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Abstract—GraphQL is a query language for APIs and a
runtime for executing those queries, fetching the requested
data from existing microservices, REST APIs, databases, or
other sources. Its expressiveness and its flexibility have made
it an attractive candidate for API providers in many industries,
especially through the web. A major drawback to blindly ser-
vicing a client’s query in GraphQL is that the cost of a query
can be unexpectedly large, creating computation and resource
overload for the provider, and API rate-limit overages and
infrastructure overload for the client. To mitigate these draw-
backs, it is necessary to efficiently estimate the cost of a query
before executing it. Estimating query cost is challenging, because
GraphQL queries have a nested structure, GraphQL APIs follow
different design conventions, and the underlying data sources are
hidden. Estimates based on worst-case static query analysis have
had limited success because they tend to grossly overestimate
cost. We propose a machine-learning approach to efficiently and
accurately estimate the query cost. We also demonstrate the
power of this approach by testing it on query-response data
from publicly available commercial APIs. Our framework is
efficient and predicts query costs with high accuracy, consistently
outperforming the static analysis by a large margin.

I. INTRODUCTION

GraphQL is an open-source technology for building APIs to
support client-server communication [17]. GraphQL has two
interconnected components: a query language that clients use
to specify the data they want to retrieve or mutate, and a
server-side runtime to validate and execute these queries.

A central architectural design choice in GraphQL is to
shift control over what data a request can receive or mutate
from API providers to clients. In competing technologies,
like the REpresentational State Transfer (REST) architecture,
providers define accessible resources and their API endpoints.
In GraphQL, clients define queries that can retrieve or mutate
multiple related resources in a single request (thus avoiding
unwanted round-trips), and select only data they intend to use
(thus avoiding over-fetching) [5, 6]. As a result, GraphQL is
very suitable for creating diverse client experiences and many
organizations, such as Shopify, GitHub, Yelp, Starbucks, NBC,
among others, have elected to use GraphQL to build mobile
applications and engage with their ecosystem partners [25].

Web API management is a challenging software engineer-
ing problem, for which GraphQL provides advantages but
also introduces new challenges. A significant downside for
providers when shifting control to clients is the risk of overly
complex queries, which are expensive and lead to overloaded

servers and/or databases. Even small GraphQL queries can
yield excessively large responses [8, 11]. Empirical work
shows that on many public GraphQL APIs, a linear increase
in query size can cause an exponential increase in result size
due to the nested nature of queries [27].

Unlike in REST APIs, where providers can avoid excessive
use by limiting the number of allowed requests per time
interval, in GraphQL, limiting the number of requests is not
enough since a single query can break the system. As such,
some GraphQL server implementations track query costs dy-
namically during execution [21]. Once a critical threshold is
met, the server aborts execution and returns a partial result or
an error. Unfortunately, this approach can lock up resources
while producing unusable results. Hartig et al. propose to
analyze the cost of queries before executing them [11]. Their
analysis relies on probing the backend server for data-size
information, for example, determining how many users are
in the database if a query requests a list of users. However,
this requires the server to offer probing facilities, which could
themselves strain resources. In contrast, Cha et al. propose a
static query cost analysis that does not depend on dynamic
information from the server, but only provides upper bounds
on cost [8]. This approach has been incorporated into IBM
API Connect [14], a commercial API management product.

Unfortunately, these upper bounds are often loose and
this gap between estimated and actual cost makes the upper
bound excessively conservative as a query filter, resulting in
low amortized efficiency. More accurate cost estimates could
allow providers to loosen their cost thresholds and help them
better provision server resources. In addition, clients can better
understand the costs of their queries and how often they can
execute them for given rate limits.

Therefore, we propose a machine-learning (ML) solution
that predicts query costs based on experience generated over
multiple user-server communication sessions. Our solution
extracts features from query code by combining approaches
from natural-language processing, graph neural networks, as
well as symbolic features including ones from static compiler
analysis (such as the cost estimate in [8]). It then builds
separate regressors for each set of features and combines the
component models into a stacking ensemble.

Compared to the static approaches, our solution can under-
estimate cost of a query but provides estimates that are closer
to the actual value.



query {
licenses { name }
repository(owner: "graphql", name: "graphiql") {
issues(first: 2) { nodes { id } }
languages(first: 100) { nodes {name} } } }

Fig. 1. Query for the GitHub GraphQL API.

{ "licenses": [
{"name": "GNU Affero General Public License v3.0"},
{"name": "Apache License 2.0"}, ... ],

"repository": {
"issues": {
"nodes": [ {"id": "...NTQ="}, {"id": "...ODg="} ] },

"languages": {
"nodes": [ {"name": "HTML"}, {"name": "JavaScript"},

{"name": "Shell"}, ... ] } } }

Fig. 2. Response corresponding to the query of Figure 1.

This paper makes the following contributions:
• A set of feature extractors for GraphQL query code.
• A general ML workflow to estimate query cost that can be

applied to any given GraphQL API.
• A search space of ML model architectures for GraphQL

query cost prediction, comprising of choices for ensembling,
preprocessing, and regression operators.

• An empirical study of our approach on two commercial
APIs, comparing it to previous work and evaluating the
practical applicability.

Our approach can help API providers better evaluate the risk
of client queries, and it can help clients better understand the
cost of their queries to make the best use of their budget.

II. BACKGROUND

GraphQL queries are executed via a set of data retrieval
functions called resolvers, i.e., functions that retrieve data
for each field in an object type. A resolver can obtain the
data from any source, be it from a database, another API, or
even from a file. GraphQL queries are a set of nested fields
with optional parameters. Fulfilling a query is a matter of
calling the resolvers (with their respective parameters) of each
field in the query and composing the returned values into a
response, resulting in a JSON object containing the same fields
as the query. Therefore, the structures of GraphQL queries and
responses correspond to each other.

For instance, the query in Figure 1 retrieves the list of open-
source licenses available on GitHub and information about the
"graphiql" repository from the "graphql" organization,
specifically the IDs of the first 2 issues and the names of
the first 100 programming languages used in the repository.
Figure 2 shows the response returned by the GitHub GraphQL
API. For each field in the query with an object type (e.g.,
repository), the corresponding field in the response contains
an object with the fields requested by the sub-query (e.g.,
"issues"). For each field in the query with a list type (e.g.,
licenses), the corresponding field in the response contains a
list where each element is an object with the fields requested
by the sub-query (e.g., "name").

To reflect the cost of the response, Cha et al. introduced the
type complexity [8]: the sums of the fields present in either the

query or the response, weighted by a configuration associated
to the type of each field. For instance, with a configuration
where the weight of a scalar type is 0 and the weight of
all other types is 1, the type complexity of the response in
Figure 2 with 13 "licenses" and 5 "languages" is 23 (=
13 licenses + 1 repository + 1 issue connection + 2 issues +
1 language connection + 5 languages).

Nested lists can yield exponentially large responses [11]. In
our example, the length of the lists issues and languages

are bounded by the argument first, as dictated by the
connection model [24]. Cha et al. [8] use this information
to statically compute an upper bound on the response size
from the query. While this upper bound is as tight as possible,
it can grossly differ from the actual cost. For example, the
static analysis assumes that the query of Figure 1 returns at
worst a list of 100 programming languages, but the GraphiQL
repository uses only 5 programming languages.

III. METHODOLOGY

The goal of this work is to automatically learn more accurate
query cost estimates from data. First, we propose a set of
specialized features that can be applied to any GraphQL API.
These features turn GraphQL queries into suitable input for
classic machine learning techniques. Second, we propose a
hierarchical model to learn a cost estimate given a GraphQL
query. Separate regressors for each features are combined into
a stacking ensemble to obtain the final estimate.

A. Feature Extraction

We design three distinct feature extraction methods.
Field Features: A GraphQL API defines a finite number

of resolvers. We can thus represent all possible response
fields by a vector of fixed size where each index represents
a field. We create a feature vector for each GraphQL query,
enumerating the total number of times a specific field appears.

Graph Embeddings: The field features only capture infor-
mation about the cardinality of fields. To capture information
about the syntactic structure of the query, we use a second
set of features based on graph embeddings. The idea is that
a graph neural network can map the abstract syntax tree of
a GraphQL query into a low-dimensional embedding space,
from which we can then extract the numerical features. To do
that, we employed the graph2vec [20] technique, one of the
most popular approaches in this area.

Summary Features: The last set of features is a six-
dimensional encoding of the queries using symbolic code
analysis techniques. They include 1) the static analysis upper
bound of Cha et al. [8]. They also include features that
summarize the tree structure of the queries. These are 2) query
size, the number of nodes in the query tree, 3) width, the
maximum number of children a tree node has, and 4) nesting,
the maximum depth of the tree. Finally, we extract two features
related to lists: 5) lists, the number of fields in a query
requesting a list, and 6) the sum of list limits (e.g, first).
The features vector of Figure 1 is [118, 17, 2, 3, 3, 115] (the
list licenses has default length 13).
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Fig. 3. Stacking ensemble overview.

B. Learning

There are many well-known operators that implement re-
gression algorithms (e.g., linear regression, gradient boosting
regressors) and also feature preprocessing (e.g., polynomial
features transformer). A library like scikit-learn [7] imple-
ments many of these operators, but picking the right operators
and configuring their hyperparameters is a tedious task and
depends on the dataset. We thus use Lale [4], an automated
machine learning (auto-ML) tool, to select the best operators
and tune the hyperparameters given a query/response dataset.

Definition of three models: For each set of features (field,
graph embeddings, and summary features), we train a model
independently, but all three of these models have the same
architecture. We define a pipeline where 1) the first step
uses a standard scaler to give all features a mean of 0 and
a standard deviation of 1; 2) the second step does other
feature transformations (either no transformation, a polynomial
expansion of the features, or a Nystroem transformer); and
3) the last step does the prediction using one of the following
six predictors: linear regression, decision tree, ridge regression,
random forest, k-nearest neighbors where the number of
neighbors is fixed to 3, and gradient boosting regressors.

Model selection: This pipeline defines a space of 18
possible combinations for each of the three models. Further-
more, each of the operators of the pipeline also has a set
of hyperparameters to configure. We have fixed some of the
hyperparameters, such as k = 3 for the k-nearest neighbors,
but we left 43 hyperparameters free. The auto-ML tool then
chooses the best solution among the possible combinations of
algorithms and hyperparameters configurations. To select the
best model, we use n-fold cross validation and the Bayesian
optimizer from Hyperopt [16].

Combination of models: We train the three models in-
dependently and define a new hierarchical model using the
outputs of the three models as input for a final model, as
shown in Figure 3. This final model provides the estimation
in the prediction phase. In general, using a stacked ensemble
in an ML framework [28], learning each predictor separately
and using the predictions as features for the final predictor,
can improve accuracy. After experimentation, we found that
in our case, this method performs better than concatenating
the features into a wide vector and using a single regressor.

IV. RESULTS

The evaluation addresses the following research questions:
RQ1: Does our approach return accurate estimates?
RQ2: Are all the features useful for the estimation?
RQ3: What are the practical benefits of the new estimation?

TABLE I
DATA STATISTICS FOR THE GITHUB AND YELP DATASETS.

GITHUB YELP

mean std min max mean std min max

Query Size 109 43 7 1,425 66 30 5 229
Width 23 8 2 53 11 3 1 21
Nesting 3 1.4 1 9 3 0.5 1 3
Lists 47 23 0 503 74 53 0 370
Response 79 67 0 2,548 1,301 2,111 0 7,363
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(b) Yelp error distributions.
Fig. 4. Error percentage distribution for the ML and static predictions.
For visual purposes we have removed outliers with error% reaching up to
120, 000% in static analysis.

A. Experimental Setup

Data: Following the methodology in [8], we collected
over 100,000 responses from the GitHub GraphQL API and
30,000 from the Yelp GraphQL API. The discrepancy be-
tween the sizes of the two datasets is due to the limit on
queries imposed by the two APIs. The queries are syn-
thetically generated but the responses come from industrial
APIs. The dataset is available at https://github.com/Alan-Cha/
graphql-complexity-paper-artifact. Table I presents the dataset
characteristics, where query size, width, nesting, and lists are
the corresponding summary features from Section III-A, and
response is the actual cost of the query result.

Training: The final model is selected using 5-fold cross
validation [15]. We let our optimizer run for sixty hours for
each trained pipeline for both the Yelp and GitHub datasets,
exploring a total of 1,500 combinations of models and hyper-
parameters, whichever of the two finishes first. Once operators
and hyperparameters are chosen, training a given model is
relatively fast. In our experiments, the preferred estimator
chosen by the Hyperopt optimizer in most of the training
pipelines was the gradient boosting regressor for both datasets.

B. RQ1: Accuracy

We compare our approach to the static analysis proposed
in [8], which was shown to outperform the three most popular
libraries for computing GraphQL query cost. To quantify the
precision of the ML approach compared to the static analysis,
Figure 4 presents the error distribution percentages of the ML
and static analyses. Given a query with response cost c and
a prediction ĉ, we define the error percentage as Error% =
(ĉ− c)/c. The accuracy gain of the ML approach compared
to the static analysis is striking both in terms of average value
and standard deviation (see also the last two lines of Table II).

https://github.com/Alan-Cha/graphql-complexity-paper-artifact
https://github.com/Alan-Cha/graphql-complexity-paper-artifact


TABLE II
ACCURACY COMPARISON FOR EACH FEATURE

(MAE = 1/n
∑n

i=1 |ci − ĉi|).

GITHUB YELP

MAE std MAE std

Summary features 8.7 36.4 102.4 280.8
Field features 14.9 40.2 320.8 715.6
Embedding features 31.58 45.7 880.9 813.4
Final combination 8.2 35.5 60.7 180.4

Static analysis 31.5 263.8 14,180.5 30,827.9

C. RQ2: Features Selection

As described in Section III, the ML estimates are based on
three groups of features, namely summary features (including
the result of the static analysis), field features, and graph
embedding features. But are all these features necessary? To
answer this question, we looked at estimates obtained using
each group of features separately. Table II summarizes the
results. We observe that for both datasets, none of the feature
alone is competitive with the stacked ensemble that combines
the results of cost estimation models trained from all three
groups of features separately.

The performance of each group of features depends on
the dataset. For instance, while the summary features give
reasonable estimates for both datasets, the field features are
much more useful for GitHub than for Yelp. This could be
related to the underlying structure of the two datasets as well
as to the data generation process. Table II also shows that the
automatic feature extraction of the neural networks used to
build the graph embedding features fails to produce accurate
estimates for either dataset, underscoring the importance of
the more descriptive features

D. RQ3: Practicality

Now that we have access to accurate complexity estimates,
the main question is: how useful are these estimates in prac-
tice? API managers offer, through a client-selected plan, a rate
limit, allowing a certain number of points per time window.
Points could be attributed to individual REST calls or to the
query cost in the case of GraphQL [10, 14, 23]. To mimic this
behavior, we built a simulator that acts as an API manager
whose goal is to filter queries based on the client plan. We
select a threshold of points to represent the rate limit on a
given time window.

First, the client sets a threshold, that is, the maximal
aggregate cost that the client is willing to pay for a query. Then
the simulator acts as a gateway between the API and the client,
rejecting queries for which the estimated cost is above the
threshold. To evaluate the benefit of our approach, we compare
the acceptance rate of a simulator relying on the static analysis
against the acceptance rate of a simulator relying on our ML
approach. Figure 5 shows the evolution of the acceptance rate
for increasing values of the simulation threshold. We used a
different range of thresholds for the experiments in Yelp and
GitHub respectively due to their specific characteristics (in
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Fig. 5. Comparison of the acceptance rate against increasing threshold for
the static analysis (red) and the ML approach (blue). The acceptance rate is
computed as the number of queries whose sum of estimated complexity is
below the threshold level divided by the number of sampled queries.

general Yelp contains queries with larger costs). The results are
averaged over 1,000 simulations, and for each simulation we
randomly select 1,000 queries. Overall, as expected, the ML
cost estimation policy is able to accept a bigger proportion of
queries for both APIs. The staircase shape of the Yelp results
can be explained by the peculiar cluster-like distribution of
query complexity in the dataset. For the same reason, the static
analysis plateaus at 80% until the threshold is considerably
larger due to the substantial overestimation within this range.
When the threshold reaches a high enough value, the static
analysis reaches 100% acceptance rate too.

A more thorough evaluation and detailed analysis is avail-
able in the extended version of this paper [19].

V. RELATED WORK AND CONCLUSION

Our work is an instance of machine learning for code (ML
for code). ML for code has been extensively studied in the
software engineering community [2, 13, 22], including for
optimizing computational performance [26]. There are several
works that use code as input, usually in the form of a token
sequence, and then train ML models for a variety of tasks
(for example, code completion) [3, 9]. To the best of our
knowledge, our work is the first to apply ML to GraphQL.

The database community has also studied query perfor-
mance prediction (QPP) using machine learning techniques [1,
12, 18]. In contrast to these works, our approach focuses on
GraphQL and uses a sound conservative upper bound on query
cost as well as graph neural network features.

Our paper proposes a methodology for using ML to estimate
the cost of GraphQL queries. We experimentally show that
our ML approach outperform the leading existing static anal-
ysis approach using two commercial GraphQL APIs, namely
GitHub and Yelp. We believe that an ML approach to query
complexity estimation can be useful for both API providers
and clients. API providers benefit by allowing them to loosen
cost thresholds and better provision server resources, while
clients benefit by allowing them to better understand the costs
of their queries and what is allowable within their rate limits.
In addition, our approach can be used in conjunction with
other types of analyses to create an overall more robust API
management system.



REFERENCES

[1] M. Akdere, U. Cetintemel, M. Riondato, E. Upfal, and
S. B. Zdonik. Learning-based query performance mod-
eling and prediction. In ICDE, 2012.

[2] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton. A
survey of machine learning for big code and naturalness.
CSUR, 51(4):81:1–81:37, 2018.

[3] M. Allamanis, M. Brockschmidt, and M. Khademi.
Learning to represent programs with graphs. In ICLR,
2018.

[4] G. Baudart, M. Hirzel, K. Kate, P. Ram, and A. Shin-
nar. Lale: Consistent automated machine learning. In
AutoML@KDD, 2020.

[5] G. Brito, T. Mombach, and M. T. Valente. Mi-
grating to GraphQL: A practical assessment. CoRR,
abs/1906.07535, 2019.

[6] G. Brito and M. T. Valente. REST vs GraphQL: A
controlled experiment. In ICSA, 2020.

[7] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa,
A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer,
A. Gramfort, J. Grobler, R. Layton, J. VanderPlas,
A. Joly, B. Holt, and G. Varoquaux. API design for
machine learning software: experiences from the scikit-
learn project. CoRR, abs/1309.0238, 2013.

[8] A. Cha, E. Wittern, G. Baudart, J. C. Davis, L. Mandel,
and J. A. Laredo. A principled approach to GraphQL
query cost analysis. In FSE, 2020.

[9] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather.
End-to-end deep learning of optimization heuristics. In
PACT, 2017.

[10] Google. Apigee. https://cloud.google.com/apigee, 2020.
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