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Abstract 

Violation of the second law of thermodynamics has almost become a trivial locution today 

in physics, so often we hear about its experimental evidences, theoretical deduction and 

arguments coming from statistical mechanical or even quantum mechanical considerations. In 

this work, we bring to light an evidence against this violation. We propose a short revisit of the 

trilogy of the discovery of the second law, in order to bring out an almost hidden connection 

between the second law and the first law of energy conservation. This connection guarantees   

the second law of entropy increase is an inviolable iron rule and a fundamental law of physics, 

just like the law of energy conservation. Any presumable violation of the second law, even a 

probabilistic one, inevitably violates the law of energy and mass conservation, and undermines 

all fundamental laws of physics and chemistry. We conclude by summarizing an alternative 

pathway to the second law taking into account the multiplicity of paths of random motion.  

 

Keywords: Entropy, second law of thermodynamics, random dynamics, energy, energy 

conservation, Carnot engine, perpetual mobile machine. 

 

 

1) Introduction 

The second law of thermodynamics (second law for short) stipulates that entropy 𝑆 always 

increases in the evolution of an isolated system and remains constant when the system reaches 
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thermodynamic equilibrium. Entropy of a system is defined by its small variation 𝛿𝑆 = 𝛿𝑄/𝑇 

caused by a small quantity of heat 𝛿𝑄 absorbed by the system from its surroundings, where 𝑇 

is the absolute temperature of the system evolving in an ideal and extremely slow reversible 

process [1][2]. For any other process out of equilibrium, also called irreversible process, 𝛿𝑆 >

𝛿𝑄/𝑇; this is the mathematical expression of the second law. When the system is isolated with 

𝛿𝑄 = 0, the second law becomes 𝛿𝑆 > 0 as stipulated above1. According to a widely accepted 

interpretation, entropy represents a measure of the uncertainty or disorder in the movement of 

the molecules composing the systems. This idea is reflected in Boltzmann's famous formula 

𝑆 = 𝑙𝑛𝑊  where 𝑊  is the total number of microstates (arrangements of the position and 

momentum of the molecules) in the system.  Larger is 𝑊, more the molecules are moving in 

disorder. The second law means that the system always evolves towards the states having as 

many as possible microstates, or towards more and more disorder. A good example is the 

expansion of gas in an isolated recipient from a part of the volume to the empty part, because 

the number of microstates in the whole volume is larger than in a part of it; the entropy reaches 

its maximum when the gas uniformly fills the volume in an equilibrium state. 

Since its discovery and especially its interpretation given by Boltzmann within statistical 

mechanics [3][4], the second law has never ceased to raise controversies until today. The most 

remarkable question is whether the second law is an inviolable fundamental law of nature, as 

for example Edington very famously insisted2 [5], or whether it is just a statistical, or even 

anthropocentric law subject to possible violation, as proposed by Boltzmann and Maxwell, the 

two most famous pioneers and protagonists of statistical interpretation [3][4]. The twin demons 

                                                 

1 It is worth mentioning the entropy is only defined for equilibrium states. It has been extended to non-equilibrium 

systems changing sufficiently slowly so as to keep local equilibrium and to apply equilibrium thermodynamics 

using entropy in each of their sufficiently small partitions [6].  

2 The law that entropy always increases holds, I think, the supreme position among the laws of Nature. If someone 

points out to you that your pet theory of the universe is in disagreement with Maxwell's equations - then so much 

the worse for Maxwell's equations. If it is found to be contradicted by observation - well, these experimentalists 

do bungle things sometimes. But if your theory is found to be against the Second Law of Thermodynamics I can give you 

no hope; there is nothing for it to collapse in deepest humiliation. 
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of Maxwell3 [7] and of Laplace4 [8] remain to date the unvanquished devils haunting the second 

law, with their sharpened facilities, endowed by classical mechanics, to observe and follow the 

motion of molecules, and to make entropy decrease and even disappear completely [9]. The 

statistical interpretation of the second law was proposed in this unfavorable context [3][4]; it 

asserts that the second law (entropy increase) has an overwhelmingly large probability; 

nevertheless, the probability of entropy decrease is not zero, albeit very small. Obviously, 

Boltzmann was seeking a reconciliation with the fundamental laws of classical mechanics, to 

the detriment of the fundamental attribute of the second law. This point of view has become the 

mainstream understanding of the second law as well as of the time irreversibility [10]. 

Violation of the second law has become a trivial locution in physics today. We have seen 

its experimental evidences [11][12] (more and more from quantum consideration, see for 

example [13]), theoretical arguments [14][15][16], and even a whole theory based on the 

fluctuation theorem [17], allowing systematic violation of the second law. According to this 

theorem, for every process in isolated systems where entropy increases by certain amount 𝐴 

with a given probability, there is a nonzero probability of the inverse process yielding the same 

amount of entropy decrease −𝐴. In this formulism of the statistical interpretation, the second 

law violation, despite its small probability, becomes a ubiquitous phenomenon in every non-

equilibrium thermodynamic process [17]. 

                                                 

3 … if we conceive of a being whose faculties are so sharpened that he can follow every molecule in its course, 

such a being, whose attributes are as essentially finite as our own, would be able to do what is impossible to us. 

For we have seen that molecules in a vessel full of air at uniform temperature are moving with velocities by no 

means uniform, though the mean velocity of any great number of them, arbitrarily selected, is almost exactly 

uniform. Now let us suppose that such a vessel is divided into two portions, A and B, by a division in which there 

is a small hole, and that a being, who can see the individual molecules, opens and closes this hole, so as to allow 

only the swifter molecules to pass from A to B, and only the slower molecules to pass from B to A. He will thus, 

without expenditure of work, raise the temperature of B and lower that of A, in contradiction to the second law of 

thermodynamics [7].  

4 Une intelligence qui, à un instant donné, connaîtrait toutes les forces dont la nature est animée et la situation 

respective des êtres qui la composent, si d’ailleurs elle était suffisamment vaste pour soumettre ces données à 

l’analyse, embrasserait dans la même formule les mouvements des plus grands corps de l’univers et ceux du plus 

léger atome ; rien ne serait incertain pour elle, et l’avenir, comme le passé, serait présent à ses yeux [8]. 
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The discussions of the validity of second law, since Boltzmann, have been largely based on 

the classical mechanics laws, all presumably being valid for the molecules composing 

thermodynamic systems [3]. As well known, the classical mechanics laws have all been well 

verified in their own domains for large enough (macroscopic or mesoscopic) systems; its 

extension to microscopic particles, however, may be fraught with difficulties. Quantum 

mechanics is better qualified for this molecular and atomic scale. Nevertheless, the optimism 

of interpreting the second law within quantum mechanics [9] has its limits because many 

systems obeying second law may be composed of large enough corpuscles obeying classical 

mechanics. Therefore, it is of first necessity to address the second law within classical 

mechanics.  

The trouble of the classical mechanics approach to the second law is the conflict between 

the time symmetric or reversible character of mechanics laws and the time asymmetric or 

irreversible character of second law. This is the famous reversibility objection of second law 

opposing Boltzmann to Loschmidt 5  [21]. Although this debate remains open today, the 

Boltzmann's statistical interpretation of second law is one of the widely accepted, probably the 

surest and simplest way, to make peace between mechanics laws and the second law [10]. The 

consensus is the following: the mechanics laws are fundamentally inviolable iron rules at any 

scale; while the second law is only a statistical behavior, sometimes verified, sometimes 

violated. Put it differently, when an isolated thermodynamic system obeys the second law, it is 

perfectly normal because it is a consequence of the fundamental laws of mechanics; when the 

system violates the second law, it is completely normal as well because it is also a consequence 

of the same fundamental laws. In any case, the classical mechanics laws are fundamental, 

inviolable, and absolute, no matter what is the behavior of entropy. Moreover, all suggestions 

of violation give you the impression that the second law is an isolated phenomenon independent 

of all other physical and chemical phenomena, so that its violation does not have any impact on 

other laws of physics and chemistry, as if nothing important had happened.  

In this paper, we address this debate under a different angle to show that this isolation of 

the second law is illusory. The second law actually has a vital connection to other fundamental 

laws, especially to the law of conservation of energy and mass. For this purpose, we propose to 

                                                 

5 https://en.wikipedia.org/wiki/Loschmidt%27s_paradox  

https://en.wikipedia.org/wiki/Loschmidt%27s_paradox
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revisit succinctly the history of the discovery of the second law. In the course of those exploits 

from Carnot [1], Kelvin[23] to Clausius [2], we cannot but notice that the second law and the 

energy law are mutually conditioned, like conjoined twins. Energy conservation is a necessary 

condition for the second law (no energy conservation, no second law). Inversely, if the second 

law is broken, the law of energy conservation collapses at once.  

After this demonstration, we discuss a new approach to the reconciliation between 

mechanics laws and second law. This approach is different from statistical mechanics in that it 

takes into account a key characteristic of random motion, ubiquitous in thermodynamic 

systems: the multiplicity of paths; this is the fact that a random motion can take different paths 

from a given initial state, contrary to classical mechanics motion taking only a single unique 

path from a given state. In this framework, the obstacles to the entropy increase of the second 

law, such as Liouville's theorem [18], Poincaré's recurrence theorem [19], and time symmetry 

[21], are removed once and for all [22][27]. Detailed discussion is given in the concluding 

remarks. 

2) Discovery of entropy 

It is sometimes said that the second law is an empirical finding6. It is not exactly true. The 

discovery of the second law, in its most profound form in terms of entropy, is actually a result 

of pure thought experiments and mathematical calculations.  

Historically, the discovery of entropy has something to do with a decree of the Academy of 

Science of Paris in 1775 deciding not to examine any proposition of perpetual mobile machines 

[20]. Today we call this engine the perpetual mobile machine of first kind (PMM1)7. Since then, 

the impossibility of PMM1 began to be taken for granted on the basis of a common belief that 

                                                 

6 https://en.wikipedia.org/wiki/Second_law_of_thermodynamics  

7 A dream of many engineers of that time is to construct what is called today the perpetual mobile machine of first 

kind, a machine that can produce unlimited amount of work without consuming heat or other energy resources. 

This machine violate the law of energy conservation. There is another type of perpetual mobile machine called of 

second kind capable of transforming heat from a single reservoir into work without any side effect. It is 

straightforward to show that this engine makes heat flow from cold to hot body, hence violate the second law. We 

will show later in this paper that it turns out to violate the first law of energy conservation as well because we can 

use it to fabricate a perpetual engine of first kind. 

https://en.wikipedia.org/wiki/Second_law_of_thermodynamics
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energy and motion cannot be created from nothing [1]; the law of energy conservation was not 

yet known at that time. Today we have the mathematical proof that this machine cannot exist 

because it violates the first law of thermodynamics, the law of conservation of energy. This 

decree is the starting point of the remarkable work of Carnot in the study of the efficiency of 

thermal engine [1], leading to the second law many years later. We can at once guess that there 

must have some vital connection between the second law and its starting hypothesis. In order 

to highlight this connection and the mathematical rigor in it, we will retrace the impressive 

trilogy from the impossibility of perpetual mobile all the way to the discovery of the second 

law. The reader will see a summary of the key elements of the story below. The details of the 

mathematics are described in Appendix. 

a) From perpetual mobile machine to Carnot theorem 

Carnot was concerned with heat engine and its efficiency. In 1824, he published the 

extraordinary idea of a reversible heat engine8, now called Carnot engine. This ideal engine can 

work in a reversible cycle between two reservoirs of heat, one at higher temperature 𝑡1 and the 

other at lower temperature 𝑡2. The reversible cycle means that the engine can work in a forward 

cycle, extract a heat 𝑄1 from 𝑡1, reject a heat 𝑄2 (<𝑄1) to 𝑡2 and produce a mechanical work 

𝑊 = 𝑄1 − 𝑄2; it can also backtrack the same cycle inversely, extract the heat 𝑄2  from 𝑡2 , 

consume the work W, and reject the heat 𝑄1 to 𝑡1. Carnot engine works in both directions with 

the same efficiency defined by  =
𝑊

𝑄1
=

𝑄1−𝑄2

𝑄1
= 1 −

𝑄2

𝑄1
. The capacity of this reversible engine 

is extremely nontrivial because such a machine cannot exist. It is impossible for a real machine 

to perform such reversible operation due to friction or other form of energy loss. So all real 

engines are irreversible machines. With the help of this magic machine, Carnot discovered the 

efficiency limit for all possible engines; he described this discovery in the first part of his 

theorem, asserting that9: 

All irreversible heat engines between the two reservoirs are less efficient than the reversible 

engine working between the same reservoirs. 

                                                 

8 Ref [1], pp17-20 

9 Le maximum de puissance motrice résultant de l'emploi de la vapeur est aussi le maximum de puissance 

motrice réalisable par quelque moyen que ce soit. Ref [1], p22 
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Carnot proved this theorem by reductio ad absurdum based on the impossibility of PMM110. 

The details of his proof are illustrated in Appendix i. To summarize, this theorem is true if and 

only if the PMM1 does not exist. In other words, if an irreversible engine working between the 

same reservoirs is more efficient than the Carnot engine, we can then use this irreversible engine 

to construct a PMM1 (Figure A1 of Appendix I) to produce energy with no need of energy 

source; this engine would solve our big worry about renewable energy source and 

environment11. 

We will see below that the meaning of the existence of this PMM1 is much deeper than 

giving a solution to our energy concern. This first part of Carnot theorem is crucial for the 

discovery of the second law, which would be impossible however without the second part of 

Carnot theorem.  

The second part of Carnot theorem is somewhat implicit in the first part. Since the Carnot 

engine is the most efficient of all possible engines, all Carnot engines, each working with a 

different substance (air, steam, etc.), must be equally efficient. If two Carnot engines were not 

equally efficient, we would be able to replace the first irreversible engine in the Carnot's proof 

(Appendix I) by this more efficient Carnot engine, in order to make a PMM1. If all Carnot 

engines have the same efficiency regardless of their working substances, then this efficiency, 

say, , can only depend on the temperatures of the reservoirs 𝑡1 and 𝑡2. The second part of the 

theorem states:  

All Carnot engines have the same efficiency regardless of their working substances; this 

efficiency only depends on the temperatures of the reservoirs: (𝑡1, 𝑡2). 

For Carnot, the only interest of his magic engine is to specify the limit of the efficiency of 

all possible heat engines. A practical question is how to calculate this limit (𝑡1, 𝑡2) when the 

temperatures of reservoirs are given? Physicists had to wait about thirty year to see the answer, 

given by Kelvin [23]. 

                                                 

10 Ref [1], pp21-22 

11 Ref [1], p22 
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b) Kelvin's efficiency of Carnot engine 

In 1854, Kelvin found the expression of (𝑡1, 𝑡2) by considering the second part of the 

Carnot theorem and using a new scale of temperature called absolute temperature denoted by 

𝑇 [23]. The expression is  

 = 1 −
𝑇2

𝑇1
 

(1) 

for a Carnot engine working between two reservoirs of absolute temperature 𝑇1 and 𝑇2 (𝑇1 >

𝑇2). This expression can be found in a general way using a combination of two Carnot engines 

in series, the first one working between the reservoir 1 at 𝑇1 and the reservoir 2 at 𝑇2 (𝑇1 > 𝑇2), 

the second one working between the reservoir 2 and the reservoir 3 at 𝑇3  (𝑇2 > 𝑇3 ). The 

mathematic tricks are straightforward as shown in Appendix II. This expression is an 

unavoidable consequence following the second part of the Carnot theorem that the efficiency 

only depends on the temperatures of the two reservoirs. 

Now let ∆𝑄1 be the heat absorbed by the Carnot engine from reservoir 1, and ∆𝑄2 the heat 

it “absorbs” from reservoir 2 (it actually rejects −∆𝑄2 to reservoir 2). After a cycle, the engine   

returns to the reservoir 1, and produces a positive work 𝑊 = ∆𝑄1−(−∆𝑄2). It is obvious that 

the efficiency  =
𝑊

∆𝑄1
= 1 −

(−∆𝑄2)

∆𝑄1
= 1 −

𝑇2

𝑇1
, leading to 

∆𝑄1

𝑇1
+

∆𝑄2

𝑇2
= 0 . Suppose now the 

number of the reservoirs contacted by the engine during a cycle is N, the ith reservoirs (𝑖 =

1,2 … 𝑁) at temperature 𝑇𝑖 gives 𝛿𝑄𝑖 to the engine, Kelvin obtained 

∑
𝛿𝑄𝑖

𝑇𝑖

𝑁

𝑖=1
= 0 

(2) 

But he stopped here in his quest of the second law without reaching the concept of entropy 

[23][24]. 

c) Clausius' perception 

The very discovery of what is called the second law of increasing entropy finally came to 

Clausius who, like Kelvin, reached also Eq.(2) [2]. But he saw something deeper in it. If the 

number of reservoirs contacted by the engine is very large, Eq.(2) takes the form of a closed 

line integral : ∮
𝛿𝑄

𝑇
= 0. This integral over a reversible cycle implies that the quantity 

𝛿𝑄 

𝑇
 is the 

variation of a state variable, he denoted by 𝑆, of the engine. During the contact with a reservoir 
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at T, the engine gets 𝛿𝑄 as well as a variation of S: 𝑑𝑆 =
𝛿𝑄

𝑇
. After a cyclic evolution, the engine 

comes back to its initial state, the total variation of 𝑆 is zero: ∮ 𝑑𝑆 = ∮
𝛿𝑄

𝑇
= 0.  

Clausius didn't stop here with 𝑑𝑆 =
𝛿𝑄

𝑇
 for reversible process. He had the genius idea to 

make the same analysis as above for a real irreversible engine, of efficiency ′, cycling between 

the same reservoir 1 and 2, absorbing ∆𝑄1 and ∆𝑄2, and doing a work 𝑊′ after a cycle. We 

have ′ =
𝑊′

∆𝑄1
= 1 −

(−∆𝑄2)

∆𝑄1
. Then he considered the first part of Carnot theorem ′ < , and 

Kelvin's limit  = 1 −
𝑇2

𝑇1
, to write 

1 +
∆𝑄2

∆𝑄1
 < 1 −

𝑇2

𝑇1
 

(3) 

which means 
∆𝑄1

𝑇1
+

∆𝑄2

𝑇2
< 0. For a large number of reservoirs on the cycle, he wrote ∮

𝛿𝑄

𝑇
< 0, 

which yields (see Appendix III): 

𝑑𝑆 ≥
𝛿𝑄

𝑇
 

(4) 

for both irreversible (>) and reversible (=) processes. Clausius coined the name entropy for this 

variable S because he wanted to find a Greek word that is parallel and analogous to the Greek 

word energy12 [25]. He certainly felt some intrinsic link between energy and entropy, himself 

having just at that time proposed the first law of thermodynamics of energy conservation [26]. 

3) If we backtrack the trilogy 

By summarizing the trilogy of discovery of the second law, we wanted also highlight the 

impressive and infallible mathematical tricks going from the impossibility of perpetual mobile 

machine all the way to the second law. These rather straightforward mathematical deductions 

show that, if perpetual machine is impossible, then there must be the Carnot theorem, and then 

the second law follows; you cannot get other thing different. And inversely, if the second law 

                                                 

12 I prefer going to the ancient languages for the names of important scientific quantities, so that they may mean 

the same thing in all living tongues. I propose, accordingly, to call the entropy of a body, after the Greek word 

'transformation.' I have designedly coined the word entropy to be similar to 'energy,' for these two quantities are 

so analogous in their physical significance, that an analogy of denomination seemed to me helpful [25]. 
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is broken, i.e., Eq.(4) breaks down, you can backtrack all the mathematical calculations of 

Clausius from Eq.(2) to Eq.(4), to prove Eq.(3) untrue. Eq.(3) stems from Eq.(1) and the first 

part of Carnot theorem. Its falseness implies either the falseness of Eq.(1) or that of the first 

part of Carnot theorem.  

Now suppose Eq.(1) is false, in view of the infallible mathematics of Kelvin using Figure 

A2 (Appendix II), the second part of Carnot theorem must be untrue. In other words, different 

Carnot engines using different working substances may have different efficiencies. According 

to the discussion in the section 3a), we will be able to construct a PMM1 using two Carnot 

engines of different efficiencies.  

If now we suppose Eq.(1) and the second part of the Carnot theorem are true but the first 

part of the theorem is false, so there may be engines more efficient than Carnot engine. Then 

we can use these more efficient engines, as shown in Figure A1 of Appendix I, to fabricate 

PMM1, which will give us infinite quantity of clean energy we need to preserve our pet planet.  

Up until now, we have only talked about how the PMM1. The reader might wonder what 

would happen if the perpetual mobile machine of second kind (PMM2) is involved. PMM2 is 

a machine transforming heat from a single heat reservoir into mechanical work with no other 

effects. Unlike PMM PMM2 does not violate the first law. But this machine is forbidden by the 

Kelvin-Planck expression of the second law [7][23] stipulating simply that this perpetual 

machine is impossible. We show in Appendix IV how it allows a machine to transfer heat from 

a cold reservoir 2 at 𝑇2  to a hot reservoir 1 at 𝑇1 (𝑇1 > 𝑇2) without side effects, leading to 𝑑𝑆 <

𝛿𝑄

𝑇
, or 𝑑𝑆 < 0 for an isolated system, which violates the Clausius's expression of the second law 

Eq.(4). In this case, we can then construct engines with an efficiency ′  larger than the 

efficiency of the Carnot engine , i.e., ′ >  = 1 −
𝑇2

𝑇1
. These engines, violating the first part 

of the Carnot theorem, can be of course used in Figure A1 of Appendix I to construct PMM1 

(see Appendix IV, Figures A4 and A5) violating energy conservation.  

To summarize, the violation of the second law (even by PMM2) necessarily entails the 

existence of PMM1 providing free energy. Well, PMM1 and free source of energy come into 

being! So much the better, granted! So what!  



   

11 

 

4) So what if the second law is violated? 

The most important implication of the violation of second law is not the existence of 

perpetual mobile machine (PMM) as a source of infinite energy. There is another much deeper 

meaning behind the PMM : energy becomes something you can create or annihilate as much as 

you please. It loses at once the attribute of a conservative fundamental quantity of motion, 

regardless of its form, thermal, mechanical, electromagnetic, gravitational, and so on. The first 

mathematical consequence is the collapse of the first law of thermodynamics 𝑑𝑈 = 𝛿𝑄 + 𝑑𝑊. 

Why? Because after a cycle of the PMM in the Figure A1 of appendix I for instance, 𝑑𝑈 =

𝛿𝑄 = 0, but 𝑑𝑊 ≠ 0; this is the work done by the perpetual engine without consuming heat. 

Needless to say, the whole theoretical edifice of the thermodynamics will collapse. 

This is not all. As well known, energy conservation is not only one of the cornerstone of 

thermodynamics, it is also a key pillar of the whole edifice of physical and chemical science, 

as well as a fundamental rule guaranteeing the stability of all natural systems. For example, our 

pet planet is in stable revolution around the sun because its total mechanical energy remains 

constant (conserved) when the pair earth-sun is a good isolated system, at least for a period 

sufficiently long for our intelligence to develop, fortunately. Now if the energy of the isolated 

earth-sun was no longer a constant and can arbitrarily change (maybe due to a PMM in the 

system modifying arbitrarily the energy of the earth without changing anything else), the earth 

would have fallen in the sun or flight to the border of Milky Way since long. Please make the 

same reasoning for nuclei, atoms, molecules and any energy conservative system in Nature; do 

you think that they can be there as stable components of our universe? Imagine also that you 

want to make a solid state synthesis; you put the prepared sample in the oven and increase the 

temperature to 1000 K. But one day you realize that the sample is freezing! Why? Because the 

heat is flowing from the colder sample into the hotter oven, a direct consequence of the violation 

of the second law and of the energy conservation! Think also that most, if not all, fundamental 

equations in physics and chemistry are based on the energy and mass conservation. Energy and 

mass are connected by Einstein's equivalence formula13; so if energy is not conserved, the mass 

neither. We would see the disappearance of Newtonian equation, Maxwell equations, chemical 

                                                 

13 In special relativity theory, we have the famous formula 𝐸 = 𝑚𝑐2, where 𝐸 is the energy of a matter, 𝑚 its mass, 

and 𝑐 the velocity of light in vacuum. 
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reaction equations, stoichiometry formula, Maxwell's equations, the laws of diffusion of matters 

and heat, Einstein's equation of general relativity, and, finally, Schrödinger equation! After 

these losses, what does remain in physics and chemistry?  

Indeed, when the violation of the second law is regarded as isolated phenomenon, it looks 

like something plausible and interesting even exciting to investigate. However, when it is 

coupled to the violation of the law of energy conservation, we quickly understand to what extent 

the second law of thermodynamics is an inviolable iron rule. Can we imagine a violation of 

energy and mass conservation, even probabilistic with infinitesimal likelihood, as the 

fluctuation theorem stated for second law violation [11][17]? Can we imagine that energy and 

mass are no more conservative quantity? Simply we cannot! That would be a fatal menace for 

the whole edifice of physics and chemistry; the whole nature would collapse into nil even if the 

violation of the second law and of energy-mass conservation took place during only a fraction 

of a second. Why? Because these rare events would hint that energy is no longer a fundamental 

conservative quantity as a pillar of nature, menacing the stability of the whole universe actually 

guaranteed by the law of energy and mass conservation. If one want to prove second law 

violated, he must first explain how energy and mass can become non-conservative quantities at 

the same time, in both classical and quantum systems! 

Now we understand better the comment of Edington about the violation of the second law 

(footnote p.2) [5]. 

5)  Concluding remarks 

Aftert the above analysis of the relationship between entropy and energy hinted in the 

triology of the discovery of the second law starting from Carnot theorem, we must admit that 

the second law is a fundamental law of nature, at the same fundamental level as the laws of 

energy and mass conservation. Therefore, the second law is connected to all other fundamental 

laws of physics and chemistry based on the conservation laws. Put it differently, entropy 

increase is not an isolated phenomenon on its own in nature, and is a necessary consequence of 

energy-mass conservation. The violation of the second law would necessarily lead to fatal 

failure of the conservation laws, implying the collapse of the whole physics and chemistry 

science. In view of the incontestable universal validity of energy-mass conservation, any claim 

of violation of the second law, be it classical or quantum, is necessarily questionable. We would 

say that if a theory, well confirmed in its own domain, goes into conflict with the second law, 
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the only possible explanation is either the theory is fallaciously applied to thermodynamics or 

the "entropy" violated is not the entropy of the second law. 

The suggested violation of the second law is tightly related to a remarkable discordance in 

statistical mechanics between two concepts: entropy as a measure of the dynamic uncertainty 

in the motion of the particles, and the motion of these particles presumably obeying the 

deterministic laws of Newtonian mechanics. There is a discordance because the motion within 

Newtonian mechanics does not contain any uncertainty, being deterministic and perfectly 

predictable either to the past or to the future [27]. The twins of Maxwell’s and Laplace’s demons 

mentioned above [7]-[9] are just a product of this absence of dynamic uncertainty. Any 

supposed uncertainty in this framework not only carries a subjective character (dependence on 

the observer, some of them seeing the randomness, some others not, like Laplace's demon 

seeing only the motions with zero uncertainty and entropy), but also enters into direct conflict 

with some properties of deterministic motion. These properties include the Liouville's theorem 

[18], the eternal return of the Poincare's recurrence theorem [19] and the time symmetry dictated 

by the fundamental principle of least action [27]. On the one hand, the Liouville's theorem, as 

a consequence of the principle of least action, states that the density of states 𝜌 in the phase 

space of a systems is a constant of motion, i.e., 
𝑑𝜌

𝑑𝑡
= 0. If the motion becomes random, the 

probability distribution of states of the system is proportional to 𝜌. So that any function of 𝜌, 

like the Boltzmann H-function 𝐻(𝜌)  and entropy 𝑆(𝜌)  [3], must be also constant in time 

because 
𝑑𝐻(𝜌)

𝑑𝑡
= 𝐻′(𝜌)

𝑑𝜌

𝑑𝑡
= 0. This is at odds with the second law of increasing entropy. On 

the other hand, the Poincare's recurrence theorem, established on the basis of the Liouville's 

theorem, states that, during its movement in phase space, a real system always returns arbitrarily 

close to its initial states, implying that any function of states, including entropy, cannot only 

increase. If it increases during some periods, it must decrease in other periods in order to recover 

its initial value when the system returns to its initial states. This is again at variance with the 

second law stating that entropy never decreases. 

As the above theorems being irrefutable in Newtonian mechanics, a possible pathway to 

escape from these constraints is the probabilistic interpretation of the second law stating that, 

although entropy can both increase and decrease, the second law is always observed because 

the entropy has an overwhelmingly larger probability to increase than to decrease [3]. This 

implies that the decrease of entropy, or the violation of the second law, has nevertheless an 
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infinitesimal probability to occur. Indeed, at first glance, a possible violation of the second law, 

not that often, seems acceptable. At worst, Carnot engine is dethroned from the top of  efficiency 

in some rare events where PMM happens. However, when considering the unbreakable 

connection between the second law and other fundamental laws of physics, especially the 

parallel violation of the law of energy-mass conservation, we should be more vigilant. Even a 

probabilistic violation of energy conservation implies that energy and mass lose the attribute of 

fundamental conservative quantity, menacing the validity of all the laws of physics and 

chemistry, as well as the stability and even the existence of the universe, as discussed above.  

This deadlock of probabilistic interpretation of the second law is a telltale sign of the 

incompatibility between classical mechanics laws and thermodynamics laws. This is a 

nontrivial conflict between two families of physics laws, both being inviolable truth and well 

verified by empirical facts. We have to find a reconciliation between them allowing their union 

in a big family. A possible solution can be perceived in an essential difference between the 

classical mechanics motion and the thermodynamic motion. All motions in classical mechanics 

are regular and deterministic, characterized by the unicity of path with given initial condition. 

Leaving a given initial state, a motion can take place only on a single path dictated by the least 

action principle [18]. This motion is predictable to both the past and the future with certainty 

on the unique path determined by the equation of motion (Newtonian or relativistic). On the 

contrary, the motions in thermodynamic systems are all random, or indeterministic, 

characterized by multiplicity of paths from given initial state. That is, leaving a given state, 

thermodynamic motion can take place on different paths to reach either a single end state or 

many different end states. In other words, infinitely many paths can take place from a given 

state or between two given states. We can mention Brownian motion as a example. This 

indeterministic motion is completely unpredictable or only predictable with more or less 

uncertainty depending on the probabilities of the different paths. In this regime, the fundamental 

principle of least action and the equations of motion, working only for deterministic motion, 

must be adapted in such a way to include many paths and their probability to occur. The new 

formalism must also allow recovering the original principles and equations of motion of 

classical mechanics whenever the randomness cancels and the multiple paths all collapse onto 

a single path of probability one, the least action path. 

A formulation of this kind of probabilistic mechanics has been proposed in previous works 

[28]-[31] for the special case of random motion of quasi-Hamiltonian systems, i.e., mechanical 
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systems undergoing random motion but statistically conserving their energy. A good example 

of this kind of Hamiltonian systems is the ideal gas. When a gas is in expansion, it moves 

randomly from one equilibrium state to another, in keeping its energy constant with 

fluctuations, and following different paths, each having a given probability to happen between 

the initial and final states. This path probability has been investigated by analytical analysis 

[32] and numerical experiments simulating random motions [33][34]. The reader can find a 

summary of this probabilistic mechanics in [31]. We would like to just mention that, in this 

frame, Liouville's theorem, originally formulated for the unique path of least action [18], has 

been modified for multiple paths and reads 
𝑑𝜌(𝑡)

𝑑𝑡
= 𝜌(𝑡) 𝑤(𝑡), where 𝑤(𝑡) is proportional to 

the work of random forces around a point in the system. The solution of this differential 

equation is 𝜌(𝑡) = 𝜌0exp [− ∫ 𝑤(𝑡)
𝑡

0
𝑑𝑡] . This modified Liouville's theorem invalidates the 

proof of Poincare's theorem of recurrence, thus opens the way for a non-probabilistic 

interpretation of the H-theorem and the second law of thermodynamics [22][31]. Whenever the 

random force is absent, or the system does not evolve any longer in an equilibrium state, the 

work 𝑤(𝑡) = 0, Liouville’s theorem 
𝑑𝜌(𝑡)

𝑑𝑡
= 0 is recovered.  

This multiple path approach has been since long investigated from the viewpoint of 

informational entropy in the framework of Jaynes principle of maximum caliber (path entropy) 

[35]. Successful applications of this principle to many non-equilibrium phenomena in physics, 

chemistry, biology and complexity science have been summarized in a recent review [36], with 

a proof of monotonic time increase of informational entropy as a justification of the second law 

of thermodynamics [37]. 

We would like to close this paper by mentioning a recent work, in which we provided a 

mathematical proof of time irreversibility within classical mechanics in a general and model-

independent way, by considering the multiplicity of paths of random motion [27]. For the first 

time, the concept of time, defined as an attribute of motion, was shown to have an arrow 

pointing in the direction of increasing dynamic uncertainty, just as Edington asserted a hundred 

years ago: Without any mystic appeal to consciousness it is possible to find a direction of time … 

Let us draw an arrow arbitrarily. If as we follow the arrow we find more and more of the 

random element in the state of the world, then the arrow is pointed towards the future; if the 

random element decreases, the arrow points towards the past. That is the only distinction known 
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to physics. This follows at once if our fundamental contention is admitted that the introduction 

of randomness is the only thing which cannot be undone (see [5] p.35).  

The same statement is true for the arrow of entropy as well.  
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Appendix 
 

This is a summary of the trilogy of the discovery of the second law of thermodynamics over 

thirty years starting from 1824. 

I) Carnot theorem from a thought experiment  

Figure A1 illustrates a combination of an irreversible real engine and a reversible Carnot 

engine, both working between a hot reservoirs at temperature 𝑡1  and a cold reservoir at 

temperature 𝑡2. The irreversible engine produces a work 𝑊′ = 𝑄1 − 𝑄2 in absorbing a heat 𝑄1 

from the hot reservoir and rejecting a heat 𝑄2 to the cold reservoir. Its efficiency is given by 

′ =
𝑊′

𝑄1
. The reversible engine is working in the inverse direction using a work 𝑊 to absorb 

the heat 𝑄2 from the cold reservoir and give a heat 𝑄1 to the hot reservoir. Its efficiency is given 

by  =
𝑊

𝑄1
. After a cycle, the two reservoirs recover their initial states respectively because they 

didn't obtain nor lose heat.  

 

Figure A1, Illustration of a PMM1 (red line) composed of a real irreversible engine having 

efficiency ′ =
𝑊′

𝑄1
  and a Carnot engine having the efficiency  =

𝑊

𝑄1
= 1 −

𝑄2

𝑄1
. If ′ > , the 

PMM1 is able to produce the work ∆𝑊 = 𝑊′ − 𝑊 after each cycle without consuming heat, 

so that the energy ∆𝑊 is created from nothing. 
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Now Carnot supposed that the irreversible engine has a larger efficiency than the reversible 

engine, ′ > , or 
𝑊′

𝑄1
>

𝑊

𝑄1
, leading to 𝑊′ > 𝑊. In this case, the reversible engine can use a part 

of 𝑊′ to produce the work 𝑊, so that after a cycle, the only thing changed is the extra work 

∆𝑊 = 𝑊′ − 𝑊 > 0 produced by the ensemble of two engines (red line in Figure A1). This 

means that the ensemble of two engines is a perpetual mobile machine of first kind (PMM1) 

producing the work ∆𝑊  from nothing, which Carnot thought impossible according to a 

common belief that mechanical work and motion cannot be created from nothing (a rudimental 

idea of energy conservation). Conclusion: ′ can never be larger than ; which is the first part 

of Carnot theorem ′ ≤  [1]. 

From the same reasoning, we can prove that all reversible engines must have the same 

efficiency regardless of their different working substances. This is because if a reversible engine 

was more efficient than another one, we could combine them in the same way as in Figure A1 

with the more efficient Carnot engine replacing the irreversible one; this would make a PMM1 

(absurd). Conclusion: all Carnot engines must have the same efficiency depending only on the 

temperatures of the reservoirs 𝑡1 and 𝑡2, which is the second part of Carnot theorem [1]. 

II) Kelvin's efficiency 

It is quite logical that the efficiency  of Carnot engine depends only on the temperature of 

the reservoirs. But what is the form of the function (𝑡1, 𝑡2)? Kelvin is concerned with this 

question, and made a calculation [23] which can be illustrated by the connection of two Carnot 

engines as shown in Figure A2. The first engine works between two reservoirs at 𝑡1 and 𝑡2 

(𝑡1 >  𝑡2 ), absorbing 𝑄1  from 𝑡1 , rejecting 𝑄2  to 𝑡2  and doing a work 𝑊1 = 𝑄1 − 𝑄2 ; the 

efficiency is 
1

= 1 −
𝑄2

𝑄1
. The second engine works between the above reservoir at 𝑡2 and a 

third reservoir at 𝑡3 (𝑡2 > 𝑡3), absorbing 𝑄2 from 𝑡2, rejecting 𝑄3 to 𝑡3, and doing a work 𝑊2 =

𝑄2 − 𝑄3; its efficiency is 
2

= 1 −
𝑄3

𝑄2
. On the other hand, these two engines connected in series 

can be considered as a third engine, working between the hot reservoir at 𝑡1  and the cold 

reservoir at 𝑡3  (𝑡2 > 𝑡3), absorbing 𝑄1  from 𝑡1 , rejecting 𝑄3  to 𝑡3 , and doing a work 𝑊3 =

𝑊1 + 𝑊2 = 𝑄1 − 𝑄3; its efficiency is 
3

=
𝑊3

𝑄1
= 1 −

𝑄3

𝑄1
. 
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Figure A2: Illustration of Kelvin's idea to connect two Carnot engines in series to compose a 

third Carnot engine (red line) working between 𝑡1 and 𝑡3. 

 

The magic trick is the following: from the three efficiencies 1 − 
1

=
𝑄2

𝑄1
, 1 − 

2
=

𝑄3

𝑄2
  and 

1 − 
3

=
𝑄3

𝑄1
, it is straightforward to write (1 − 

1
)(1 − 

2
) = 1 − 

3
. As all Carnot engines 

have the same efficiency depending only on the temperature of the reservoirs, we can write 1 −


1

= 𝑔(𝑡1, 𝑡2) , 1 − 
2

= 𝑔(𝑡2, 𝑡3)  and 1 − 
3

= 𝑔(𝑡1, 𝑡3) , leading to 𝑔(𝑡1, 𝑡2)𝑔(𝑡2, 𝑡3) =

𝑔(𝑡1, 𝑡3), where 𝑔(∙) is any continuous function.  The only way to reach this last equation is to 

let 𝑔(𝑡1, 𝑡2) =
𝑓(𝑡2)

𝑓(𝑡1)
, 𝑔(𝑡2, 𝑡3) =

𝑓(𝑡3)

𝑓(𝑡2)
 and 𝑔(𝑡1, 𝑡3) =

𝑓(𝑡3)

𝑓(𝑡1)
 with certain function 𝑓(𝑡). Now let 

us simply take 𝑓(𝑡) as a temperature scale, say, (𝑡) = 𝑇 , which turns out to be the absolute 

temperature. Kelvin finally got 1 − 
1

=
𝑇2

𝑇1
, 1 − 

2
=

𝑇3

𝑇2
 et 1 − 

3
=

𝑇3

𝑇1
 , or in general, for a 

Carnot engine working between 𝑇1 and 𝑇2 (𝑇1 > 𝑇2):  = 𝟏 −
𝑻𝟐

𝑻𝟏
 [23]. 
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III) Clausius' discovery 

Clausius' work [2] starts with a Carnot engine working between 𝑇1 and 𝑇2. He writes  =

1 −
𝑄2

𝑄1
= 1 −

𝑇2

𝑇1
 , or 

𝑄2

𝑄1
=

𝑇2

𝑇1
, and 0 =

𝑄1

𝑇1
−

𝑄2

𝑇2
. With a change of notation 𝛿𝑄1 = 𝑄1, and 𝛿𝑄2 =

−𝑄2 , he obtained 
𝛿𝑄1

𝑇1
+

𝛿𝑄2

𝑇2
= 0 . Notice that 𝛿𝑄  is a heat absorbed by the engine from a 

reservoir (see Figure A3). Obviously, if the engine is in contact with N reservoirs during a 

cycle, and absorbs 𝛿𝑄𝑖 from a reservoir at 𝑇𝑖, we necessarily get ∑
𝛿𝑄𝑖

𝑇𝑖

𝑁
𝑖=1 = 0 (Figure A3). 

 

 

Figure A3: Examples of the cycle of Carnot engine in the 𝑇 − 𝑆 diagram. The horizontal 

segments represent the contact of the engine with the reservoirs to absorb heat. The 

vertical segments represent adiabatic compression (left sides) and expansion (right sides). 

Left : a cycle starting from and ending at an initial state A after two contacts with 𝑇1 and 

𝑇2, leading to 
𝛿𝑄1

𝑇1
+

𝛿𝑄2

𝑇2
= 0. Right : a cycle starting from and ending at the initial state A 

after the contacts with N reservoirs at different temperature 𝑇𝑖, each giving 𝛿𝑄𝑖 to the 

engine, leading to  ∑
𝛿𝑄𝑖

𝑇𝑖

𝑁
𝑖=1 = 0. 

Clausius understood at once that 
𝛿𝑄

𝑇
 is the variation of a variable of state, he denoted by S 

(𝛿𝑆 =
𝛿𝑄

𝑇
) and coined the name entropy, because when the engine comes back to its initial state 

after a cycle and a series of variations 
𝛿𝑄𝑖

𝑇𝑖
, this variable also comes back to its initial value with 

zero variation ∑
𝛿𝑄𝑖

𝑇𝑖

𝑁
𝑖=1 = ∑ 𝛿𝑆𝑖

𝑁
𝑖=1 = 0. If N is vary large, we can write a closed line integral  

∮ 𝑑𝑆 = 0 over a cycle. 
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Clausius made the above analysis with Carnot engine. What does happen with a real 

irreversible engine working between the same reservoirs with ′ = 1 −
𝑄2

𝑄1
? Considering ′ <

 and  = 1 −
𝑇2

𝑇1
 , we get 1 −

𝑄2

𝑄1
≤ 1 −

𝑇2

𝑇1
 or 

𝑄1

𝑇1
−

𝑄2

𝑇2
< 0. The same formal change as above 

yields 
𝛿𝑄1

𝑇1
+

𝛿𝑄2

𝑇2
< 0. With N reservoirs during a cycle, we have ∑

𝛿𝑄𝑖

𝑇𝑖

𝑁
𝑖=1 < 0 or ∮

𝛿𝑄

𝑇
< 0. 

Suppose that the variation of entropy of the engine at each equilibrium contact with a reservoir 

is 𝛿𝑆𝑖 , we have, after a cycle, ∑ 𝛿𝑆𝑖
𝑁
𝑖=1 = 0, or ∮ 𝑑𝑆 = 0 for large N. Compare ∮ 𝑑𝑆 = 0 to 

∮
𝛿𝑄

𝑇
< 0, it is straightforward to write 𝑑𝑆 >

𝛿𝑄

𝑇
 for irreversible engine, or 𝒅𝑺 ≥

𝜹𝑸

𝑻
 for any 

engine, reversible or irreversible. This inequality is the mathematical expression of the second 

law of thermodynamics. For an isolated system without exchange of heat with the exterior, 

𝛿𝑄 = 0, and 𝑑𝑆 ≥ 0. This is why the second law is often referred to as the law of increasing 

entropy. Notice that the entropy of an open system exchanging heat with environment has 𝑑𝑆 ≥

𝛿𝑄

𝑇
 and can decrease (𝑑𝑆 < 0) if the system loses heat 𝛿𝑄 < 0 (like our body); this decrease 

does not violate the second law. Again, the violation of the second law implies the decreases of 

entropy in an isolated system. 

IV) Perpetual mobile machine of second kind 

A perpetual mobile machine of second kind (PMM2) is capable of extracting a heat 𝑄3 from 

a cold reservoir 2 at 𝑇2 and transform it entirely into a mechanical work 𝑊3 = 𝑄3. This cycle 

of PMM2 does not violate the first law of energy conservation. 

However, the work 𝑊3 can be used by a Carnot engine in an inverse cycle, as shown in 

Figure A4, to extract a heat 𝑄2 from the colder reservoir 2 and to transfer a heat 𝑄1 to a hotter 

reservoir 1 at 𝑇1, with 𝑄1 = 𝑄2 + 𝑊3 = 𝑄2 + 𝑄3. During this cycle, the reservoir 2 loses an 

entropy ∆𝑆2 = −
𝑄2+𝑄3

𝑇2
, and the reservoir 1 receives an entropy ∆𝑆1 =

𝑄1

𝑇1
=

𝑄2+𝑄3

𝑇1
, giving a total 

entropy change ∆𝑆 = ∆𝑆1 + ∆𝑆2 = 𝑄1 (
1

𝑇1
−

1

𝑇2
) < 0, which violates the Clausius expression of 

the second law Eq.(4) ∆𝑆 ≥ 0  for the isolated system composed of the two reservoirs and the 

engines in Figure A4.  
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Figure A4: Illustration of how a perpetual machine of second kind (PMM2) allows a 

flow of heat 𝑄1 = 𝑄2 + 𝑄3 from a colder body to a hotter body without any other 

effects upon the environment. 

 

 

In order to show how this violation of the second law by PMM2 enables PMM1, we 

introduce a second Carnot engine in Figure A4 (see Figure A5), which during a cycle absorbs 

𝑄1
′  from the reservoir 1, does a work 𝑊  to the environment, and rejects a heat 𝑄2

′  to the 

reservoir 2. Its efficiency is  = 1 −
𝑇2

𝑇1
= 1 −

𝑄2
′

𝑄1
′, leading to 

𝑄1
′

𝑇1
=

𝑄2
′

𝑇2
. During the same cycle, 

the system composed of the two engines in Figure A4 transfers a heat 𝑄1 from the reservoir 2 

to the reservoir 1. The ensemble of the three engines in Figure A5 (surrounded by red line) is 

equivalent to an global engine which in one cycle absorbs a heat 𝑄1
′ − 𝑄1 from the reservoir 1, 

does a work W, and rejects a heat 𝑄2
′ − 𝑄1 to the reservoir 2, leading to an efficiency ′ = 1 −

𝑄2
′ −𝑄1

𝑄1
′ −𝑄1

. It is easy to prove that 
𝑄2

′ −𝑄1

𝑄1
′ −𝑄1

<
𝑄2

′

𝑄1
′, making ′ >  for any 𝑄1 > 0. It turns out the global 

engine in Figure A5 is more efficient than the Carnot engine (violating the first part of Carnot 

theorem). We can of course use it to construct a PMM1 with the same tricks of Figure A1. 

In similar way, we can also create a PMM1 using a PPM2 associated with an irreversible 

engine replacing the second Carnot engine in Figure A5. In this case, the entropy increase 
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created with the system of two engines of Figure A4, ∆𝑆 = 𝑄1 (
1

𝑇1
−

1

𝑇2
), must be larger than 

𝑄2
′

𝑇2
−

𝑄1
′

𝑇1
, i.e., 𝑄1 >

(
𝑄2

′

𝑇2
−

𝑄1
′

𝑇1
)

(
1

𝑇1
−

1

𝑇2
)
. 

 

 
 

Figure A5: Illustration of an engine (red line) having an efficiency ′ = 1 −
𝑄2

′ −𝑄1

𝑄1
′ −𝑄1

 

larger than the efficiency of the Carnot engine  = 1 −
𝑇2

𝑇1
= 1 −

𝑄2
′

𝑄1
′. 

 

 

 


