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Abstract

We introduce a new paradigm for motion saliency (MS) which is an important issue
in dynamic scene analysis. We formulate MS as a meta-task that can be instantiated
for different tasks usually handled independently. To support this claim, we have ad-
dressed two important computer-vision problems with this MS paradigm: independent
motion segmentation and anomalous motion detection in videos. We estimate MS from
the interpretation of a frame-based saliency classification network with optical flow (OF)
as input. Our paradigm can accommodate a given form of motion saliency by simply
training the frame-based classification network on the corresponding task. Moreover,
our MS estimation is unsupervised, as it does not require any ground-truth saliency maps
for training. In addition, we have designed an original two-step network interpretation
method, which supplies the binary salient motion segmentation. Finally, we recover the
valued motion saliency map using a parametric flow inpainting method. Experimental
results on real videos and comparison with existing methods assess the performance of
our method.

1 Introduction and related work
In this paper, we introduce a novel paradigm to compute salient motions in video frames
based on optical flow. Motion saliency (MS) aims to highlight local motions departing from
their surrounding context, thus prone to reveal a significant event. MS has many applications
in computer vision. It can be useful in the navigation of autonomous vehicles to anticipate
moving obstacles, or for public safety to trigger alert in abnormal situations. It can facilitate
the subsequent analysis of videos where motion may play the key discriminative role.

We formulate MS estimation as a meta-task that can encompass different tasks usually
handled independently. More specifically, we have addressed two important computer-vision
problems within this same MS paradigm: independent motion segmentation and anomalous
motion detection in videos. Existing supervised methods implies heavy manual annotation.
If unsupervised, they need several kinds of input including object appearance, motion, depth
or camera parameters. Our method is unsupervised and estimates motion saliency maps from
the interpretation of a frame-based classification network with optical flow as only input.

© 2021. The copyright of this document resides with its authors.
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Several topics can be related to MS. Video saliency (VS) highlights moving objects of
interest throughout a video. VS is by definition object-oriented, and therefore mixes appear-
ance and motion characteristics. Past approaches such as [14] exploit image motion bound-
aries and appearance models to recognize salient moving objects throughout the video. In
[4], the authors assume that salient objects have distinctive low-level appearance and mo-
tion features (orientation and magnitude for flow vectors) than the background, and use a
Tukey-inspired measure to detect outlier pixels in the images, and label them as belonging
to moving objects. Deep learning approaches have also been investigated. In [24], Wang
et al. have developed a CNN-based method explicitly exploiting the spatial and temporal
dimensions, yet without computing any optical flow. In [8], spatio-temporal deep features
are learned to predict dynamic saliency in videos within a multi-scale segmentation strategy.

Video object segmentation (VOS) is another related topic. Both object appearance and
motion are again important factors for VOS, but, the focus is put here on segmenting a mov-
ing object of prime interest in the foreground. The availability of large annotated datasets
[16], make possible the use of supervised deep-learning techniques for VOS. In [18], one
convolutional and one recurrent network are jointly trained to segment moving objects. A
close formulation is proposed in [7] with a double supervision combining the saliency mod-
ule with an optical flow module. In [26], the authors set up an adversarial framework between
a generator network producing a hiding mask on the optical flow, and an impainter network
trying to inpaint the flow inside the mask. The rationale is that independent motion cannot
be predicted by the surrounding motion.

In this paper, we are concerned with the computation of salient motion maps from optical
flow. Motion saliency (MS) cannot be formalized as an absolute notion. A motion is not
salient in itself, but only with respect to its context, i.e., its surrounding motions or sometimes
a predefined normal motion, and to a given application. A motion salient in a given context
might not be salient in other contexts. In addition, the moving entity may not necessarily be
a specific object in a scene, and its appearance may not be distinctive from the background
content, e.g., someone in a crowd, a cell among others, a cloud among others.

As aforementioned, we will handle two different cases of salient motion. The first one
is the salient motion produced by independently moving objects in a scene observed by a
moving camera. It is obviously related to moving object segmentation [22, 26]. Since we
will rely on the optical flow only, a specific problem arises with a mobile camera: motion
parallax attached to static objects being at the forefront of the scene and image motion of
independently moving objects in the viewed scene both generate distinguishing patterns in
the computed optical flow. Indeed, image motion depends on both the relative 3D motion
between scene objects and camera, and on the object depth.

A solution could be to compute the static scene flow, that is, the image motion of the
whole static scene induced by the camera motion as in [17]. Then, independently moving
objects can be identified against this static scene flow. The authors of [2] only compensate
the rotational component of the camera motion. Those techniques enable the extraction of
moving objects and are robust to motion parallax. However, they imply that the intrinsic
parameters of the camera are available and an accurate estimation of depth and ego-motion
is provided. In addition, they are dedicated to this problem. We will solve the problem of
motion parallax with unknown scene geometry and unknown camera motion.

The second case that we will investigate is salient motion issued from a distinctive motion
within a coherently moving set. The set can be typically human crowd, animal herd, bird
flock, vehicle traffic, or cell set. An example is the detection of crowd anomaly, where motion
saliency comes from a person moving differently than the surrounding ones [3, 9, 15].
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Our main contributions are the following. We estimate MS from the interpretation of
a frame-based saliency classification network that takes optical flow (OF) as input. Our
paradigm can accommodate a given form of motion saliency by simply training the frame-
based classification network on the corresponding task. Moreover, our MS estimation is
unsupervised, since it does not require any ground-truth saliency maps for training. In addi-
tion, we have designed an original two-step network interpretation method, which supplies
the binary salient motion segmentation. Finally, we compute the motion saliency map using
a parametric flow inpainting method.

The rest of the paper is organized as follows. In Section 2, we will present our origi-
nal framework involving several stages. We report experimental results with comparison to
recent methods in Section 3. Section 4 will contain discussion and concluding remarks.

2 Method description
We proceed in two main stages to estimate motion saliency. First, we segment the salient
motions from the two-step interpretation of the classification network that predicts the pres-
ence or the absence of salient motion in every frame of a video. Then, we compute the salient
motion maps using a parametric flow inpainting technique. In the Results section, we will
designate our method by the acronym NIMS (Network Interpretation for Motion Saliency).

2.1 Frame-based motion-saliency classification
We describe our frame-based classification network inspired from [10]. Basically, it involves
the same layers comprising three convolutional blocks and a fully connected layer. However,
it takes as input the optical flow field computed between two successive frames, and not a
residual flow as in [10]. Thus, it is not necessary to compute any dominant motion resulting
from the camera motion, which may introduce bias in case of complex background.

The classification network being shallow, the training is fast. For the first studied case
of salient motion, it is trained to predict the presence of independent motion in a frame. It
is thus implicitly able to discard motion parallax. In practice, we fine-tuned the network
of [10] using the same training set as in [10]. For the second studied case, our network is
trained from scratch to detect the presence of distinctive motion in crowds. We used the
crowd synthetic dataset introduced in Section 3.3.

Our method is versatile in the sense that we just need to re-train the classification network
on the task under study to deal with the salient motion of interest. The classification itself
is supervised but the annotation process is extremely light. It boils down to labeling at the
frame level, and in practice, it can be almost automatically completed, since the training
dataset is composed of videos that were either fully dynamically salient or fully non salient.

We further modify the classification network for the interpretation. Following advice on
applying interpretation techniques to deep neural networks [6], we modify the ordering of
the inner layers as explained in Fig.1, which results in a functionally identical network but
able to provide more operable interpretation maps.

2.2 Inference of interpretation maps for salient motion segmentation
Since the classification network predicts correctly the dynamically salient frames and the non
salient ones (with an aerage precision of about 90% in our experiments), we can deduce that
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Figure 1: Modification of the ordering of the network inner layers. Left: Order for training
and test. Right: Order for interpretation. Weights of each layer remain unchanged. For
interpretation, Convolution and Batch Norm layers are merged into a functionally equivalent
convolutional layer. A mathematical justification is given in the supplementary material.

it has learned to distinguish salient moving entities. Then, we can exploit this knowledge to
locate the salient motions in the frame. Specifically, interpretation techniques allow one to
generate attribution maps from the trained neural network. Those maps outline which parts
of the input really contribute to the prediction. However, we are not dealing with images
as usual but with 2D optical flow fields. Our goal is to determine for segmentation purpose
which vectors of the optical flow field induce the prediction as dynamically salient frame.

Several techniques exist for network interpretation [5]. However, to the best of our
knowledge, such a network interpretation has not yet been investigated for an optical flow
input. An important issue is to extract interpretation information linked to the inner work-
ings of the trained network, rather than to extract instance-specific structures information
[5]. Several works such as [1] showed that in some cases, interpretation maps produced with
a trained model could be visually similar to the ones generated by a random model. In our
case, we did not observe such a behaviour, as shown by experiments reported in the supple-
mentary material. Integrated Gradients method [20] is a technique where maps are generated
by cumulating gradients along a linear interpolation between a chosen baseline and a given
input. Even though this technique delivers promising results on multiple datasets, results
vary widely depending on the chosen baseline [19]. In the case of images, the default base-
line is a black image that represents the absence of features. However, regarding optical flow,
there is no obvious choice to represent the absence of salient motion. In our experiments,
applying the Integrated Gradients method on optical flow fields mainly led to highlighting
areas with large flow magnitude.

2.2.1 First step: point-wise computation of attribution maps

Instead, we have adopted the layer-wise relevance propagation (LRP) method [11]. It sup-
plies less noisy attribution maps and removes the need to choose a baseline. This technique
propagates a relevance score from the output layer to the input of the convolutional network.
It relies on purposely designed propagation rules [11].

We have followed the structure presented in [5], applying the z+ rule to all convolutional
and fully-connected layers except for the first convolutional layer were we apply the zβ rule.
The z+ rule only takes into account positive weights during the propagation of relevance.
The zβ rule propagates positive relevance through layers that take as input negative values, by
using an additive term for the extremal admissible values of the input space. The expression
of these rules are given in the supplementary material. Max-pool layers are handled with a
winner-takes-all strategy. In our case, we do not need to deal with normalisation layers as
we merged them with convolutional layers.

We come out with attribution maps computed on a point-wise basis. However, these
maps may be noisy, fragmented or even incomplete. To get an output of the network inter-
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pretation usable as salient motion segmentation maps, we need to introduce a second step in
the network interpretation process.

2.2.2 Second step: transforming attribution maps into salient motion segments

Depending on the quality of the attribution maps and possibly the size of the salient moving
objects, this second step may imply a light or a strong use of an additional representative flow
information, but it is still driven by the attribution values. As described below, this additional
flow information is straightforwardly derived from the input optical flow, and it corresponds
to respectively a weighted mean flow vector or a hierarchy of affine motion models.

We proceed as follows for the light version of this second interpretation step. Using the
square of the attribution values as weights, we compute over the whole frame the weighted
average w̃ of the flow vectors, which is likely to adequately represent the salient motion in
the frame. In case of several types of salient motion, several modes should be sought for.
Then, for every point p = (x,y) and its flow vector wp = (up,vp), p belongs to a candidate
region if α1 < (wp.w̃/||w̃||22)− 1 < α2. In practice, we take α1 = −0.01 and α2 = 4. We
set asymmetric threshold values because flow orientation and magnitude are both involved
making the problem a bit tangled.

The other more elaborate version of the second interpretation step relies on a hierarchical
parametric motion segmentation. Seminal works on image motion segmentation into layers
or into regions [13, 23] took two successive images as input and estimated an affine motion
model per layer or per region. Here, we have the optical flow as input, and we segment it
by iteratively estimating affine motion models fitting the optical flow field, using a robust
regression involving the Huber functionH. More precisely, we minimize the function:

∑
p∈Ωk

H(ak
1 +ak

2x+ak
3y−up)+H(ak

4 +ak
5x+ak

6y− vp), (1)

where Ωk is the image part intervening at iteration k, and the ak
i ’s the six parameters of the

affine motion model computed at iteration k. At each iteration k, inliers are selected to form
a layer. Inliers are pixels satisfying the constraint 1

2 (γ
k
u |up− uk

p|+ γk
v |vp− vk

p|) < β , where
(uk

p,v
k
p) are the coordinates of wk

p, the flow vector given at p by the affine motion model
estimated at iteration k. γk

u and γk
v are the standard deviations over the differences of the

u and v components at iteration k. Those factors were introduced to avoid being affected
by diverse motion magnitudes. In addition, it allows us to set the threshold β once and
for all, and we take β = 1.6. Outliers are kept for the next iterations. We continue this
procedure until only a small number of outliers remain (in practice 50 points), and we group
them together to form the last layer. Following this iterative decomposition, each vector in
the initial optical flow field belongs to one unique layer. Finally, we split each layer into
connected components to form the candidate regions.

We still will have to select the salient moving regions among the candidate regions,
whether it is for the light version or the elaborated one. This will be driven again by the
attribution values as follows. As suggested in [5], the network interpretation must be primar-
ily driven by the strength of attribution values rather than their spatial pattern. Therefore,
we precisely take into account the attribution values to assign an attribution score to each
candidate regions (i.e., segments of the optical flow). It is given by the ratio between the
sum of the attribution values in the segment, and the size of the segment. Afterwards, we
compute an adaptive threshold on the attribution score to filter out segments with the lowest
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scores considered as not salient. In practice, we use the score of the biggest region, assumed
to correspond to the background, as threshold. This procedure allows us to select several
salient segments if needed. Finally, we get a setRsal of salient moving regions R j.

2.3 Estimation of the motion saliency maps
We want now to estimate the motion saliency map. To this end, we will adopt a parametric
flow inpainting. More specifically, we will extend within each segmented region of the set
Rsal the optical flow surrounding this region, and compare it to the initially computed optical
flow inside the region. To achieve it, it is easier to follow a parametric approach. First,
we estimate an affine motion model fitting the external optical flow, i.e., the flow outside
Rsal . We use again the robust estimation of eq.(1), but here, it is applied to Ω\Rsal where
Ω is the whole image. Then, we leverage this estimated affine motion model to inpaint
the flow within all the regions R j of Rsal . The inpainted flow within each R j is given by:
∀p=(x,y)∈R j,(u

imp
p ,vimp

p )= (âsal
1 + âsal

2 x+ âsal
3 y, âsal

4 + âsal
5 x+ âsal

6 y), where âsal
i designates

each of the parameters of the affine motion model estimated outsideRsal .
The parametric inpainted flow allows us to infer the motion saliency map φ inside R j

from the flow gap wimp
p −wp, where wp is the flow vector initially computed at p:

for each R j, ∀p ∈ R j, φ(p) = 1− exp(−λ ||wimp
p −wp||2), (2)

where φ(p) values lie within [0,1] and λ > 0 modulates the visualization of the motion
saliency map.φ(p) is set to 0 for all the pixels that do not belong to the setRsal = {R j}. We
use λ = 0.15 for all presented visualisations.

3 Experimental results

3.1 Implementation details
Optical flow fields are computed using the RAFT method [21]. For LRP, we adopted a
modified version of the implementation described in [5]. We used Captum to test Integrated
Gradients and Scikit Learn to implement the Huber robust regression. For the first case study,
we transferred the model and weights from [10] onto Pytorch framework, and fine-tuned
the last fully connected layer using the original training dataset. We trained for 2 epochs,
requiring approximately 20 min on a GPU GeForce MX150. For the second case study, we
trained the network form scratch, which took 4.5 hours on a GPU GeForce RTX2080Ti. The
average runtime per frame is 0.70s on a CPU 1.90GHz.

3.2 First case study: independent scene motion
First, we want to objectively evaluate the accuracy of our method regarding the salient motion
case of independent scene motion. Due to the lack of dedicated benchmarks, we make do
with the VOS DAVIS2016 dataset1 as is also done by VS methods. The DAVIS2016 videos
involve one single independently moving object in the foreground.

Let us stress that the DAVIS2016 training set has not been used for training our classifica-
tion network. In this experiment, we use the more elaborated second step of the interpretation

1https://davischallenge.org/index.html
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Figure 2: Starting from the optical flow (left), we replace the flow in the selected regions
by inpainting. When the tree-trunk region in the foreground is ablated, the frame is still
classified as dynamically salient (middle). In contrast, ablating regions of the two moving
people switches the frame as non salient (right). See the prediction score above each frame.

process described in subsection 2.2.2. The bitmap of the salient moving regions R j extracted
by our method is compared to the ground truth. Results obtained with our method and other
unsupervised methods are collected in Table 1. Our method outperforms comparable unsu-
pervised methods on the VOS benchmark as BGM [25], TIS0 [4], and FTS [14]. On our
side, we do not resort to any postprocessing step and do not rely on appearance contrary to
the CIS and TISs methods. Indeed, the CIS method involves an important post-processing
stage and its performance without the postprocessing, evaluated with the publicly available
code, drops to JMean = 59.7 on the complete DAVIS2016 dataset and to 59.2 on the valida-
tion set, that is, both lower than our scores. Besides, our method is penalized by the ground
truth of DAVIS2016 focused on the primary object. For instance, the ripples on the water
in the flamingo sequence and the foam under the kytesurfer (Fig.4) are recognized as salient
motions by our method, which is correct.

Table 1: Results on the complete DAVIS2016 dataset for several unsupervised methods
(scores taken from [4] and [26]). In brackets on the DAVIS2016 validation set only. J is
the Jaccard index (region similarity) and F accounts for contour accuracy. For further expla-
nation on the evaluation metrics, we refer the reader to the DAVIS2016 website.

CIS [26] TISs[4] TIS0[4] BGM[25] FTS [14] NIMS (Ours)

J Mean ↑ - (71.5) 67.6 (62.6) 58.6 (56.2) 62.5 (-) 57.5 (55.8) 63.0 (60.2)
F Mean ↑ - (70.5) 63.9 (59.6) 47.5 (45.6) 59.3 (-) 53.6 (51.1) 68.2 (65.8)
J Recall ↑ - (86.5) 84.7 (-) 75.9 (-) 70.0 (-) 65.2 (64.9) 76.7 (73.2)
F Recall ↑ - (83.5) 78.5 (-) 48.8 (-) 66.2 (-) 57.9 (51.6) 80.1 (75.6)

We want to further demonstrate the ability of our method to distinguish between indepen-
dent motion and motion parallax. The latter being rarely present in DAVIS2016, we built a
dataset of videos taken with a hand-held moving camera.Those videos are taken in an urban
environment with complex backgrounds, where at the same time static objects in foreground
induce motion parallax and other objects undergo independent motions. Examples of those
videos are given in Figs.2-3-4 and in the supplementary material.

First, we assess the performance of the classification network in itself by performing an
ablation test. We draw a mask around an area depicting distinguishable motion pattern and
inpaint the flow within the mask as done in Section 2.3, hiding this prominent flow from the
network. The procedure is illustrated in Fig.2. We can observe that removing only moving
objects lowers the saliency score, and makes the network predict the frame as "non salient".
Conversely, when we remove the static object causing motion parallax, the prediction of the
network remains "salient frame" due to the presence of moving objects. It shows that the
frame-based classification network truly bases its prediction on the presence of independent
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Figure 3: Extracted salient masks, superimposed on original images, on three examples
from our dataset and one from DAVIS2016 (Parkour). Top row : results from [26] using the
available code and model (without the postprocessing step). Bottom row : corresponding
results using our method (NIMS). CIS [26] detects the foreground static object due to paral-
lax motion, while our method succesfully discards it. The sequence of the third example is
available in the Supplementary Material.

Figure 4: Results obtained with our method (NIMS). From left to right, two outdoor videos
we acquired, five examples from the DAVIS2016 dataset, respectively, Parkour, Libby,
Dance-Twirl, Flamingo and Kite-surf, and the Drive video of the Complex dataset. Top
row: one image of the video. Middle row: Optical flow in HSV color code; Bottom row:
Motion saliency maps. The closer to yellow, the higher the motion saliency degree.

motion. Secondly, we visually evaluate the localisation of the salient moving regions. Fig.3
contains a comparison between the motion saliency segmentation performed by our method,
NIMS, and by the CIS method presented in [26]. We can note that our method is able to
correctly extract the person moving as a salient moving region and not the pole, the tree
trunk or the fence in the foreground. In contrast, the method [26] also segments them as
independently moving objects.

Finally, we display samples of motion saliency maps in Fig.4. They were extracted from
several datasets, respectively, our video dataset, the DAVIS2016 dataset and the Complex
dataset [12]. The closer to yellow, the higher the motion saliency degree given by φ(p) in
eq.(2). Let us stress that the static foreground objects are not found salient, whereas their
optical flow is prominent since it conveys parallax motion. The computed salient motion
maps are representative of the underlying motions.
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Figure 5: Results obtained with our method (NIMS). Top to bottom row : one image of the
video with the salient-motion ground-truth superimposed in yellow, optical flow displayed
with the HSV color code, LRP attribution map, computed salient motion map. Left to right:
four examples from the synthetic dataset (4th column: the outlier pedestrian is strongly
occluded and only the foot is consequently recovered), two samples from the Wrong Way
video at two distant time instants, two examples from the UCSD Anomaly Detection dataset,
and an example from an outdoor scene acquired for the experiment. Several videos are
provided in the supplementary material.

3.3 Second case study: distinctive motion in a crowd
In order to train our network and to evaluate the ability of our method to detect distinctive
motion within a crowd, we built a dataset made of computer-generated sequences from 3D
scenes depicting crowds in motion, using the public software ChAOS 2. The resulting dataset
is not trivial, since the salient moving persons are small and not always easily discernible. It
is composed of 100 videos of about 250 frames each, taken by a camera in motion. In each
video, the crowd of people is walking in a common, randomly chosen direction. In order to
simulate distinctive motion, one to three people walking in a different direction are randomly
added to some videos. Frames including a distinctive motion are dynamically salient.

The first step is to train the frame-based saliency classification network on this dataset
for the new task. This randomly initialized network follows the structure defined in subsec-
tion 2.1, except that we used InstanceNorm layers instead of BatchNorm to tackle changes
in input flow magnitudes. After training, the network is able to recognize frames containing
a distinctive motion with 90.6% of accuracy on the test set. We apply the LRP interpretation
to the classification network and extract attribution maps. The latter exhibit a low level of
noise and mostly highlight salient motions. Therefore, we use the light version of the second
step of the network interpretation process described in subsection 2.2.2.

Figure 5 displays samples of attribution and saliency maps computed with our method
on videos of the crowd dataset. We can observe that these maps correctly delineate the
salient motion in the crowd despite the small size of the salient area and the global camera

2Crowd Animation Open Software : https://project.inria.fr/crowdscience/download/
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motion. We have also processed several real videos of a similar kind. Visual results are
again collected in Fig.5. We used the classification network trained on the synthetic dataset
without any additional fine-tuning. We have processed the Wrong Way video that depicts a
man walking against a crowd. As shown in the video frames displayed in the supplementary
material, the salient motion is correctly segmented in the vast majority of them. The method
fails in case of poorly visible salient motion. On the other hand, when a woman moves aside
to avoid the opposite individual, she produces the main salient motion. We also processed
videos from the UCSD Anomaly Detection dataset3 fitting this second task. Again, correct
salient motion masks are recovered, whether it be the vehicle or the pedestrian walking in
the opposite direction. Let us note that in the later video, the anomaly regarding our task is
precisely this pedestrian and not the cyclist as defined in the UCSD dataset benchmark.

In addition, we compared our method with a segmentation U-Net network trained in
a supervised way using the same synthetic dataset and ground-truth masks corresponding
to the salient moving objects. The objective is to build a gold standard, and to achieve
a quantitative evaluation on the synthetic dataset. We use again as evaluation metric the
Jaccard index JMean. Let us note that high evaluation scores cannot be expected, because
salient moving objects are frequently occluded. For a fair but strict evaluation, we compute
it only on salient frames correctly classified as dynamically salient (since for non-salient
frames the Jaccard index is 1, the ground-truth being empty). We get JMean = 67.1 for the
supervised network, and JMean = 53.6 for our unsupervised method, which demonstrates
that our method performs well, given the relatively small gap between the two scores.

4 Conclusion
We have defined an original, versatile and efficient method for the estimation of salient mo-
tion maps based on the interpretation of a simple frame-based classification network. It
only requires the optical flow as input. The computation of the salient motion maps is un-
supervised as it does not require any ground-truth on the segmentation maps. To tackle a
given motion-saliency task related to a given application, it is sufficient to re-train the clas-
sification network, the overall framework remaining unchanged. We have demonstrated the
performance of our method on two different case studies. Our method was thus able to dis-
entangle parallax motion and independent scene motion without any 3D information. It can
also handle distinctive motion in a crowd. Experimental results demonstrated that we are
able to compute accurate and reliable salient motion maps which convey rich, readily avail-
able information on the nature of the salient motion, through the flow gap of the inpainting
step, and not only the degree of saliency.
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