
HAL Id: hal-03469430
https://hal.science/hal-03469430

Preprint submitted on 7 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The case for admission control of mobile cameras into
the live video analytics pipeline

Francesco Bronzino, Francescomaria Faticanti, Francesco de Pellegrini

To cite this version:
Francesco Bronzino, Francescomaria Faticanti, Francesco de Pellegrini. The case for admission control
of mobile cameras into the live video analytics pipeline. 2021. �hal-03469430�

https://hal.science/hal-03469430
https://hal.archives-ouvertes.fr

The Case for Admission Control of Mobile Cameras Into the Live
Video Analytics Pipeline

Francescomaria Faticanti
Fondazione Bruno Kessler

Francesco Bronzino
Université Savoie Mont Blanc

Francesco De Pellegrini
Avignon University

ABSTRACT
In this paper we consider the problem of orchestrating video ana-
lytics applications over an edge computing infrastructure. Video
analytics applications have been traditionally associated to the pro-
cessing of video streams generated by fixed video cameras. Nowa-
days, however, the availability of mobile video cameras has become
pervasive. We argue that to take advantage of the presence of
mobile video cameras—and their informative content—it may be
necessary to refactor the edge orchestration logic. We propose a
new solution that splits the problem into two connected actions:
1) Placement of processing functions in the infrastructure and 2)
Admission of most informative cameras based on their field of view.
We hence describe a possible scheme for joint video stream admis-
sion and orchestration. Finally, preliminary numerical results are
presented, demonstrating that separating the two logic components
can improve coverage while reducing the cost of deployment.

CCS CONCEPTS
• Networks → Network control algorithms; • Information sys-
tems → Multimedia streaming.

KEYWORDS
Video Analytics, Mobile Cameras, Resource Allocation, Admission
Control, Edge Computing

ACM Reference Format:
Francescomaria Faticanti, Francesco Bronzino, and Francesco De Pellegrini.
2022. The Case for Admission Control of Mobile Cameras Into the Live
Video Analytics Pipeline. In 3rd ACM Workshop on Hot Topics in Video
Analytics and Intelligent Edges (HotEdgeVideo ’21), January 31–February
4, 2022, New Orleans, LA, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3477083.3480151

1 INTRODUCTION
Live video analytics are a key application that combines AI tech-
niques and modern microservice architectures to gather informa-
tion from video camera feeds. Video analytics applications process
several video inputs in a tagged geographical area to perform so-
phisticated functionalities such as motion detection (e.g., count
moving vehicles, identify an accident or a traffic jam) or features

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotEdgeVideo ’21, January 31–February 4, 2022, New Orleans, LA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8700-2/22/01. . . $15.00
https://doi.org/10.1145/3477083.3480151

extraction (e.g., recognize a target vehicle’s plate number). Perform-
ing these operations conventionally requires executing multiple
tasks in an ordered sequence (e.g., decoding, background extraction,
object detection, plate extraction, vehicle counting) [4]. However,
the sheer size of data generated by camera flows makes it infea-
sible to centralize the processing, so that the decentralized edge
processing approach is key for their success. As for most AI-based
applications, video analytics performance—i.e., their accuracy and
time efficiency—depends loosely on throughput and computing
resources. It is rather conditioned by the employed functions (e.g.,
lightweight vs heavyweight shape classifiers) as well as the infor-
mative content of video frames (e.g., crowded scenes require better
models to extract available information). Each application is com-
posed of a sequence, or chain, of functions that manipulate the
incoming images using AI functions. Performance of such models
can be impacted by a number of quantifiable factors (e.g., resolu-
tion, frame rate, etc.) as well as by less deterministic ones (e.g., how
many objects are present in a given frame) [5].

In the standard scenario considered in the literature, video streams
are generated by fixed cameras, and the resulting problem becomes
a, somewhat, standard problem of orchestration of microservice
chains [6]. Unfortunately, solely focusing on static video flows can
limit the applications chance of maximizing their accuracy: if sub-
jects exit the cameras’ field of view, no model is able to recover the
missing information. In this paper, we consider instead how to inte-
grate mobile video streams, e.g., generated by cameras mounted on
vehicles or cameras of pedestrians smartphones crossing a tagged
area. Depending on the application, a mobile video stream may
complement fixed cameras video streams with additional informa-
tive content. Hence, considering mobile cameras improves the basic
coverage brought by fixed cameras and decreases the probability
of having blind spots. In vehicles’ surveillance for safety critical
events, for example, improving the coverage can play a crucial role
in the prevention of car accidents.

However, due to their less predictable behavior, new challenges
lie ahead when mobile cameras are integrated in the architecture.
To be capable of accounting for the effects of mobility, the orches-
tration logic deployed must be adapted. In fact, a static placement
of application modules which ignores the presence of mobile video
cameras may greedily saturate local edge resources and may thus
prevent the association of new incoming mobile video streams later
on. In order to match effectively the dynamic changes of available
sources in the infrastructure, the straightforward solution is to re-
allocate periodically the application chains over available resources.
Unfortunately, frequently re-allocating modules on the infrastruc-
ture generates delay problems due to time overhead incurred in the
migration of modules across different locations.

The proposed approach aims to acquire mobile video streams by
means of pre-allocated application pipelines, leaving re-configuring

https://doi.org/10.1145/3477083.3480151
https://doi.org/10.1145/3477083.3480151
https://doi.org/10.1145/3477083.3480151

Figure 1: Typical scenario where cameras in each area are associated to an
entry point.

the chain placement as a last resort. To do so, we observe that not
all video streams should be admitted, but rather only the ones that
bring the larger amount of information. To achieve this, we can in-
tegrate the standard placement problem with an admission control
phase. In this work we describe the resulting combined admission
and orchestration problem, where a batch of video analytics applica-
tions are instantiated in a heterogeneous edge/cloud environment
and a set of fixed and mobile cameras cover the ensemble of target
areas.

In the rest of the paper we present our solution for support the
dynamic admission of mobile cameras in the processing pipeline.
We first present in Section 2 the orchestration problem of live
video analytics and their applications. Next, Section 3 presents
the two steps solution of placement and admission control that
aims to more easily support the integration of mobile cameras into
the analytics pipeline. We present in Section 4 our preliminary
simulation results that show how even simple admission control
strategies can improve the covered observed area for applications
over a baseline, while reducing the deployment cost that would
be incurred if continuously performing modules placement in the
infrastructure. Finally, Section 5 concludes the paper.

2 PROBLEM DESCRIPTION
Here we describe our reference orchestration problem for video
analytics. We consider a batch of applications deployed in a hetero-
geneous system comprising of a certain number of areas, a set of
available edge nodes and a set of fixed cameras. Furthermore, we
assume that a set of mobile cameras can migrate across the areas
as shown in Figure 1. The cameras in each area collect video flows
sourcing from fixed cameras installed locally as well as from mobile
cameras traversing the tagged area. We assume that each flow feeds
a specific video analytics application hosted on the infrastructure.

Applications. The structure of each video application forms a
pipeline graph where each node represents an application specific
function. An edge between two nodes of the pipeline exists if their
functions are related, e.g., the output data of a function upstream
feeds the next node downstream. Figure 2a) shows sample repre-
sentation for such video analytics application model, comprising
a chain of four different functions. In practical realisations, it is
possible that each application function is provided with different

implementations, namely knobs. In fact, each implementation guar-
antees a different degree of accuracy for the application and it
engages different resource levels, namely CPU, memory, etc, on
the hosting nodes. For example, as shown in [4], a video analytics
application, e.g., an application for object tracking, can consist of
functions like an object detector and an associator component. Each
function presents different implementations, e.g., as shown in [6],
an object detector can be implemented with different detection
models (Yolo, VGG or AlexNet).

Performance Metrics. In this work we consider two performance
metrics for video analytics applications: i) the coverage brought by
a camera, i.e., the amount of space, for example a specific subarea or
a specific field of view [9], that the camera can cover in its direction;
ii) the accuracy of each application in processing new information
brought by the camera, e.g., the amount of objects the application
can count from the images coming from the camera. In this paper we
focus on the maximization of the coverage metric. The choice of the
coverage as the objective function is motivated by the improvement
in accuracy reached by an application as the information brought
by a set of cameras increases [9]. In future works we are going to
study a more precise relation between coverage and accuracy.

Infrastructure. The infrastructure consists of a fixed number of
cameras per area connected to a set of heterogeneous edge nodes
where applications’ functions are deployed. Nodes provide different
levels of computational resources. In each area a set of cameras
sends several video flows to the applications deployed on the in-
frastructure providing a certain amount of coverage of the area. We
assume that fixed cameras always provide the same coverage over
time. On the other hand, mobile cameras can change their position
and, consequently, the coverage offered to the applications.

Orchestration Problem. The problem we address in this paper is
the determination of an optimal allocation for applications’ func-
tions over the infrastructure as well an optimal admission policy
for video flows in order to maximize the coverage brought to ap-
plications guaranteeing a minimum desired level of accuracy per
application. Such a solution should be able to support different
types of cameras, i.e., both mobile and fixed ones. The support for
mobile cameras poses additional complexity in the decision pro-
cess. In fact, mobile cameras can change continuously their access
point thus modifying the distance from the first computing node
available, i.e., the node where the first application’s function has
been deployed.

3 PROPOSED SOLUTION
Several solutions regarding video analytics applications orchestra-
tion have been proposed in the literature [4–6]. However, most of
these solutions only deal with video streams coming from fixed
cameras. Nowadays, with the significant spreading of mobile cam-
eras, there is a need of including this kind of cameras in the video
analytics operations. The introduction of mobile cameras brings
some benefits in terms of accuracy for the applications. Indeed,
they can cover some parts of a specific area, namely blind spots,
that would not be possible to reach just using fixed cameras.

In our context, each access point of each area receives video
streams coming from either fixed or mobile cameras. These streams

2

are processed by the applications already deployed on the infras-
tructure with limited resources on edge nodes. Hence, a selection
of flows to be admitted should be performed in order to prevent
the saturation of resources at local nodes. In the admission control
process we must factor in the contribution of a tagged video stream
to the overall coverage of its target application. The next sections
describe in more detail the aforementioned procedure.

In order to solve the problem described above, we propose a
two-step solution: first an application placement step, followed by
an admission control step.
1) Applications Placement Step. This solution step entails the re-
source allocation in order to accommodate the applications pipelines
onto the infrastructure. The resource allocation methods should
take into account the computational requirements of each applica-
tion’s function and the capacity of nodes where such functions are
instantiated. Furthermore, such placement methods should consider
networking constraints in terms of available bandwidth.
2) Admission Control. This step receives as input the placement
performed in the previous step. The admission control policy is
designed in order to decide which video stream should be admit-
ted during the processing phase. In a dynamic scenario, the need
for such an admission step comes from the presence of mobile
cameras that can improve over time the coverage provided to the
deployed applications. Furthermore, processing of several video
streams can improve the accuracy but it can quickly lead to re-
source saturation. Admission control should prevent this problem
performing a selection on the video streams to be processed based
on the coverage they are bringing to applications. Performing such
an admission control only slightly penalises accuracy but prevents
resource saturation. Finally, an admission control policy brings out
the study of the trade-off between the amount of admitted cameras,
and hence the resource occupation, and the final accuracy reached
by applications.

3.1 Applications Placement
The placement step consists of choosing for each application’s
function a certain implementation, i.e., a knob, and mapping it to
a target node of the network. This kind of mapping also requires
as well to identify the edges between two consecutive functions of
an application; i.e., the physical path in the infrastructure network.
The applications placement involves the resource allocation for
the application pipelines on the infrastructure. Each application
module may have different implementations (knobs).

This placement problem can be polynomially reduced to the
well known Virtual Network Embedding (VNE) problem [3] (it is
sufficient to consider the variant where a unique knob exists per
application module). Thus, since the VNE problem is known to be
NP-hard, the placement step involves the solution of an NP-hard
problem; furthermore, since negative results exists in the literature
for the approximation of VNE problem [1]; indeed, such negative
results discourage seeking for approximation algorithms. Given
the computational complexity of the VNE problem, we adopt a
lightweight heuristics consisting of splitting further the problem in
two sub-problems: i) node mapping and ii) edge mapping.

For the first sub-problem it is worth noting that different appli-
cations pipelines can share the same set of modules deployed on

a)

b)

Figure 2: a) Example of video analytics application represented as a chain
of dependent modules; b) Example of module sharing among application
pipelines.

the infrastructure as shown in Figure 2b). This corresponds to the
consolidated technique of merging application functions, which
is employed routinely to save computational and networking re-
sources [4]. We adopt this technique to create a unique directed
graph by merging all the common functions each pair of applica-
tions. The implementation chosen for each function is the one that
maximise the accuracy for each application. I.e., for each function,
we choose the implementation that leads to the maximum accuracy
for all the applications sharing that function. This is the golden trace
concept used in [6].

Given the aggregated graph obtained by merging the common
functions, namely the aggregated graph, we perform the functions
mapping minimizing the number of edge servers used. The objec-
tive is to avoid the distribution of the application among the infras-
tructure minimizing the bandwidth consumption and to maximally
exploit the edge resources without exceeding nodes’ resources. Min-
imizing the number of servers used for the functions mapping can
be formulated as a standard Bin Packing problem [7]. In this case,
though, despite such problem is again one of the NP-hard family,
there exist different heuristic methods which offer approximation
bounds in order to solve the problem [2].

The second sub-problem, i.e., the edge mapping, can be readily
solved after the node mapping step. To this aim it is sufficient to
compute the less congested path between each couple of edge nodes
where two adjacent functions are placed, i.e., in the aggregated
graph.

In summary, the applications placement involves the following
consecutive steps:
(1) Creation of an aggregated graph by using the merging tech-
niques between applications pipelines and adopting the golden
trace in order to choose the implementation (knob) for each func-
tion. (2) Mapping of functions and edges of the total graph onto the
network’s servers and paths, respectively. The functions mapping
is performed by minimizing the number of servers by the First-Fit
algorithm [2].

At the end of the placement step we obtain a graph of application
modules mapped to the infrastructure graph, as shown in Figure 3.

3.2 Admission Control
The admission control phase aims to select, for each area, the set of
video streams to be admitted at the "entry point" of that area. Video

3

Figure 3: Example of applications deployment among an infrastructure
consisting of an edge and a cloud side

streams can come either from fixed or mobile cameras. However,
the reward function driving the admission is composed by the cov-
erage brought by each flow and the match between the information
contained in the flow and the applications receiving the informa-
tion by the flow. Once a given flow has been admitted for a specific
application, the subgraph of the total graph, computed in the previ-
ous step, related to the application is activated for processing the
information brought by the flow. Note that the cost function for
this operation is determined by the placement and the configura-
tion selected in the previous step for the application. Hence, the
cost related to the residual bandwidth on the paths followed by the
flow among the pipeline’s locations and the computational load
is known and determined by the placement computed in the first
step.

The main objective of the admission control step is to select
flows that maximize coverage matching the information desired
by the application, and allow to stay below the total amount of
computational and networking resources usage.

3.3 Coverage and Application Matching
As shown in Figure 1, each camera covers a given portion of a
specific area. The relationship between the coverage percentage
of a camera and the accuracy of the application depends on the
information carried by the flow sourcing from the tagged camera.
For this reason we can say that there should be a match between
the information carried by the flow and what the application needs.
This can be translated into a difference between the coverage of the
camera and the coverage desired by the application. The coverage
can be modeled, e.g., as a portion of the target area or as an angle
covered by the camera. Furthermore, we assume that the coverage
of the fixed cameras never changes in time, whilst mobile cameras
can add new information, i.e., by covering blind spots of fixed
cameras.

In summary, the admission control selects, for each area, the
set of video streams that maximises the total coverage desired by
the applications receiving the stream. The admission control must
take into account the cost function given by the resource allocation,
i.e., bandwidth, memory and CPU consumption. Future works will
investigate more precise methods to model the admission control
description and resolution.

4 NUMERICAL EVALUATION
In this section we present some preliminary evaluations of our
solution. Our goal is twofold: i) confirm that admission control
is a promising tool to handle the mobility of cameras and can
significantly improve the coverage provided to the applications; ii)
provide some insight into the trade-off which rules instantiation
costs and the churn-rate of application functions placed onto the
infrastructure. The instantiation costs are related to the number of
functions should be moved when a new applications placement is
computed.

4.1 Simulation settings
The main setting of the numerical simulations is described in the
following.

Network Infrastructure. The network infrastructurewe consider is
a playground composed by four areas with one edge server per area.
Two additional edge servers are connected to the others associated
to the remaining areas. For the sake of simplicity, the connectivity
among edge servers is represented by a complete network graph
where each edge of the graph has an available bandwidth of 60
Mbps.

Cameras and Mobility Model. The number of fixed cameras is set
to 8, with two fixed cameras per region, and a total of 10 mobile
cameras. At the beginning of each simulation run, each mobile
camera is associated to a certain area at random. At each iteration
of the simulation mobile cameras can change the area according to
a random walk over the set of areas [8]. Each camera has a fixed
frame-rate and a coverage for the associated area. The entire area
corresponds to a grid of which the app coverage represents a subset.

Applications. Each application is built by picking certain number
of functions from a set of 15 different ones. Each function has a
maximum of 5 possible implementations with different weights
for the computation of the total accuracy of applications [4]. Fur-
thermore, each application has, for each area of the network, a
desired subarea from which it should receive images; such subarea
is mapped to a specific subset of the area grid.

4.2 Numerical Results
The numerical results have been obtained using a Python-based
simulator. Each data point in the graphs represents the average
value over 30 instances where the infrastructure is fixed and in-
stances are randomized both in the desired coverage of applications
and in the initial distribution of mobile cameras.

The proposed solution, namely AC, is comparedwith two baseline
approaches in terms of coverage:
No-AC: unlike AC, all the video streams – from both fixed and mobile
cameras – are admitted as long as the network resources are not
saturated and without considering the coverage that each camera
brings to its reference application.
fixedCameras: it performs the same operations of No-AC but it does
so only on fixed cameras, i.e., it neglects the potential contribution
of mobile cameras.

Furthermore, in order to understand how the placement of ap-
plications functions impacts the gained coverage, we compared
two different approaches. The first one, called reactive placement,
performs a new placement of functions only when there is not

4

a)

b)

Figure 4: Average coverage: a) Reactive b) Proactive replacement

enough bandwidth to admit at least one stream per application (i.e.,
not even the fixed camera from the baseline scenario can be ad-
mitted). The second approach, called proactive placement, performs
a rearrangement of the applications functions at each iteration.
The heuristic replacement procedure we implemented in this case
migrates applications functions from the most loaded servers to
the ones that are attached to the area with highest concentration
of cameras. In both the approaches the replacement of functions
is performed according the placement step described in Section 3
prioritising less loaded servers for the placement of applications’
functions.

In Figure 4a) we evaluate the average coverage offered by the
three procedures. The coverage is computed as the average over
all the applications of applications’ ratios. For each application, the
application’s ratio is computed as the fraction of the total area de-
sired by the application actually covered by the admitted cameras.
Admission control events occur periodically every ten iterations
– as highlighted by red vertical lines: at those events video flows
admitted per area are selected. As expected, the fixedCameras
have constant and lower coverage given the sole consideration of
fixed cameras. No-AC does not take into account the coverage in
the admission of cameras leading to a low coverage in average. Our
proposed solution shows significant performance gains in terms of
coverage, confirming that a scheme based on the cascade of place-
ment and admission control of mobile cameras attains a significant
improvement of the coverage with respect to the baselines.

Similarly, Figure 4b) shows the average coverage of the three
approaches when a replacement of applications functions is proac-
tive and performed at each iteration. The difference between the

Figure 5: Average number of migrated functions.

three approaches is similar to the one noticed in Figure 4 but it is
worth noting here that that there is an increment in the average
coverage with respect the case where the replacement is performed
in reactive fashion.

A continuous reconfiguration of the applications functions across
the infrastructure can be beneficial from the coverage’s point of
view but there exists an associated cost. Figure 5 reports on the
average cost of proactive and reactive replacement. The cost is
measured as the number of functions moved from two consecutive
configurations of applications functions placement. The number of
migrated functions greatly impacts the system’s availability since
function migration involves several additional delays such as, e.g.,
the image download time and other delays related to data transfer.
Overall, all these operations can cause a significant interruption
of the applications operation. Consequently, a frequent function
replacement improves indeed coverage but, on the other hand, may
lead to a considerable cost for the applications placement reconfig-
uration.

5 CONCLUSIONS
We have considered in this paper the problem of admitting video
streams for video analytics applications when fixed and mobile
cameras coexist. We argue that an admission control policy for
video streams coupled to the application chains placement – under
capacity constraints on computational and networking resources –
can significantly improve the performance figures of applications’
coverage. Furthermore, we have investigated the trade-off between
the reallocation churn-rate of applications functions and the cost in
terms of the number of functions which need to be migrated across
the infrastructure at each reallocation event. The take-away mes-
sage is that while mobile cameras bring more information to video
applications, admitting all available video streams can quickly satu-
rate available resources. Thus, admission control helps applications
to select video streams that significantly improve the coverage
without exceeding the capacity of available resources. In future
works we plan to precise the relation between the coverage and the
accuracy in processing the information brought by selected cam-
eras. Furthermore, we are going to study how to tune efficiently
proactive replacement rates to mitigate the undesirable additional
delays it may induce in the applications’ operations.

5

REFERENCES
[1] Edoardo Amaldi, Stefano Coniglio, Arie MCA Koster, and Martin Tieves. 2016.

On the computational complexity of the virtual network embedding problem.
Electronic Notes in Discrete Mathematics 52 (2016), 213–220.

[2] György Dósa. 2007. The tight bound of first fit decreasing bin-packing algorithm
is FFD (I)âĽď 11/9OPT (I)+ 6/9. In International Symposium on Combinatorics,
Algorithms, Probabilistic and Experimental Methodologies. Springer, 1–11.

[3] Andreas Fischer, Juan Felipe Botero, Michael Till Beck, Hermann De Meer, and
Xavier Hesselbach. 2013. Virtual network embedding: A survey. IEEE Communi-
cations Surveys & Tutorials 15, 4 (2013), 1888–1906.

[4] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana Golubchik,
Minlan Yu, Paramvir Bahl, and Matthai Philipose. 2018. Videoedge: Processing
camera streams using hierarchical clusters. In 2018 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 115–131.

[5] Samvit Jain, Xun Zhang, Yuhao Zhou, Ganesh Ananthanarayanan, Junchen Jiang,
Yuanchao Shu, Paramvir Bahl, and Joseph Gonzalez. 2020. Spatula: Efficient cross-
camera video analytics on large camera networks. In 2020 IEEE/ACM Symposium
on Edge Computing (SEC). IEEE, 110–124.

[6] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion
Stoica. 2018. Chameleon: scalable adaptation of video analytics. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data Communication.
253–266.

[7] Silvano Martello and Paolo Toth. 1990. Bin-packing problem. Knapsack problems:
Algorithms and computer implementations (1990), 221–245.

[8] Andrè Panisson. 2012. pymobility. https://github.com/panisson/pymobility
[9] Enes Yildiz, Kemal Akkaya, Esra Sisikoglu, andMustafa Y Sir. 2013. Optimal camera

placement for providing angular coverage in wireless video sensor networks. IEEE
transactions on computers 63, 7 (2013), 1812–1825.

6

https://github.com/panisson/pymobility

	Abstract
	1 Introduction
	2 Problem Description
	3 Proposed Solution
	3.1 Applications Placement
	3.2 Admission Control
	3.3 Coverage and Application Matching

	4 Numerical Evaluation
	4.1 Simulation settings
	4.2 Numerical Results

	5 Conclusions
	References

