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Local versions of sum-of-norms clustering

Sum-of-norms clustering is a convex optimization problem whose solution can be used for the clustering of multivariate data. We propose and study a localized version of this method, and show in particular that it can separate arbitrarily close balls in the stochastic ball model. More precisely, we prove a quantitative bound on the error incurred in the clustering of disjoint connected sets. Our bound is expressed in terms of the number of datapoints and the localization length of the functional.

Introduction

Let d ∈ N and let x 1 , . . . , x N ∈ R d be a collection of points, which we think of as a dataset. We consider the clustering problem, which is to find a partition of {x 1 , . . . , x N } that collects close-together points into the same element of the partition. This problem has a long history in the theoretical statistics and computer science literature, which we do not attempt to review here. We focus our attention on the "sum-of-norms clustering" method (also known as "convex clustering shrinkage" or "Clusterpath") introduced in [START_REF] Pelckmans | Convex clustering shrinkage[END_REF][START_REF] Hocking | Clusterpath: an algorithm for clustering using convex fusion penalties[END_REF][START_REF] Lindsten | Clustering using sum-of-norms regularization: With application to particle filter output computation[END_REF], which identifies clusters as the level sets of the minimizer of the convex functional

(y 1 , . . . , y N ) → 1 N N n=1 |y n -x n | 2 + λ N 2 N m,n=1 w(|x m -x n |)|y m -y n | (1.1) 
over (y 1 , . . . , y N ) ∈ (R d ) N , for some "weight function" w. Here | • | denotes the Euclidean norm. The point y n is thought of as a "representative point" of the cluster to which x n belongs, and so x n and x m belong to the same cluster if y n = y m . The first term of (1.1) is designed to keep the representative point of a cluster close to the points in that cluster (thus encouraging having many clusters), while the second term (called the "fusion term") is designed to encourage points to merge into fewer clusters, at least if they are close together according to the weight function. The parameter λ controls the relative strength of these two effects. The present work will investigate an asymptotic regime of sum-of-norms clustering as the number of datapoints becomes very large and the weight w is simultaneously scaled in a careful way. Following our previous work [START_REF] Dunlap | Sum-of-norms clustering does not separate nearby balls[END_REF], for the purposes of mathematical analysis we consider the somewhat more general problem of clustering of measures. Thus, for a measure µ on R d of compact support, we define the functional J µ,λ,γ : (L 2 (µ)) d → R by J µ,λ,γ (u) := ˆ|u(x) -x| 2 dµ(x) + λγ d+1 ¨e-γ|x-y| |u(x) -u(y)| dµ(x) dµ(y). (1.2) We note that (1.1) with w(r) = γ d+1 e -γr is obtained from (1.2) by setting µ = 1 N N n=1 δ xn . The regime γ ↓ 0 with λγ d+1 kept constant corresponds to the unweighted problem (i.e. with w ≡ 1), which enjoys some good theoretical properties as discussed in, for example, [START_REF] Zhu | Convex optimization procedure for clustering: Theoretical revisit[END_REF][START_REF] Tan | Statistical properties of convex clustering[END_REF][START_REF] Chiquet | Fast tree inference with weighted fusion penalties[END_REF][START_REF] Panahi | Clustering by sum of norms: Stochastic incremental algorithm, convergence and cluster recovery[END_REF][START_REF] Radchenko | Convex clustering via l1 fusion penalization[END_REF][START_REF] Jiang | Recovery of a mixture of gaussians by sum-of-norms clustering[END_REF][START_REF] Chi | Recovering trees with convex clustering[END_REF][START_REF] Jiang | On identifying clusters from sum-of-norms clustering computation[END_REF][START_REF] Sun | Convex clustering: Model, theoretical guarantee and efficient algorithm[END_REF]. However, the unweighted problem has the drawback that it fails to recover the clusters in the stochastic ball model [START_REF] Nellore | Recovery guarantees for exemplar-based clustering[END_REF] if the balls are too close together, as we showed in [START_REF] Dunlap | Sum-of-norms clustering does not separate nearby balls[END_REF]. In the present work, we will show that this deficiency can be overcome if γ is chosen as an appropriate function of the number of points N . To be more precise, if our dataset is the empirical distribution of N 1 points drawn from a continuous distribution whose support is the disjoint union of sufficiently nice closed sets, and if γ is chosen suitably in terms of N , then the minimizer of (1.2) will approximately recover the µ-centroids of these sets.

We denote by u µ,λ,γ the minimizer of J µ,λ,γ , which exists and is unique because J µ,λ,γ is coercive, uniformly convex, and continuous on (L 2 (µ)) d . (See (2.2) below.) For every Borel set U such that µ(U ) > 0, we let

cent µ (U ) := 1 µ(U ) ˆU x dµ(x)
be the µ-centroid of U . We also write a ∨ b := max(a, b), and define

d :=      ∞ if d = 1, 4 3 if d = 2, d if d 3. (1.3)
Our main result is the following.

Theorem 1.1. Let µ be a probability measure on R d such that supp µ = L =1 U , where U 1 , . . . , U L are bounded, effectively star-shaped (see Definition 1.2 below) open sets with Lipschitz boundaries, such that their closures U 1 , . . . , U L are pairwise disjoint. Assume that µ admits a density with respect to the Lebesgue measure, and that this density is Lipschitz and bounded away from zero on supp µ. Then there exist λ c , C < ∞ such that for every λ λ c , the following holds. Let (X n ) n∈N be a sequence of independent random variables with law µ, N 1 be an integer, µ N := 1 N N n=1 δ Xn , and A ( )

N := {n ∈ {1, . . . , N } | X n ∈ U }, ∈ {1, . . . , L}.
For every γ 1, we have

E    1 N L =1 n∈A ( ) N |u µ N ,λ,γ (X n ) -cent µ (U )| 2    C γN -1/(d∨2) (log N ) 1/d + (1 + λ)γ -1/3 .
(1.4)

Now we define the technical condition used in the statement of the theorem.

Definition 1.2. For U a subset of R d and ε > 0, let U ε be the ε-enlargement of U , namely

U ε := {x ∈ R d | dist(x, U ) ε}.
We say that a domain U is effectively star-shaped if there exists x * ∈ U and a constant C * < ∞ such that for every ε > 0 sufficiently small, the image of U ε under the mapping

x → x * + (1 -C * ε)(x -x * ) is contained in U .
For d 2, optimizing the right-hand side of (1.4) suggests the optimal choice γ N 3/(4d) , in which case the mean-square error is of the order of N -1/(4d) , up to logarithmic corrections. We do not know if the estimate in (1.4) is sharp. If technical issues that arise near the boundary of the domains could be avoided, then we believe that we could replace the term γ -1/3 in (1.4) by γ -1/2 ; this in turn would suggest choosing γ N 2/(3d) , up to a logarithmic correction.

A similar result to Theorem 1.1 can be obtained if the weight r → e -γr is replaced by a truncated version r → e -γr 1 r ω for an appropriate choice of ω; see Proposition 6.1 below. This result essentially says that we can choose ω γ -1 , up to a logarithmic correction, without modifying the optimizer substantially. In the discrete setting, this reduces the number of pairs of points that need to be included in the sum that is the double integral in (1.2), and thus may lead to improvements in computational efficiency. (See [START_REF] Chi | Splitting methods for convex clustering[END_REF] regarding efficient computational algorithms for sum-of-norms clustering, and in particular regarding the effect of the sparsity of the weights on the computational complexity.) For instance, under the assumptions of Theorem 1.1 and with the choice of ω γ -1 N -3/(4d) , a typical point only interacts with about N 1/4 points in its vicinity. Depending on the relative costs of computation versus the procurement of new datapoints, efficiency considerations may lead to a different choice of γ than what would be suggested by the optimal accuracy considerations discussed in the previous paragraph. We do not further pursue the question of computational efficiency in the present paper.

An important step in the proof of Theorem 1.1, which is also of independent interest, concerns what happens as γ is taken to infinity. The factor γ d+1 in (1.2) was indeed chosen so that a limiting functional would arise, under appropriate conditions on µ. Let U be a bounded open subset of R d and suppose that supp µ = U . Suppose furthermore that µ is absolutely continuous with respect to the Lebesgue measure on U , with density ρ ∈ C(U ) bounded away from zero on U . We denote by BV(U ) the space of functions of bounded variation on U . (Some elementary properties of the space BV(U ) are recalled in Section 2 below; see also [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF].) If u ∈ (L 2 (U ) ∩ BV(U )) d , then we can define

J µ,λ,∞ (u) := ˆ|u(x) -x| 2 dµ(x) + cλ ˆρ(x) 2 d|Du|(x), (1.5) 
where

c := ˆRd e -|y| |y • e 1 | dy. (1.6) 
We will see in Proposition 2.1 below that J µ,λ,∞ admits a unique minimizer u µ,λ,∞ ∈ (L 2 (U ) ∩ BV(U )) d . In Theorem 4.1, we will then show in a quantitative sense that, if U is sufficiently regular and the density ρ is Lipschitz, then u µ,λ,γ converges to u µ,λ,∞ as γ tends to infinity. The utility of the gradient functional (1.5) in the proof of Theorem 1.1 is apparent in Proposition 5.1 below. This proposition states that when λ is large enough, the minimizer of the gradient functional recovers the centroids of the connected components of the support of the measure µ.

The gradient clustering functional (1.5) only makes sense for smooth measures. In order to show the convergence of the minimizers of the weighted clustering functionals (1.2) on empirical distributions, we need to relate the minimizers of the finite-γ problem for empirical distributions to the minimizers of the finite-γ problem for smooth distributions. We do this by proving a stability result with respect to the ∞-Wasserstein metric W ∞ , which is Proposition 3.1 below. This works in combination with a quantitative Glivenko-Cantellitype result for the ∞-Wasserstein metric proved in [START_REF] García Trillos | On the rate of convergence of empirical measures in ∞-transportation distance[END_REF], and recalled in Proposition 7.1 below. However, since the latter result only holds for connected domains, we also need to truncate the exponential weight in (1.2), which is done in Section 6.

Outline of the paper. In Section 2 we establish some basic properties of J µ,λ,γ and J µ,λ,∞ . In Section 3 we prove a stability result for u µ,λ,γ as µ → µ in the ∞-Wasserstein distance. In Section 4 we prove the convergence result for u µ,λ,γ as γ → ∞. In Section 5 we show that the limiting functional u µ,λ,∞ recovers the centroids of the connected components of supp µ as long as λ is large enough. In Section 6 we prove a stability result when the exponential weight is truncated. In Section 7 we put everything together to prove Theorem 1.1.
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Basic properties of the functionals

As mentioned above, for a bounded open set U ⊆ R d , we denote by BV(U ) the space of functions of bounded variation on U . This is the set of all functions u ∈ L 1 (U ) whose derivatives are Radon measures. For u ∈ BV(U ), we denote by Du the gradient of u, which is thus a vector-valued Radon measure, and we denote by |Du| its total variation. In particular, for every open set V ⊆ U , we have by [2, Proposition 1.47] that

|Du|(V ) = sup φ ˆV φ • dDu = sup φ d i=1 ˆV φ i dD i u, (2.1) 
where the supremum is over all

φ ∈ (C c (V )) d such that φ L ∞ (V ) 1, with the understand- ing that φ L ∞ (V ) = |φ| L ∞ (V ) = ess sup x∈V d i=1 φ 2 i (x) 1 2 
.

When u ∈ (BV(U )) d , the gradient Du is a Radon measure taking values in the space of d-by-d matrices. Identifying each such matrix with a vector of length d 2 , we can still define the total variation measure |Du| as above. (Thus, if Du is in fact an R d×d -valued function, then |Du|(x) is the Frobenius norm of the matrix Du(x).) We refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] for a thorough exposition of the properties of BV functions.

In the remainder of this section, we collect some basic properties of the functionals J µ,λ,γ . It is straightforward to see that, for any γ ∈ (0, ∞), the functional J µ,λ,γ is uniformly convex on (L 2 (µ)) d . Indeed, for every u, v ∈ (L 2 (µ)) d , we have

1 2 (J µ,λ,γ (u + v) + J µ,λ,γ (u -v)) -J µ,λ,γ (u) ˆv2 dµ. (2.2)
Since the functional is also coercive, the existence and uniqueness of the minimizer u µ,λ,γ follow. The next proposition covers the case when γ = ∞.

Proposition 2.1. Let U be a bounded open subset of R d and suppose that supp µ = U . Suppose furthermore that µ is absolutely continuous with respect to the Lebesgue measure on U with a density ρ ∈ C(U ) that is bounded away from zero. Then for any λ > 0, the functional J µ,λ,∞ admits a unique minimizer

u µ,λ,∞ ∈ L 2 (U ) ∩ BV(U ).
Proof. We start by observing that the convexity property

(2.2) is still valid for γ = ∞, for every u, v ∈ (L 2 (U ) ∩ BV(U )) d . Let (u k ) k be a sequence of functions in (L 2 (U ) ∩ BV(U )) d such that lim k→∞ J µ,λ,∞ (u k ) = inf J µ,λ,∞ . (2.3)
Since ρ is bounded away from zero, the functional

J µ,λ,∞ is coercive on (L 2 (U ) ∩ BV(U )) d .
By the Banach-Alaoglu theorem and [2, Theorem 3.23], by passing to a subsequence we can assume that there is a u

∈ (L 2 (U ) ∩ BV(U )) d such that u k → u weakly in (L 2 (U )) d and weakly- * in (BV(U )) d . From the weak convergence in (L 2 (U )) d we see that ˆ|u(x) -x| 2 dµ(x) lim inf k→∞ ˆ|u k (x) -x| 2 dµ(x).
From the weak- * convergence in (BV(U )) d we see that

ˆU ρ(x) 2 d|Du|(x) = sup φ ˆU ρ(x) 2 φ(x) • dDu(x) lim inf k→∞ sup φ ˆU ρ(x) 2 φ(x) • dDu k (x) = lim inf k→∞ ˆU ρ(x) 2 d|Du k |(x),
where the supremum is over all φ ∈ (C c (U ))

d 2 such that φ L ∞ (U ) 1.
The last two displays and (2.3) imply that J µ,λ,∞ (u) = inf J µ,λ,∞ , so we can take u µ,λ,∞ = u. The uniqueness of u µ,λ,∞ follows from the uniform convexity (2.2).

A direct consequence of the convexity property (2.2) is that, for every γ ∈ (0, ∞) and

u ∈ (L 2 (µ)) d , we have ˆ|u -u µ,λ,γ | 2 dµ 2 (J µ,λ,γ (u) + J µ,λ,γ (u µ,λ,γ )) -4J µ,λ,γ u µ,λ,γ + u 2 2 (J µ,λ,γ (u) -inf J µ,λ,γ ) .
(2.4)

Under the assumptions of Proposition 2.1, the inequalities in (2.4) remain valid with γ = ∞, provided that we also impose that u ∈ (L 2 (U ) ∩ BV(U )) d . Another important fact will be that, for every γ ∈ (0, ∞],

0 inf J µ,λ,γ J µ,λ,γ (cent µ (R d )) = ˆ|x -cent µ (R d )| 2 dµ(x), (2.5) 
where we note that the right-hand side is the variance of a random variable distributed according to µ, and in particular is independent of λ and γ.

Stability with respect to ∞-Wasserstein perturbations of the measure

Throughout the paper, for any two measures µ and ν on R d , we let W ∞ (µ, ν) be the ∞-Wasserstein distance between µ and ν, namely

W ∞ (µ, ν) = inf π ess sup (x,y)∼π |x -y|,
where the infimum is taken over all couplings π of µ and ν. It is classical to verify that this infimum is achieved. We call any π achieving this infimum an ∞-optimal transport plan from µ to ν. In this section we prove that, for finite γ, the minimizer u µ,λ,γ is stable under ∞-Wasserstein perturbations of µ. Proposition 3.1. There is a universal constant C such that the following holds. Let γ, λ, M ∈ (0, ∞) and let µ, µ be two probability measures on R d with supports contained in a common Euclidean ball of diameter M . There exists an ∞-optimal transport plan π from µ to µ such that

ˆ|u µ,λ,γ (x) -u µ,λ,γ ( x)| 2 dπ(x, x) C(M + 1) 2 γW ∞ (µ, µ). (3.1)
Proof. Throughout the proof, λ and γ will remain fixed, so we write J µ = J µ,λ,γ and u µ = u µ,λ,γ . (Nonetheless, we emphasize that the constant C in the statement of the theorem does not depend on λ or γ.) Let π be an ∞-optimal transport plan from µ to µ. We write the disintegration

dπ(x, x) = dν( x | x) dµ(x)
and define u(x) :=

ˆu µ ( x) dν( x | x).
We have

inf J µ = ˆ|u µ ( x) -x| 2 d µ( x) + λγ d+1 ¨e-γ| x-y| |u µ ( x) -u µ ( y)| d µ( x) d µ( y) = ¨|u µ ( x) -x| 2 dν( x | x) dµ(x) + λγ d+1 ˘e-γ| x-y| |u µ ( x) -u µ ( y)| dν( x | x) dµ(x) dν( y | y) dµ(y). (3.2)
For the first term on the right side of (3.2), we write

|u µ ( x) -x| 2 = |u µ ( x) -x| 2 -|x -x| 2 -2(u µ ( x) -x) • (x -x) |u µ ( x) -x| 2 -3M |x -x|. (3.3)
For the second term on the right side of (3.2), we note that, for µ-a. 

where we used Jensen's inequality in the last step. Substituting (3.3) and (3.4) into (3.2), we obtain

inf J µ ¨|u µ ( x) -x| 2 dν( x | x) dµ(x) -3M ¨|x -x| dπ(x, x) + λγ d+1 e -2γW ¨e-γ|x-y| |u(x) -u(y)| dµ(x) dµ(y) ˆ|u(x) -x| 2 dµ(x) + λγ d+1 e -2γW ¨e-γ|x-y| |u(x) -u(y)| dµ(x) dµ(y) -3M W e -2γW J µ (u) -3M W,
where in the second step we again used Jensen's inequality. Therefore, we have

inf J µ J µ (u) e 2γW inf J µ + 3M W inf J µ + 3M e 2γW W + e 2γW -1 M 2 , (3.5)
with the last inequality by (2.5). By symmetry, this implies that

inf J µ -inf J µ 3M e 2γW W + (e 2γW -1)M 2 . (3.6)
Now we have, using the second and third inequalities of (3.5), as well as (2.4) and (3.6), that ˆ|u -

u µ | 2 dµ 2 (J µ (u) -inf J µ ) 2 inf J µ -inf J µ + 6M e 2γW W + 2 e 2γW -1 M 2 12M e 2γW W + 4(e 2γW -1)M 2 (M + 1) 2 Q(γW ∞ (µ, µ)) (3.7)
where we have defined Q(t) := 12e 2t t + 4(e 2t -1).

The remainder of the proof is very similar to the second half of the proof of [10, Proposition 5.3]. For each ε > 0, let µ ε be a measure on the ball B, absolutely continuous with respect to the Lebesgue measure, and such that

W ∞ (µ, µ ε ) ε. (3.8)
Since µ ε is absolutely continuous with respect to the Lebesgue measure, by [6, Theorems 5.5 and 3.2] there are maps T ε and T ε from supp µ ε to supp µ and supp µ, respectively, such that (id ×T ε ) * (µ ε ) is an ∞-optimal transport plan between µ ε and µ and similarly (id × T ε ) * (µ ε ) is an ∞-optimal transport plan between µ ε and µ. We have

ˆ|u µ (T ε (x)) -u µ ( T ε (x))| 2 dµ ε (x) 2 ˆ|u µ (T ε (x)) -u µε (x)| 2 dµ ε (x) + 2 ˆ|u µε (x) -u µ ( T ε (x))| 2 dµ ε (x).
(3.9)

For the first term on the right side, we use (3.7) above with µ ← µ ε and µ ← µ (so that

u ← u µ • T ε ): ˆ|u µ (T ε (x)) -u µε (x)| 2 dµ ε (x) (M + 1) 2 Q(γε).
For the second term on the right side, we use (3.7) above with µ ← µ ε and µ ← µ (so that u ← u µ • T ε ):

ˆ|u µε (x) -u µ ( T ε (x))| 2 dµ ε (x) (M + 1) 2 Q(γW ∞ (µ ε , µ)).
Using the last two displays in (3.9), we get

ˆ|u µ (T ε (x)) -u µ ( T ε (x))| 2 dµ ε (x) 2(M + 1) 2 Q(γε) + 2(M + 1) 2 Q(γW ∞ (µ ε , µ)). (3.10)
We can find a sequence ε k ↓ 0 and a coupling π of µ and µ such that

(T ε k , T ε k ) * µ ε k → π as k → ∞. Taking ε = ε k in (3.10
), and then taking the limit as k → ∞, we get

ˆ|u µ,λ,γ (x) -u µ,λ,γ ( x)| 2 dπ(x, x) 2(M + 1) 2 Q(γW ∞ (µ, µ)). (3.11)
Hence, since, Q is smooth, Q(0) = 0, and the left side of (3.11) is also evidently bounded above by M 2 , we obtain the desired inequality (3.1). It remains to show that π is an ∞-optimal transport plan. This follows by using (3.8) to note that

ess sup x∼µε |T ε (x) -T ε (x)| ess sup x∼µε |T ε (x) -x| + ess sup x∼µε |x -T ε (x)| ε + W ∞ (µ ε , µ),
and then taking limits along the subsequence ε k ↓ 0.

Convergence as γ → ∞

In this section we show that, under suitable assumptions on U and µ, the optimizer u µ,λ,γ converges to u µ,λ,∞ as γ → ∞. In essence, we will obtain this by showing a quantitative version of the fact that the functional J µ,λ,γ Γ-converges to J µ,λ,∞ as γ tends to infinity. Theorem 4.1. Assume that U = supp µ is effectively star-shaped and has a Lipschitz boundary, and that the measure µ has a density with respect to the Lebesgue measure that is Lipschitz on U and is bounded away from zero. Then there exists a constant C < ∞ such that, for every λ ∈ (0, ∞), we have

| inf J µ,λ,∞ -inf J µ,λ,γ | + ˆ|u µ,λ,∞ -u µ,λ,γ | 2 dµ Cγ -1/3 . (4.1)
Proof. Without loss of generality, assume that the point x * in Definition 1.2 is the origin, and that the constant C * appearing there is 1. We denote by ρ the density of µ with respect to the Lebesgue measure. By [START_REF] Evans | Partial differential equations[END_REF]Theorem 5.4.1], we can and do extend ρ to a Lipschitz function on R d , which we can also prescribe to vanish outside of a bounded set.

Throughout the proof, we will leave µ, λ fixed, and write u γ = u µ,λ,γ and J γ = J µ,λ,γ . The constant C may depend on µ but not on γ or λ, and may change over the course of the argument. We let U ε be the ε-enlargement of U as in Definition 1.2.

For every ε ∈ (0, 1), γ ∈ (0, ∞], and x ∈ U ε , we define

u γ,ε (x) := u γ ((1 -ε)x),
and for every x ∈ U , we define

u γ,ε (x) := ( u γ,ε * χ ε )(x),
where * denotes the convolution operator, χ ∈ C ∞ c (R d ; R + ) is a nonnegative smooth function with compact support in the unit ball satisfying ˆRd χ(x) dx = 1 and

ˆRd xχ(x) dx = 0, (4.2) 
and where we have set

χ ε := ε -d χ(ε -1 •).
Step 1. We show that, for every γ ∈ (0, ∞),

ˆUε | u γ,ε (x) -x| 2 ρ(x) dx + λγ d+1 ¨U2 ε e -γ|x-y| | u γ,ε (x) -u γ,ε (y)|ρ(x)ρ(y) dx dy J γ (u γ ) + Cε. (4.3) 
To prove this, we bound the first term on the left side of (4.3) by

ˆUε | u γ,ε (x) -x| 2 ρ(x) dx (1 -ε) -d ˆU u γ (x) - x 1 -ε 2 ρ x 1 -ε dx ˆU |u γ (x) -x| 2 ρ(x) dx + Cε,
where in the second inequality we used the fact that ρ is Lipschitz. For the second term on the left side of (4.3), we proceed similarly, noting that

γ d+1 ¨U2 ε e -γ|x-y| | u γ,ε (x) -u γ,ε (y)| dµ(x) dµ(y) γ d+1 (1 -ε) 2d ¨U2 e -γ|x-y|/(1-ε) |u γ (x) -u γ (y)|ρ x 1 -ε ρ y 1 -ε dx dy γ d+1 (1 -ε) 2d ¨U2 e -γ|x-y| |u γ (x) -u γ (y)|ρ x 1 -ε ρ y 1 -ε dx dy γ d+1 (1 -ε) 2d ¨U2 e -γ|x-y| |u γ (x) -u γ (y)|ρ(x)ρ(y) dx dy + Cε.
It is in this calculation that the star-shaped property is crucial: in the second inequality, we used that the map sending U ε to U (i.e. the map x → x/(1 -ε)) is contractive. We also used (2.5) and again the fact that ρ is Lipschitz. Combining the last two displays, we obtain (4.3).

Step 2. We show that, for every γ ∈ (0, ∞),

J γ (u γ,ε ) J γ (u γ ) + Cε. (4.4) 
Using (4.2), we can write

ˆU |u γ,ε (x) -x| 2 dµ(x) = ˆU ˆUε ( u γ,ε (y) -y)χ ε (x -y) dy 2 ρ(x) dx ˆUε | u γ,ε (y) -y| 2 ˆRd χ ε (x -y)ρ(x) dx dy.
Since ρ is Lipschitz, the inner integral is close to ρ(y), up to an error bounded by Cε, and we thus get that

ˆU |u γ,ε (x) -x| 2 dµ(x) ˆUε | u γ,ε (x) -x| 2 ρ(x) dx + Cε. (4.5) 
We also have

γ d+1 ¨U2 e -γ|x-y| |u γ,ε (x) -u γ,ε (y)|ρ(x)ρ(y) dx dy 
γ d+1 ¨U2 e -γ|x-y| ˆRd [ u γ,ε (x -z) -u γ,ε (y -z)]χ ε (z) dz ρ(x)ρ(y) dx dy γ d+1 ¨U2 ˆRd e -γ|x-y| | u γ,ε (x) -u γ,ε (y)| χ ε (z)ρ(x + z)ρ(y + z) dz dx dy γ d+1 ¨U2 ε e -γ|x-y| | u γ,ε (x) -u γ,ε (y)| ˆRd χ ε (z)ρ(x + z)ρ(y + z) dz dx dy γ d+1 ¨U2 ε e -γ|x-y| | u γ,ε (x) -u γ,ε (y)| ρ(x)ρ(y) dx dy + Cε,
where in the last step we used (4.3), (2.5), and the fact that ρ is Lipschitz. Combining the last two displays with (4.3) yields (4.4).

Step 3. We show that, for every γ ∈ [1, ∞) and ε ∈ (0, 1],

J ∞ (u γ,ε ) J γ (u γ ) + Cε + C γε 2 . (4.6) 
In view of (4.4), it suffices to show (4.6) with J γ (u γ ) replaced by J γ (u γ,ε ). We start by using the fact that 

D 2 u γ,ε L ∞ (µ) Cε -2 to write γ d+1 ¨U2 e -γ|x-y| |u γ,ε (x) -u γ,ε ( 
we see that the second integral on the right-hand side of (4.7) is bounded by Cγ -1 ε -2 . Next, we aim to compare the first integral on the right-hand side of (4.7) with the same quantity with ρ(y) replaced by ρ(x). Since ρ is Lipschitz and Du γ,ε L ∞ (µ) Cε -1 , the difference between these two quantities is bounded by

Cε -1 γ d+1
¨U2 e -γ|x-y| |x -y| 2 ρ(x)ρ(y) dx dy Cγ -1 ε -1 , using again (4.8) and the boundedness of ρ. To complete this step, it remains to argue that

γ d+1 ¨U2 e -γ|x-y| |Du γ,ε (x) • (x -y)|ρ(x) 2 dx dy c ˆρ(x) 2 |Du γ,ε (x)| dx + Cγ -1 ε -1 .
(4.9) Recalling (1.6), we see that the first term on the right-hand side above can be rewritten as

γ d+1
ˆU ˆRd e -γ|x-y| |Du γ,ε (x) • (x -y)|ρ(x) 2 dy dx.

For every δ > 0, we denote U δ := {x ∈ U : dist(x, ∂U ) δ}. Since Du γ,ε L ∞ (µ) Cε -1 , the inequality (4.9) will follow from the fact that

γ d+1
ˆU ˆRd \U e -γ|x-y| |x -y| dy dx Cγ -1 . (4.10)

Since U has a Lipschitz boundary, there exists δ > 0 such that for every 0 < η < η < δ, the Lebesgue measure of U η \ U η is at most C(η -η). Therefore, This is (4.10). Combining these estimates with (4.4) yields (4.6).

γ d+1
Step 4. We show that ˆUε

| u ∞,ε (x) -x| 2 ρ(x) dx + cλ ¨U2 ε ρ(x) 2 d|D u ∞,ε |(x) J ∞ (u ∞ ) + Cε. (4.11)
This follows from the fact that the the left side of (4.11) can be rewritten as

(1 -ε) -d ˆU u ∞ (x) - x 1 -ε 2 ρ x 1 -ε dx + cλ (1 -ε) d+1 ¨U2 ρ x 1 -ε 2 d|Du ∞ |(x),
and from the fact that ρ is Lipschitz.

Step 5. We show that J ∞ (u ∞,ε ) J ∞ (u ∞ ) + Cε. (4.12) Arguing in the same way as for (4.5), we see that

ˆU |u ∞,ε (x) -x| 2 dµ(x) ˆUε | u ∞,ε (x) -x| 2 ρ(x) dx + Cε. (4.13)
For the second term, we notice that by [2, Proposition 3.2], we have

D( u ∞,ε * χ ε ) = D u ∞,ε * χ ε , and thus ˆU ρ(x) 2 |D( u ∞,ε * χ ε )|(x) dx ˆU ˆUε ρ(x) 2 χ ε (x -y) d|D u ∞,ε |(y) dx ˆUε ρ(y) 2 d|D u ∞,ε |(y) + Cε,
where we used (4.11), (2.5), and the fact that ρ is Lipschitz in the last step. Combining this with (4.13) and using (4.11) once more, we obtain (4.12).

Step 6. We show that

J γ (u ∞,ε ) J ∞ (u ∞ ) + Cε + C γε 2 . (4.14)
We decompose the fusion term of J γ (u ∞,ε ) into

γ d+1 ¨U2 e -γ|x-y| |u ∞,ε (x) -u ∞,ε (y)|ρ(x)ρ(y) dx dy γ d+1 ¨U2 e -γ|x-y| |Du ∞,ε (x) • (x -y)|ρ(x)ρ(y) dx dy + Cγ d+1 ¨U2 e -γ|x-y| |x -y| 2 ε 2 ρ(x)ρ(y) dx dy, (4.15) 
and estimate each of these integrals in turn. The second integral is the same as the second integral in (4.7), and thus is bounded by Cγ -1 ε -2 . We next aim to compare the first integral on the right-hand side of (4.15) with the one where ρ(y) is replaced by ρ(x). Since ρ is Lipschitz, the difference between these two quantities is bounded by

Cγ d+1 ¨U2 e -γ|x-y| |Du ∞,ε (x)||x -y| 2 dx dy Cγ -1 ˆU |Du ∞,ε (x)| dx Cγ -1 ,
where we used (4.12) and the fact that ρ is bounded above and below in the last step. Then it remains to estimate

γ d+1 ¨U2 e -γ|x-y| |Du ∞,ε (x) • (x -y)|ρ(x) 2 dx dy ˆR2 e -|y| |y • e 1 | dy ˆU |Du ∞,ε (x)|ρ(x) 2 dx = c ˆU |Du ∞,ε (x)|ρ(x) 2 dx,
where we recalled (1.6) in the last step. Thus we have

J γ (u ∞,ε ) J ∞ (u ∞,ε ) + Cγ -1 ε -2 ,
and inequality (4.14) then follows using (4.12).

Step 7. We can now conclude the proof. We take ε := γ -1/3 , and using (4.6) and (4.14), we see that

J ∞ (u ∞ ) J ∞ (u γ,γ -1/3 ) J γ (u γ )+Cγ -1/3 J γ (u ∞,γ -1/3 )+Cγ -1/3 J ∞ (u ∞ )+Cγ -1/3 .
From this, we deduce that

|J ∞ (u ∞ ) -J γ (u γ )| Cγ -1/3 , (4.16) 
and moreover that 0 

J ∞ (u γ,γ -1/3 ) -J ∞ (u ∞ ) Cγ -1/3 . ( 4 

Properties of the limiting functional

In this section we show that if λ is large enough, then the minimizer u µ,λ,∞ of J µ,λ,∞ recovers the connected components of supp µ. Proposition 5.1. Let µ be a probability measure on R d satisfying the conditions of Theorem 1.1, so its support is the disjoint union of

U 1 • • • U L . There is a λ c < ∞ such that if λ λ c , then u µ,λ,∞ (x) = cent µ (U ) for all x ∈ U , ∈ {1, . . . , L}.
Proof. Let u(x) = cent µ (U ) for all x ∈ U , ∈ {1, . . . , L}. Since the gradient of u is zero on each U , we have Let U = L =1 U , p > d, and let W 1,p (U ) denote the usual Sobolev space with regularity 1 and integrability p. Note that W 1,p (U ) embeds continuously into C(U ) by Morrey's inequality; see [START_REF] Adams | Sobolev spaces[END_REF]Theorem 4.12]. Let ψ ∈ (W 1,p (U )) d×d be a weak solution to the PDE 2ρ(x)(u(x) j -x j ) -c A minor variant of (2.1) takes the form ˆU ρ(x) 2 d|Dv|(x) = sup ˆU ρ(x) 2 φ(x) • dDv(x), φ ∈ (C(U )) d×d s.t. φ L ∞ (U ) 1 .

Selecting φ = ψ/ ψ L ∞ (U ) , and using the assumption that λ ψ L ∞ (U ) , we obtain J µ,λ,∞ (u + v) J µ,λ,∞ (u) + where we used (5.1) for the first equality. This implies that u µ,λ,∞ = u, and hence the statement of the proposition with λ c = ψ L ∞ (U ) .

Truncation

In this section we prove a stability result for when we truncate the exponential weight. For γ, ω ∈ (0, ∞), we define the truncated functional J µ,λ,γ,ω (u) := ˆ|u(x) -x| 2 dµ(x) + λγ d+1 ¨e-γ|x-y| 1{|x -y| ω}|u(x) -u(y)| dµ(x) dµ(y).

(6.1) The functional J µ,λ,γ,ω is uniformly convex and satisfies (2.2) and (2.4) in the same way as J µ,λ,γ . Let u µ,λ,γ,ω be the (unique) minimizer of J µ,λ,γ,ω . Proposition 6.1. Let γ, λ, ω > 0 and let µ be a probability measure on R d with compact support. Let M := diam supp µ. Then we have ˆ|u µ,λ,γ,ω (x) -u µ,λ,γ (x)| 2 dµ(x) 2M λγ d+1 e -γω . (6.2)

In light of this statement, we define u µ,λ,γ := u µ,λ,γ,(d+4/3)γ -1 log γ . (6.3) Then (6.2) implies that ˆ|u µ,λ,γ (x) -u µ,λ,γ (x)| 2 dµ(x) 2M λγ -1/3 . (6.4)

Proof of Proposition 6.1. Subtracting (1.2) from (6.1), we obtain J µ,λ,γ,ω (u) -J µ,λ,γ (u) = λγ d+1 ¨e-γ|x-y| 1{|x -y| > ω}|u(x) -u(y)| dµ(x) dµ(y).

  e. x, y, on the support of ν( x | x) ⊗ ν( y | y) we have, writing W = W ∞ (µ, µ), | y -x| 2W + |y -x|, so e -γ| x-y| e -2γW e -γ|y-x| . Thus we can write ˘e-γ| x-y| |u µ ( x) -u µ ( y)| dν( x | x) dµ(x) dν( y | y) dµ(y) e -2γW ¨e-γ|x-y| ¨|u µ ( x) -u µ ( y)| dν( x | x) dν( y | y) dµ(x) dµ(y) e -2γW ¨e-γ|x-y| |u(x) -u(y)| dµ(x) dµ(y),

  y)|ρ(x)ρ(y) dx dy γ d+1 ¨U2 e -γ|x-y| |Du γ,ε (x) • (x -y)|ρ(x)ρ(y) dx dy -Cγ d+1 ¨U2 e -γ|x-y| |x -y| 2 ε 2 ρ(x)ρ(y) dx dy. (4.7) Since ρ is bounded and γ d+1 ˆRd e -γ|x-y| |x -y| 2 dy = γ -1 ˆRd e -|y| |y| 2 dy,

-γk 2 ˆU-γk 2 Cγ - 1 .

 221 ˆUˆRd \U e -γ|x-y| |x -y| dy dxCγ d+1 e -δγ + γ d+1 δγ k=0 ˆU(k+1)γ -1 \U kγ -1 ˆRd \U e -γ|x-y| |x -y| dy dx Cγ d+1 e -δγ + γ d+1 δγ k=0 e (k+1)γ -1 \U kγ -1 ˆRd e -γ|x-y| 2 |x -y| dy dx Cγ d+1 e -δγ + Cγ -1 δγ k=0 e

J

  µ,λ,∞ (u) = L =1 ˆU |u(x) -x| 2 dµ(x).

D

  k (ρ 2 ψ jk )(x) = 0, x ∈ U, j = 1, . . . , d;(5.1)ψ| ∂U ≡ 0. (5.2)We note that the problem (5.1)-(5.2) separates into dL problems, one for each j and . Each problem can be solved by [5, Theorem 2.4] (which follows the approach introduced in[START_REF] Bogovskiȋ | Solution of the first boundary value problem for an equation of continuity of an incompressible medium[END_REF][START_REF] Bogovskiȋ | Theory of cubature formulas and the application of functional analysis to problems of mathematical physics[END_REF]). We have, for every v∈ (L 2 (U ) ∩ BV(U )) d , J µ,λ,∞ (u + v) = ˆU |u(x) + v(x) -x| 2 dµ(x) + cλ ˆU ρ(x) 2 d|Dv|(x) = J µ,λ,∞ (u) + ˆU 2(u(x) -x) • v(x) + |v(x)| 2 dµ(x) + cλ ˆU ρ(x) 2 d|Dv|(x).

ˆ 2 (

 2 u(x) -x) • v(x) + |v(x)| 2 dµ(x) ˆρ(x) 2 ψ jk (x)D k v j (x) dx = J µ,λ,∞ (u) + ˆ 2(u(x) -x) • v(x) + |v(x)| 2 dµ(x) -d j=1 ˆ2ρ(x)(u(x) j -x j )(x)v j (x) dx = J µ,λ,∞ (u) + ˆ|v(x)| 2 dµ(x)J µ,λ,∞ (u),

  .17) By(2.4) and (4.17), we obtain ˆ|u γ,γ -1/3 -u ∞ | 2 dµ Cγ -1/3 .

		(4.18)
	Using (2.4) and (4.4), we also infer that	
	ˆ|u γ,γ -1/3 -u γ | 2 dµ Cγ -1/3 .	(4.19)
	Combining (4.16), (4.18), and (4.19) yields (4.1).	

Taking u = u µ,λ,γ , we get J µ,λ,γ,ω (u µ,λ,γ ) -inf J µ,λ,γ = λγ d+1 ¨e-γ|x-y| 1{|x -y| > ω}|u µ,λ,γ (x) -u µ,λ,γ (y)| dµ(x) dµ(y) M λγ d+1 e -γω , and similarly, J µ,λ,γ (u µ,λ,γ,ω ) -inf J µ,λ,γ,ω = -λγ d+1 ¨e-γ|x-y| 1{|x -y| > ω}|u µ,λ,γ,ω (x) -u µ,λ,γ,ω (y)| dµ(x) dµ(y) 0.

Therefore, using (2.4) and the last two displays we have

2M λγ d+1 e -γω , as claimed.

7. Proof of Theorem 1.1

In this section we prove Theorem 1.1. We first need a result from [START_REF] García Trillos | On the rate of convergence of empirical measures in ∞-transportation distance[END_REF]. Recall the notation d introduced in (1.3). Proposition 7.1. Let U ⊆ R d be a bounded, connected domain with Lipschitz boundary. Let µ be a probability measure on U , absolutely continuous with respect to Lebesgue measure, with density bounded above and away from zero on U . For every α 1, there is a constant C < ∞, depending only on U , α, and µ, such that the following holds. If (X n ) n∈N are independent random variables with law µ, then for every integer N 1, Proof of Theorem 1.1. Recalling (6.3), it is clear that if γ is so large that

and similarly u µ U ,λ,γ (x) = u µ,λ,γ (x), for all x ∈ U . (7.3) Also, we have by the definitions and Proposition 5.1 that there exists λ c such that for every λ λ c , u µ U ,λ,∞ (x) = u µ,λ,∞ (x) = cent µ (U ), for all x ∈ U . (7.4) By (7.4) and Theorem 4.1, we have

. By (7.3) and (6.4), we have, as long as (7.1) holds,

Combining the last two displays, we see that

Using (6.4) again, this implies that

On the other hand, by Proposition 7.1, we have for each that

By Proposition 3.1, for each there is an ∞-optimal transport plan π ,N between µ U µ(U ) and µ N U L µ N (U ) such that, using also (7.2) and ( 7.3), we have

Combining this with (7.5), we see that

Now summing over and using (7.6) and the fact that the term inside the expectation on the left-hand side of (1.4) is bounded almost surely, we obtain (1.4).