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Introduction Data assimilation Application
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Context : How to improve the water quality ?

= a better understanding of water and pesticide transfer in soil

® Spatial heterogeneity of the soils, s
at all scales e

® Soil and agricultural practices are
more and more diverse
® Processes that drive the pesticide
fate at the catchment scale are
complex :
® Hydrological transfer
® adsorption
® degradation
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Spatially and temporally heterogeneous data. . .

Fluxes (water and pesticides) Plot 5 : « hydromorphic » soil, 1%
winter wheat Plot 3 : brownish soil, 3%
Early pesticide application maize
/ Late pesticide application
Water table height
C(pest)
Sampling (automatic and manual)
Rainfall measurments

Vegetative filter strip

Availability, quality, quantity of
data are heterogeneous in space
and time :

® remote sensing images

e field data (lysimeters in soil,
water table and river
measurments)

® geophysical data

Soil ponctual measures Geophysic:
resistimetry data

BUT without heavy experiments, this is very difficult to get the pesticides dynamics
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Spatially and temporally heterogeneous data. . .
... and pesticides modeling at several scales and several complexity degrees

® based on non linear equations and/or
conceptual

® unknown boundary and initial conditions

® 3 large set of spatialized parameters that are
difficult to measure/estimate

® many processes affecting pesticide transfer are
not (well) represented (e.g., pref. flows)
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Spatially heterogeneous data. .. ... and spatialized modeling

Fluxes (vater and pesicides) | PIOtS i « hydromorphic » 5o, 1%
winter wheat
ticide application

Plot3 : brownish soil. 3% Time:2640.52

Late pesticide application
_ Water bl height
C(pesy)
‘Sampling (automatic and manual)
Reinfall measurments

Vegetative filter strip

Geophysical
daa
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® the systematic use of data to constrain a numerical model

® first used in the 1960s in numerical weather forecasting models for short-term predictions
of meteorological conditions

® in the 1970s, development in numerical ocean general circulation models (OGCMs)

® poorly developed in other domains (hydrology)
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Data assimilation
The ingredients

x = (x0,X1,---,Xn) T represents the state of system:
streamflow at the outlet, soil moisture, dissolved oxygen concentration in the river, etc.
We don't know it, but we do have information from :

¢ the dynamical model xx = My_1_,x[xx—_1, param| + ny

1k the model error of covariance matrix Py
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Data assimilation
The ingredients

x = (x0,X1,---,Xn) T represents the state of system:

streamflow at the outlet, soil moisture, dissolved oxygen concentration in the river, etc.
We don't know it, but we do have information from

¢ the dynamical model x, = My_1_,x[xx_1, param] + ny

¢ the observation model y, = H[xxk] + e«
Yk is the observation/data at time k

ek the observation error, of covariance matrix Ry, e.g. instrumental error,
representativeness

H:R™ — R9 the observation operator that projects from model space to
observational space
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Data assimilation
The ingredients

x = (x0,X1,---,Xn) T represents the state of system:
streamflow at the outlet, soil moisture, dissolved oxygen concentration in the river, etc.

We don’t know it, but we do have information from :
¢ the dynamical model x, = My_1_,x[xx_1, param] + ny

¢ the observation model y, = H[xxk] + e«
® \We assume that model and obs. errors are random variables — described by pdf

= Bayesian framework = The Kalman Filter
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@ analysis
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0. At time k: XZ
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* observation
@ forecast/prior for next step
@ analysis
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2. Analysis step: X2, = X{ | + Kiy1(Yirr-Hi1XE, ;)
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2. Analysis step: X7, = le<+1 + Kk+1(Yk+1—Hk+1X£+1)
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The Kalman Filter (Kalman1960) : estimate the optimal state at each observation

* observation
@ forecast/prior for next step

time @ analysis

The KF assumes that:

v all sources of errors are gaussian

v' both the observational and dynamical models are
linear

— not realistic in most cases !
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Data assimilation

The method for data assimilation should be suited to spatialized models

® models are physically-based but:
505, 05 o KK (904 12)] + e
® highly nonlinear equations o e
(R|Chards, PR ) %_F( e + DTe) + Gean
® some are more/less conceptual 9. 0., P40
Bl tPg | C Dg2 | e

=> discontinuities, thresholds
CATHY-Pesticides

Camporese et al., 2010
Gatel et al., 2019
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Data assimilation
Ensemble-based methods (Evensen_2003)

® a version of the Kalman filter for nonlinear problems at large dimension
® the state variable distribution is represented by an ensemble of state vectors xx

® the error covariance matrices are represented by the ensemble covariance

X * observation

A @ forecast/background for next step
@ analysis
——— ensemble members Yic+2

. . uncertainty
a

INRA k k+1 k+2 k+3 t
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The PESHMELBA model (Rouzies2019)

PESticides et Hydrologie: Modélisation a I'EchelLle du BAssin versant

v" Simulation of heterogenous landscapes
composed of plots, vegetative filter
zones, hedges, ditches and rivers

v Water transfers on surface and
subsurface

[ homogenous unit
ditch

— road
hedge

— river

v" Solute advection, adsorption and
degradation
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The PESHMELBA model (Rouzies2019)
PESticides et Hydrologie: Modélisation a I'Echelle du BAssin versant
v" Simulation of heterogenous landscapes
composed of plots, vegetative filter
zones, hedges, ditches and rivers vaniing " [ Surface Intsrface Synchronization + Inflitration
B =
v Water transfers on surface and rde 2
subsurface %% -

Routing in the
network
. . kinematic wave
v" Solute advection, adsorption and Network
degradation -
s | Sn?,%[msunmm

terfac

v" One module = one process or ensemble i
of processes on a landscape element E&% -

v" Coupling of modules within the
OpenPALM coupler (Fouilloux1999)

turning the structure flexible
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virtual data ﬁ/
A virtual experiment where we know the =
true state : an output of the model ’
Model error
o ObS y = Xtrue + error : Background error
o no_ - . Observation ™
data” = images of surface soil pbse \ Data
moisture => virtual data Assimilation

e model = PESHMELBA

° are gaussian
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Twin experiments with PESHMELBA

Surface moisture - UH 480

—— prior
—— posterior
— true
® obs

" Time (h)

reduction of the uncertainty
some parameters are well estimated
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Twin experiments with PESHMELBA

True Prior estimation Posterior estimation

0215
0250
025
0200

[ WD/ W] a1njisow adepung
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Conclusion

® the twin experiment show the feasibility of DA in pesticide transfer modeling
® assimilate other images than at surface

® define the spatial (and temporal?) correlation in obs. error (E. Rouzies PhD)
® test with real images => scale the model to the data (observation operator)
® combine images with in situ data to improve the water quality predictions

¢ development on the CATHY model, purely physics-based (less discontinuities?)

=- data assimilation = an optimal way to merge information
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Thank you!
Any questions ?
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