

Data assimilation: overview and constraints for agro-ecology modelling

Claire Lauvernet¹, Claudio Paniconi², Laura Gatel², Emilie Rouzies¹

2 INRS & Univ. Laval, Québec, Canada.

Séminaire National Fusion d'informations : Applications aux géosciences et au génie-civil Le 01 et 02 février 2021

Avec le soutien de :

•0000

Context: How to improve the water quality?

⇒ a better understanding of water and pesticide transfer in soil

- Spatial heterogeneity of the soils, at all scales
- Soil and agricultural practices are more and more diverse
- Processes that drive the pesticide fate at the catchment scale are complex:
 - Hydrological transfer
 - adsorption
 - degradation

 Introduction
 Data assimilation
 Application

 00●00
 000000
 000000

Spatially and temporally heterogeneous data...

Availability, quality, quantity of data are heterogeneous in space and time:

- remote sensing images
- field data (lysimeters in soil, water table and river measurments)
- geophysical data

BUT without heavy experiments, this is very difficult to get the pesticides dynamics

C. Lauvernet et al.

Data assimilation: overview and constraints for agro-ecology modelling

 Introduction
 Data assimilation
 Application

 000 ● 0
 000000
 000000

Spatially and temporally heterogeneous data...

... and pesticides modeling at several scales and several complexity degrees

- based on non linear equations and/or conceptual
- unknown boundary and initial conditions
- a large set of spatialized parameters that are difficult to measure/estimate
- many processes affecting pesticide transfer are not (well) represented (e.g., pref. flows)

 \Rightarrow a high uncertainty (when we it is considered !)

Spatially heterogeneous data...

...and spatialized modeling

⇒ merging information from the available data and from the model to get as close as possible to the "true" state

Data Assimilation techniques (or *model-data fusion*)

Plan

- the systematic use of data to constrain a numerical model
- first used in the 1960s in numerical weather forecasting models for short-term predictions of meteorological conditions
- in the 1970s, development in numerical ocean general circulation models (OGCMs)
- poorly developed in other domains (hydrology)

- the systematic use of data to constrain a numerical model
- first used in the 1960s in numerical weather forecasting models for short-term predictions of meteorological conditions
- in the 1970s, development in numerical ocean general circulation models (OGCMs)
- poorly developed in other domains (hydrology)

- the systematic use of data to constrain a numerical model
- first used in the 1960s in numerical weather forecasting models for short-term predictions of meteorological conditions
- in the 1970s, development in numerical ocean general circulation models (OGCMs)
- poorly developed in other domains (hydrology)

Observations

- the systematic use of data to constrain a numerical model
- first used in the 1960s in numerical weather forecasting models for short-term predictions of meteorological conditions
- in the 1970s, development in numerical ocean general circulation models (OGCMs)
- poorly developed in other domains (hydrology)

Observations

The ingredients

 $\mathbf{x} = (x_0, x_1, ..., x_N)^T$ represents the state of system: streamflow at the outlet, soil moisture, dissolved oxygen concentration in the river, etc. We don't know it, but we do have information from:

- the dynamical model $x_k = M_{k-1 \to k}[x_{k-1}, param] + \eta_k$
 - η_k the model error of covariance matrix P_k

The ingredients

 $\mathbf{x}=(x_0,x_1,...,x_N)^T$ represents the state of system: streamflow at the outlet, soil moisture, dissolved oxygen concentration in the river, etc. We don't know it, but we do have information from :

• the dynamical model $x_k = M_{k-1 \to k}[x_{k-1}, param] + \eta_k$

• the observation model $y_k = H_k[x_k] + \varepsilon_k$

 y_k is the observation/data at time k ε_k the observation error, of covariance matrix R_k , e.g. instrumental error, representativeness

 $H:\mathcal{R}^m \to \mathcal{R}^d$ the observation operator that projects from model space to observational space

NRAG

The ingredients

 $\mathbf{x} = (x_0, x_1, ..., x_N)^T$ represents the state of system: streamflow at the outlet, soil moisture, dissolved oxygen concentration in the river, etc. We don't know it, but we do have information from :

• the dynamical model $x_k = M_{k-1 \to k}[x_{k-1}, param] + \eta_k$

- the observation model $y_k = H_k[x_k] + \varepsilon_k$
- ullet We assume that model and obs. errors are random variables o described by pdf
- \Rightarrow Bayesian framework \Rightarrow The Kalman Filter

INRAO

C. Lauvernet et al.

Data assimilation: overview and constraints for agro-ecology modelling

- observation
- forecast/prior for next step

time • analysis

- observation
- forecast/prior for next step

time • analysis

C. Lauvernet et al.

Data assimilation: overview and constraints for agro-ecology modelling

- observation
 - forecast/prior for next step

time • analysis

2. Analysis step:
$$\mathbf{X}_{k+1}^{a} = \mathbf{X}_{k+1}^{f} + \mathbf{K}_{k+1}(\mathbf{Y}_{k+1} - \mathbf{H}_{k+1} \mathbf{X}_{k+1}^{f})$$

★ observation

forecast/prior for next step

time • analysis

2. Analysis step:
$$\mathbf{X}_{k+1}^{a} = \mathbf{X}_{k+1}^{f} + \mathbf{K}_{k+1} (\mathbf{Y}_{k+1} - \mathbf{H}_{k+1} \mathbf{X}_{k+1}^{f})$$

with $\mathbf{K}_{k+1} = \mathbf{P}_{k+1}^{f} \mathbf{H}_{k+1}^{T} [\mathbf{H}_{k+1} \mathbf{P}_{k+1}^{f} \mathbf{H}_{k+1}^{T} + \mathbf{R}_{k+1}]^{-1}$

observation

observation
forecast/prior for next step
analysis

2. Analysis step:
$$\mathbf{X}_{k+1}^{a} = \mathbf{X}_{k+1}^{f} + \mathbf{K}_{k+1} (\mathbf{Y}_{k+1} - \mathbf{H}_{k+1} \mathbf{X}_{k+1}^{f})$$

$$\mathbf{P}_{k+1}^{a} = \mathbf{P}_{k+1}^{f} - \mathbf{K}_{k+1} \mathbf{H}_{k+1} \mathbf{P}_{k+1}^{f}$$

* observation

forecast/prior for next step

time • analysis

* observation

forecast/prior for next step

time • analysis

- observation
- forecast/prior for next step
- time analysis

The KF assumes that:

- √ all sources of errors are gaussian
- √ both the observational and dynamical models are linear
 - \rightarrow not realistic in most cases !

The method for data assimilation should be suited to spatialized models

- models are physically-based but:
- highly nonlinear equations (Richards, . . .)
- some are more/less conceptual
 discontinuities, thresholds
- \rightarrow definitely not gaussian!
- $\rightarrow \ \textbf{Ensemble filter approaches}$

Ensemble-based methods (Evensen 2003)

- a version of the Kalman filter for nonlinear problems at large dimension
- the state variable distribution is represented by an ensemble of state vectors x_k
- the error covariance matrices are represented by the ensemble covariance

Plan

The PESHMELBA model (Rouzies2019)

PESticides et Hydrologie: Modélisation à l'EcheLle du BAssin versant

- ✓ Simulation of heterogenous landscapes composed of plots, vegetative filter zones, hedges, ditches and rivers
- ✓ Water transfers on surface and subsurface
- ✓ Solute advection, adsorption and degradation

The PESHMELBA model (Rouzies2019)

PESticides et Hydrologie: Modélisation à l'EcheLle du BAssin versant

- ✓ Simulation of heterogenous landscapes composed of plots, vegetative filter zones, hedges, ditches and rivers
- ✓ Water transfers on surface and subsurface
- ✓ Solute advection, adsorption and degradation
- ✓ One module ≡ one process or ensemble of processes on a landscape element
- ✓ Coupling of modules within the OpenPALM coupler (Fouilloux1999) turning the structure flexible

Twin experiments

A virtual experiment where we know the true state : an output of the model

- obs $v = x^{true} + error$
- "data" = images of surface soil moisture => virtual data
- model = PESHMELBA
- errors are gaussian

Twin experiments with PESHMELBA

reduction of the uncertainty some parameters are well estimated

Conclusion

- the twin experiment show the feasibility of DA in pesticide transfer modeling
- assimilate other images than at surface
- define the spatial (and temporal?) correlation in obs. error (E. Rouzies PhD)
- test with real images => scale the model to the data (observation operator)
- combine images with in situ data to improve the water quality predictions
- development on the CATHY model, purely physics-based (less discontinuities?)
 - ⇒ data assimilation = an optimal way to merge information

Thank you! Any questions?

