1 (δ t i j a pk γ q tp -a ti γ p jk δ q tp ) = 0, i, j, t ∈ {1, . . . , n} , (3.1) ∑ n p=1 ∑ n q=1 (γ t i j a pk δ q tp -a ti δ p jk δ q tp ) = 0, i, j, t ∈ {1, . . . , n} , (1.4) ∑ n p=1 ∑ n q=1 (δ t i j a pk δ q tp -a ti δ p jk δ q tp ) = 0, i, j, t ∈ {1, . . . , n} , (1.5) ∑ n p=1 γ t i j a qt - ∑ n k=1
∑ n p=1 a ki a p j γ q kp = 0, i, j, q ∈ {1, . . . , n} , (1.6)

∑ n p=1 δ t i j a qt - ∑ n k=1
∑ n p=1 a ki a p j δ q kp = 0, i, j, q ∈ {1, . . . , n} , (1.6).

(2.1)

Two dimensional

Theorem 2.1. Every 2-dimensional complex Hom-associative dialgebra is isomorphic to one of the following pairwise non-isomorphic Hom-associative dialgebras (D, ⊣, ⊢, α) where ⊣, ⊢ are the left product and right product and α the structure map : 

Derivation ( α-derivation) of Hom-associative dialgebras

This section is devoted to the description of derivations of two, three and four-dimensional real Hom-associative dialgebras. Let (A, ⊣, ⊢, α) be a multiplicative Hom-associative dialgebra. For any nonnegative integer k, we denote by α k the k-fold composition of α with itself, i.e α k = α • • • • • α (k-times). In particular, α 0 = id and α 1 = α. Definition 3.1. For any non-negative integer k, a linear map

D : A -→ A is called an α k -derivation of a Hom-associative dialgebra (A, ⊣, ⊢, α), if D • α = α • D (3.1) D • ( f ⊣ g) = (D( f ) ⊣ α k (g)) + (α k ( f ) ⊣ D(g)). (3.2) D • ( f ⊢ g) = (D( f ) ⊢ α k (g)) + (α k ( f ) ⊢ D(g)). (3.3)
The map D( f ) is an α k+1 -derivation, which we will call an inner α k+1 -derivation. In fact, we have

D k ( f )(α(g)) = α k+1 (g) ⊣ f = α(α k (g) ⊣ f ) = α • D k ( f )(g), D k ( f )(α(g)) = α k+1 (g) ⊢ f = α(α k (g) ⊢ f ) = α • D k ( f )(g),
which implies that identity (3.1) in Definition 3.1 is satisfied. On the other hand, we have

D k ( f )(g ⊣ h) = α k ((g ⊣ h) ⊣ f ) = (α k (g) ⊣ α k (h)) ⊣ α( f )) = α k+1 (g) ⊣ α k (h)) ⊣ f + (α k (g) ⊣ f ) ⊣ α k+1 (h) = (α k+1 (g) ⊣ D k ( f )(h)) + D k ( f )(g) ⊣ α k+1 (h).
Therefore, D k ( f ) is an α k+1 -derivation. The set of α k -derivations denoted by Inner α k (A) , i.e. Proof. For any f, g ∈ A, we have

Inner α k (A) = { α k-1 (•) ⊣ f | f ∈ A, α( f ) = f } . (3.4)
Inner α k (A) = { α k-1 (•) ⊢ f | f ∈ A, α( f ) = f } . ( 3 
[D, D ′ ] ( f ⊣ g) = D • D ′ ( f ⊣ g) -D ′ • D( f ⊣ g) = D(D ′ ( f ) ⊣ α s (g)) + α s ( f ) ⊣ D ′ (g))) -D ′ (µ(D( f ), α k (g)) + µ(α k ( f ), D(g))) = D • D ′ ( f ) ⊣ α k+s (g)) + α k • D ′ ( f ) ⊣ D • α s (g) + D • α s ( f ) ⊣ α k • D ′ (g) +α k+s ( f ) ⊣ D • D ′ (g)) -D ′ • D( f ) ⊣ α k+s (g)) -α s • D( f ) ⊣ D ′ • α k (g) -D ′ • α k ( f ) ⊣ α s • D(g) -α k+s ( f ) ⊣ D ′ • D(g). Since D and D ′ satisfy D • α = α • D, D ′ • α = α • D ′ , we obtain α k • D ′ = D ′ • α k , D • α s = α s • D. Therefore, we arrive at [ D, D ′ ] ( f ⊣ g) = α k+s ( f ) ⊣ [ D, D ′ ] (g)) + [ D, D ′ ] ( f ) ⊣ α k+s (g)).
Furthermore, it is straightforward to see that

[ D, D ′ ] • α = D • D ′ • α -D ′ • D • α = α • D • D ′ -α • D ′ • D = α • [ D, D ′ ] ,
which yields that [D, D ′ ] ∈ Der α k+s (A).

Definition 3.3. A Hom-associative triple system is a vector space A over field K with a trilinear multiplications satisfying

(((x ⊣ y) ⊣ α(z)) ⊣ α(u)) ⊣ α(w) = ((α(x) ⊣ (y ⊣ z)) ⊣ α(u)) ⊣ α(w)) = α(x) ⊣ (α(y) ⊣ (z ⊣ u) ⊣ α(w))), (((x ⊢ y) ⊢ α(z)) ⊢ α(u)) ⊢ α(w) = ((α(x) ⊢ (y ⊢ z)) ⊢ α(u)) ⊢ α(w)) = α(x) ⊢ (α(y) ⊢ (z ⊢ u) ⊢ α(w))),
for any x, y, z, u, w ∈ A.

Definition 3.4. An associative triple derivation of Hom-associative dialgebra (A, ⊣, ⊢, α) is a linear transformation

D : A -→ A such that D • α = α • D D • ((x ⊣ y) ⊣ z)) = (D(x) ⊣ α k (y)) ⊣ α k (z) +(α k (x) ⊣ D(y)) ⊣ α k (z) + (α k (x) ⊣ α k (y)) ⊣ D(z) D • ((x ⊢ y) ⊢ z)) = (D(x) ⊢ α k (y)) ⊢ α k (z) +(α k (x) ⊢ D(y)) ⊢ α k (z) + (α k (x) ⊢ α k (y)) ⊢ D(z)
for x, y, z ∈ A.

Definition 3.5. A Jordan associative triple derivation of Hom-associative (A, ⊣, ⊢ α) is a linear transformation

D ′ : A -→ A such that D ′ • α = α • D ′ and D ′ • ((x ⊣ y) ⊣ x)) = (D ′ (x) ⊣ α k (y)) ⊣ α k (x) +(α k (x) ⊣ D ′ (y)) ⊣ α k (x) + (α k (x) ⊣ α k (y)) ⊣ D ′ (x) D ′ • ((x ⊢ y) ⊢ x)) = (D ′ (x) ⊢ α k (y)) ⊢ α k (x) +(α k (x) ⊢ D ′ (y)) ⊢ α k (x) + (α k (x) ⊢ α k (y)) ⊢ D ′ (x)
for x, y ∈ A.

Proposition 3.6. D is an associative triple derivation of

(A, ⊣, ⊢, α) if only if D is a Jordan triple derivation of (A, ⊣, ⊢ α) such that A(x, y, z) + A(y, z, x) + A(z, x, y) = 0 with A(x, y, z) = (α • D) • (x ⊣ y) ⊣ z).
Proof. If D is a Jordan triple derivation of (A, ⊣, ⊢, α), then 1 following immediately. 2 holds because

A(x, y, z) + A(y, z, x) + A(z, x, y) = = α((D(x) ⊣ α k (y)) ⊣ α k (z)) + (α k (x) ⊣ D(y)) ⊣ α k (z) + (α k (x) ⊣ α k (y)) ⊣ D(z)) +α((D(y) ⊣ α k (z)) ⊣ α k (x) + (α k (y)) ⊣ D(z)) ⊣ α k (x) + (α k (y) ⊣ α k (z)) ⊣ D(x)) +α((D(z) ⊣ α k (x)) ⊣ α k (y)) + (α k (z) ⊣ D(x)) ⊣ α k (y) + (α k (z) ⊣ α k (x)) ⊣ D(y)) = α((D(x) ⊣ α k (y)) ⊣ α k (z)) + (α k (y) ⊣ α k (z)) ⊣ D(x) + (α k (z) ⊣ D(x)) ⊣ α k (y) +α((α k (x) ⊣ D(y)) ⊣ α k (z)) + (D(y) ⊣ α k (y)) ⊣ α k (x) + (α k (z) ⊣ α k (x)) ⊣ D(y) +α((α k (x) ⊣ α k (y)) ⊣ D(z)) + (α k (y) ⊣ D(z)) ⊣ α k (x) + (D(z) ⊣ α k (x)) ⊣ α k (y) = 0.
Therefore, D is a generalized associative triple derivation of Hom-associative (A, ⊣, ⊢, α).

Proposition 3.7. D is an associative triple derivation of (A, ⊣, ⊢, α) with respect to associative derivation δ if and only if D is Jordan triple derivation of (A, ⊣, ⊢, α) with respect to a Jordan triple derivation δ such that

(α k (x) ⊣ α k (y)) ⊣ (D -δ)(z)) + (α k (y) ⊣ α k (z)) ⊣ (D -δ)(x)) + (α k (z) ⊣ α k (x)) ⊣ (D -δ)(y)) = 0, with B(x, y, z) = α((δ(x) ⊣ α k (y) ⊣ α k (z)) + (α k (x) ⊣ δ(y)) ⊣ α k (z)) + ((α k (x) ⊣ α k (y)) ⊣ δ(z)).
Proof. If D is a Jordan triple derivation of (A, ⊣, ⊢, α), then 1 following immediately. 2 holds because

B(x, y, z) + B(y, z, x) + B(z, x, y) = = α((δ(x) ⊣ α k (y)) ⊣ α k (z)) + (α k (x) ⊣ δ(y)) ⊣ α k (z)) + (α k (x) ⊣ α k (y)) ⊣ δ(z))) +α((δ(y) ⊣ α k (z)) ⊣ α k (x)) + (α k (y) ⊣ δ(z)) ⊣ α k (x)) + (α k (y) ⊣ α k (z)) ⊣ δ(x))) +α((δ(z) ⊣ α k (x)) ⊣ α k (y)) + (α k (z) ⊣ δ(x)) ⊣ α k (y)) + (α k (z) ⊣ α k (x)) ⊣ δ(y))) = α((δ(x) ⊣ α k (y)) ⊣ α k (z)) + (α k (x) ⊣ δ(y)) ⊣ α k (z)) + (α k (x) ⊣ α k (y)) ⊣ δ(z))) +α((δ(y) ⊣ α k (z)) ⊣ α k (x)) + (α k (y) ⊣ δ(z)) ⊣ α k (x)) + (α k (y) ⊣ α k (z)) ⊣ δ(x))) +α((δ(z) ⊣ α k (x)) ⊣ α k (y)) + (α k (z) ⊣ δ(x)) ⊣ α k (y)) + (α k (z) ⊣ α k (x)) ⊣ δ(y))) = α((δ(x) ⊣ α k (y)) ⊣ α k (z)) + (α k (y) ⊣ α k (z)) ⊣ δ(x)) + (α k (z) ⊣ δ(x)) ⊣ α k (y))) +α((α k (x) ⊣ δ(y)) ⊣ α k (z)) + (δ(y) ⊣ α k (z)) ⊣ α k (x)) + (α k (z) ⊣ α k (x)) ⊣ δ(y))) +α((α k (x) ⊣ α k (y)) ⊣ δ(z)) + (α k (y) ⊣ δ(z)) ⊣ α k (x)) + (δ(z) ⊣ α k (x)) ⊣ α k (y))) = 0.
Note that δ is an associative derivation by Proposition 3.6. Therefore, D is a generalized associative triple derivation of (A, ⊣, ⊢, α) with respect to an associative derivation δ by Proposition 3.6. Proof. Which translate into the following relations amongst the structure constants :

α(x) ⊣ (y ⊣ z) = α(x) ⊣ (ΦαΦ -1 (y)d(z)) = Φα • Φ -1 • α(x)(d(ΦαΦ -1 (y)d(z))) = Φα • Φ -1 • α(x) • d(d(y) • ΦαΦ -1 (z)) = Φα • Φ -1 • α(x) • d(y ⊢ z) = α(x) ⊣ (y ⊢ z). (x ⊢ y) ⊢ α(z) = (d(x) • ΦαΦ -1 (y)) ⊢ α(z) = d • (d(x) • Φα • Φ -1 (y))) • ΦαΦ -1 α(z) = d • (Φα • Φ -1 (x) • d(y)) • ΦαΦ -1 α(z) = (Φα • Φ -1 (x) • d(y)) ⊢ α(z) = (x ⊣ y) ⊢ α(z). (x ⊢ y) ⊣ α(y) = (d(x) • ΦαΦ -1 (y)) ⊣ α(z) = Φα • Φ -1 • d(x) • ΦαΦ -1 (y)d(z) = Φα • Φ -1 • d(x) • ΦαΦ -1 (y) • αd(z) = Φα • Φ -1 • αd(x) • (Φ • Φ -1 (y) • d(z)) = dα(x) • Φα • Φ -1 • (Φ • Φ -1 (y) • d(z)) = α(x) ⊢ (y ⊣ z).
{ γ t i j d st = d ti γ s t j + d t j γ s it , δ l st d ml = d ls δ m lt + d lt δ m sl .
An α-derivation is a linear transformation D α : A → A satisfying

D α (x ⊣ y) = D(x) ⊣ α(y) + α(x) ⊣ D(y), for all x, y ∈ A. (3.8) D α (x ⊢ y) = D(x) ⊢ α(y) + α(x) ⊢ D(y), for all x, y ∈ A. (3.9)
Which translate into the following relations amongst the structure constants :

       γ k i j d pk = d li a k j γ p k j + a li d k j γ p lk = 0, δ k i j d pk = d li a k j δ p k j + a li d k j δ p lk = 0.
3.1 Three dimensional.

Isom.Class Der(A)

Dim. Der α (A) Dim.

Hd 1 3 Trivial 0.           0 0 0 0 0 0 d 13 d 23 d 33           3. Hd 2 3 Trivial 0.           0 0 0 0 0 0 d 13 d 23 d 33           3. Hd 3 3           d 11 0 0 0 1 2 d 11 0 0 0 1 2 d 11           1.           0 0 0 d 12 d 22 d 23 d 13 d 32 d 33           6. Hd 4 3           d 11 0 0 0 1 2 d 11 0 0 0 1 2 d 11           1.           0 0 0 d 12 d 22 d 23 d 13 d 32 d 33           6. Hd 5 3 Trivial 0.           0 0 0 0 0 0 0 d 23 d 33           2. Hd 6 3 Trivial 0.           0 0 0 d 12 0 d 32 0 0 0           2. Hd 8 3 Trivial 0.           0 0 0 0 0 0 d 13 d 23 d 33           3. Hd 9 3 Trivial 0.           0 0 0 0 0 0 d 13 d 23 d 33           3. Hd 10 3           d 11 0 0 0 0 0 0 0 d 11           1.           0 0 0 d 12 0 d 32 0 0 0           2. Hd 11 3 Trivial 0.           0 0 0 d 12 0 d 32 0 0 0           2. Hd 12 3 Trivial 0.           0 0 0 d 12 0 d 32 0 0 0           2.

Four dimensional.

Isom.Class Der(A) Dim. Der α (A) Dim. Four dimensional. 

Hd 1 4 Trivial 0.                0 0 0 0 d 12 0 d 32 0 0 0 0 0 d 14 0 d 34 0                4.

  and α(1) = 1. Example 1.4. Let A be a 3-dimensional vector space over K with a basis {e 1 , e 2 , e 3 }. The products ⊣, ⊢ and the linear map given by e 1 ⊣ e 1 = e 1 , e 2 ⊣ e 2 = e 2 , e 3 ⊣ e 3 = e 2 , e 1 ⊢ e 1 = e 1 , e 2 ⊢ e 2 = e 2 , α(e 1 ) = e 1 .

e 1 ≺

 1 e 1 = e 1 , , e 3 ≺ e 2 = e 3 , e 3 ≺ e 3 = e 3 , e 2 ≻ e 3 = e 3 , e 3 ≻ e 3 = e 3 , α(e 1 ) = e 1 .

. e 1

 1 * e 2 = e 3 , e 3 * e 2 = e 3 , e 3 * e 3 = e 3 , e 1 ≺ e 2 = e 3 , e 2 ≺ e 3 = e 3 , α(e 1 ) = e 1 . 2. e 1 * e 1 = e 1 , e 1 * e 2 = e 3 , e 3 * e 2 = e 3 , e 3 * e 3 = e 3 , e 1 ≺ e 2 = e 3 , e 2 ≺ e 3 = e 3 , α(e 1 ) = e 1 .

1 ⊣ 2 ⊣ e 2 = -e 1 2 -e 2 , e 2 ⊢ 1 ⊣ e 2 = e 1 , e 2 ⊣ e 2 = e 1 + e 2 ,e 1 ⊢ e 2 = e 1 , e 2 ⊢ e 2 = e 1 + e 2 .α(e 1 ) = e 1 , α(e 2 ) = e 1 + e 2 .5 2 :e 1 ⊣ e 2 = e 1 , e 2 ⊣ e 1 = e 1 , e 2 ⊣ e 2 = e 1 , e 2 ⊢ e 1 = e 1 , α(e 2 ) = e 1 .6 2 :e 1 ⊣ e 2 = e 1 , e 2 ⊣ e 2 = e 2 ,e 2 ⊢ e 1 = e 1 , e 2 ⊢ 2 : e 1 ⊣ e 2 = ae 1 , e 2 ⊣ e 2 = be 1 + ce 2 , e 2 ⊢ e 1 = f e 1 , e 2 ⊢ e 2 = ge 1 + ke 2 ,α(e 1 ) = e 1 , α(e 2 ) = e 1 + e 2 .e 2 ⊣ e 1 = e 3 + ae 4 , e 2 ⊣ e 2 = e 3 + be 4 , e 2 ⊣ e 3 = ce 3 + de 4 ,e 2 ⊣ e 4 = e 3 + e 4 , e 3 ⊣ e 2 = f e 3 + ge 4 , e 3 ⊣ e 3 = e 3 + e 4 ,e 3 ⊣ e 4 = e 3 + e 4 , e 4 ⊣ e 2 = e 3 + e 4 , e 1 ⊢ e 1 = e 3 + e 4 ,e 2 ⊢ e 2 = he 3 + e 4 , e 2 ⊢ e 3 = ke 3 + e 4 , e 3 ⊢ e 2 = le 3 ,e 4 ⊢ e 3 = e 3 , e 4 ⊢ e 4 =

 122222121221212122121121221212112212112121212222112212122122112212112122134223423342434323433343434423411342234233432343344 e 1 = e 1 , e 1 ⊣ e 2 = e 1 , e 2 ⊣ e 1 = e 2 , e 2 ⊣ e 2 = e 2 , e 1 ⊢ e 1 = e 1 , e 1 ⊢ e 2 = e 2 , e 2 ⊢ e 1 = e 1 , e 2 ⊢ e 2 = e 2 , α(e 1 ) = e 1 , α(e 2 ) = e 2 . Hd 2 2 : e 1 ⊣ e 2 = e 2 , e 2 ⊣ e 1 = e 1 , e 1 ⊢ e 1 = e 1 , e 2 ⊢ e 1 = e 1 , α(e 2 ) = e 1 . e 1 = e 1 , e 2 ⊢ e 2 = -e 1e 2 , α(e 1 ) = -e 1 , α(e 2 ) = e 1 + e 2 . Hd Hd e 2 = e 1 , α(e 1 ) = e 1 , α(e 2 ) = e 2 . Hd 7 2 : e 1 ⊣ e 1 = e 1 + e 2 , e 1 ⊢ e 1 = e 1 , e 1 ⊢ e 2 = e 1 , α(e 1 ) = e 1 , α(e 2 ) = e 2 . Hd 8 2 : e 1 ⊣ e 2 = e 1 , e 2 ⊣ e 1 = e 1 , e 2 ⊣ e 2 = e 1 , e 2 ⊢ e 2 = e 1 , α(e 2 ) = e 1 . Hd 9 e 4 , α(e 2 ) = e 1 .

. 5 )Proposition 3 . 2 .

 532 For any D ∈ Der α k (A) and D ′ ∈ Der α s (A), we define their commutator [D, D ′ ] as usual : [D, D ′ ] = D • D ′ -D ′ • D. For any D ∈ Der α k (A) and D ′ ∈ Der α s (A), we have [D, D ′ ] ∈ Der α k+s (A).

Definition 3 . 8 .Proposition 3 . 9 .

 3839 We called differential Hom-associative algebra the quadruple (A, •, α, d) such that (A, •, α) is a Hom-associative algebra D(x • y) = dx • y + x • dy, ∀x, y ∈ A, d 2 = 0, and d • α = α • d. Let (A, •, α, d) be a differential Hom-associative algebra. Consider the products ⊣ and ⊢ on A given x ⊣ y = Φ • α • Φ -1 (x)d(y) and x ⊢ y = d(x) • Φ • α • Φ -1 (y). The (A, ⊣, ⊢, α) is a Hom-associative dialgebra.

Definition 3 . 10 .

 310 A derivation of the Hom-associative dialgebra A is a linear transformation : D : A → A satisfying D(x ⊣ y) = D(x) ⊣ y + x ⊣ D(y), for all x, y ∈ A. (3.6) D(x ⊢ y) = D(x) ⊢ y + x ⊢ D(y), for all x, y ∈ A. (3.7)

             4.

  14 d 24 d 34 0                14 d 24 d 34 0                3.

  d 13 d 23 0 0 d 14 d 24 0 0                4.

  ◃▹ e 2 = 1 2 ae 1 , e 2 ◃▹ e 1 = ae 1 , e 2 ◃▹ e 2 = be 1 + ce 2 , α(e 2 ) = e 1 .

				10)
	for x, y, y ∈ A.			
	Which translate into the following relations amongst the structure constants :	
	{	C i j α qk C r p pq = α pi C q jk C r pq + α pi γ	q jk C r pq	(1.11)
	Example 1.8. Let {e 1 , e 2 } be a basis of 2-dimensional multiplicative linear space A over K. The
	following multiplications and the linear map α on A are defined by	
	1. e 1