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Context
• Visual place recognition (VPR) for self-driving vehicles [1].

• Large-scale environment and computational cost.

• Neurocybernetics approach.

Contributions
• HSD, a sparse model for visual information encoding.

• HSD+MP, a full visual neuro-inspired localization model using HSD.

HSD : Hierarchical Sparse Dictionaries

General overview:

• Our unsupervised neural network aims
to compress visual information.

• Alternates ”Topologic Sparse Layers”
and pooling layers.

• Inspired by visual cortex key
properties: sparsity, topology and
pooling [3].

Topologic Sparse Layers:

• Sparse dictionary sorted via an
algorithm of Self-Organising Map.

• Put side by side neurons sensitive to
similar orientations.

• Replicate the behaviour of visual
cortex simples cells.

Pooling layers:

• Merge information from S1 and S2
layers to create spatial invariance.

• Replicate the way the visual corte
operates (complex cells).

HSD+MP : application to visual localization
• Modification of LPMP, a bio-inspired model of VPR [2], to integrate HSD .

• HSD replaces the log-polar block to compress landmarks representation.

Experiments

Evaluation methodology: Ability of models to recognize already visited places.

• Three distances of sampling on learning dataset : 2m, 3m and 5m.

• Six configurations of HSD : five balanced and one (HSD-15/30) unbalanced.

• Comparison with a state-of-the-art VPR model named CoHog.

Metrics: AUC (area under the curve) of precision/recall curves and average
processing frequency of an image.
Dataset: Three routes with two distinct trajectories extracted from the KITTI
dataset.

Results

AUC by configuration:

• Mean AUC increases with
the size of HSD.

• Gave better localization
performances than LPMP
with HSD-18.

• Gave better localization
performances than CoHog
with HSD-24.

• Best performances with
HSD-15/30.

Frequency by
configuration:

• Mean computation
frequency decreases with
the size of HSD.

• HSD-18 is ×0.54 faster
than LPMP at equal
performance.

• HSD-24 is ×0.45 faster
than CoHog at equal
performance.

Mean AUC by place
sampling:

• HSD improved the mean
AUC of LPMP by 7% for
all the place sampling rates.

• Give similar results to
CoHog for all the place
sampling rates, with a slight
advantage for HSD+MP.

Learning time by
configuration:

• Learning time of HSD
increases according to the
size of HSD.

• Configuration HSD-15/30
reduces learning time with
similar performances.

Model Learning time PoI descriptor size
LPMP . 2916

HSD-15 262s 64
HSD-18 313s 81
HSD-24 555s 144
HSD-30 1527s 225

HSD-15/30 673s 225

Conclusion
• HSD improves computation cost and localization accuracy of LPMP.

• Allows a trade-off between localization and time performance.

• Relatively quick learning.

Future work
• Optimisation of HSD to achieve maximum performance.

• Complexification of the model : more layer, different pooling size etc.

• Evaluation on a more difficult dataset (Oxfordcar dataset).
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