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Abstract 

The discovery of the second law of thermodynamics is shortly revisited, with a stress on the 

unbreakable connection between the second law and the law of energy conservation. The aim 

is to remind that the second law is an inviolable iron rule. Any presumable violation of this law, 

even a probabilistic one hinted in the probabilistic interpretation of the second law, inevitably 

violates the law of energy and mass conservation, and undermines all fundamental laws of 

physics and chemistry. An alternative approach to interpret the second law, taking into account 

the multiplicity of paths of random motion in classical mechanics, is discussed.  
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1) Introduction 

The second law of thermodynamics (second law for short) stipulates that entropy 𝑆 always 

increases in the evolution of an isolated system and remains constant when the system reaches 

thermodynamic equilibrium. Entropy of a system is defined by its small variation 𝛿𝑆 = 𝛿𝑄/𝑇 

caused by a small quantity of heat 𝛿𝑄 absorbed by the system from its surroundings, where 𝑇 

is the absolute temperature of the system evolving in an ideal and extremely slow reversible 

process [1][2]. For any other process out of equilibrium, also called irreversible process, 𝛿𝑆 >
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𝛿𝑄/𝑇; this is the mathematical expression of the second law. When the system is isolated with 

𝛿𝑄 = 0, the second law becomes 𝛿𝑆 > 0 as stipulated above1. According to a widely accepted 

interpretation, entropy represents a measure of the uncertainty or disorder in the movement of 

the molecules composing the systems. This idea is reflected in Boltzmann's famous formula 

𝑆 = 𝑙𝑛𝑊  where 𝑊  is the total number of microstates (arrangements of the position and 

momentum of the molecules) in the system.  Larger is 𝑊, more the molecules are moving in 

disorder. The second law means that the system always evolves towards the states having as 

many as possible microstates, or towards more and more disorder. A good example is the 

expansion of gas in an isolated recipient from a part of the volume to the empty part, because 

the number of microstates in the whole volume is larger than in a part of it; the entropy reaches 

its maximum when the gas uniformly fills the volume in an equilibrium state. 

Since its discovery and especially its interpretation given by Boltzmann within statistical 

mechanics [3][4], the second law has never ceased to raise controversies until today. The most 

remarkable question is whether the second law is an inviolable fundamental law of nature, as 

for example Edington very famously insisted2 [5], or whether it is just a statistical, or even 

anthropocentric law subject to possible violation, as proposed by Boltzmann and Maxwell, the 

two most famous pioneers and protagonists of statistical interpretation [3][4]. The twin demons 

                                                 

1 It is worth mentioning the entropy is only defined for equilibrium states. It has been extended to non-equilibrium 

systems changing sufficiently slowly so as to keep local equilibrium and to apply equilibrium thermodynamics 

using entropy in each of their sufficiently small partitions [6].  

2 The law that entropy always increases holds, I think, the supreme position among the laws of Nature. If someone 

points out to you that your pet theory of the universe is in disagreement with Maxwell's equations - then so much 

the worse for Maxwell's equations. If it is found to be contradicted by observation - well, these experimentalists 

do bungle things sometimes. But if your theory is found to be against the Second Law of Thermodynamics I can give you 

no hope; there is nothing for it to collapse in deepest humiliation. 
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of Maxwell3 [7] and of Laplace4 [8] remain to date the unvanquished devils haunting the second 

law, endowed with sharpened facilities, by classical mechanics, to observe and follow the 

motion of molecules, and to make entropy decrease and even disappear completely [9]. The 

statistical interpretation of the second law was proposed in this unfavorable context [3][4]; it 

asserts that the second law (entropy increase) has an overwhelmingly large probability; 

nevertheless, the probability of entropy decrease is not zero, albeit very small. Obviously, 

Boltzmann was seeking a reconciliation with the fundamental laws of classical mechanics, to 

the detriment of the fundamental attribute of the second law. 

We often see works claiming observed proofs of violation of the second law [10]. There is 

even a whole theory under development, based on the fluctuation theorem [11], allowing 

systematic violation of the second law: for every process in isolated systems where entropy 

increases by certain amount 𝐴 with a given probability, there is a nonzero probability of the 

inverse process yielding the same amount of entropy decrease −𝐴. In this frame, the violation 

of the second law, despite its small probability, becomes a ubiquitous phenomenon in every 

non-equilibrium thermodynamic process.  

The discussions of the validity of second law, since Boltzmann, have been based on the 

classical mechanics laws, all presumably being valid for the molecules composing 

thermodynamic systems [3]. As well known, the classical mechanics laws have all been well 

verified in their own domains for large enough (macroscopic or mesoscopic) systems; its 

                                                 

3 … if we conceive of a being whose faculties are so sharpened that he can follow every molecule in its course, 

such a being, whose attributes are as essentially finite as our own, would be able to do what is impossible to us. 

For we have seen that molecules in a vessel full of air at uniform temperature are moving with velocities by no 

means uniform, though the mean velocity of any great number of them, arbitrarily selected, is almost exactly 

uniform. Now let us suppose that such a vessel is divided into two portions, A and B, by a division in which there 

is a small hole, and that a being, who can see the individual molecules, opens and closes this hole, so as to allow 

only the swifter molecules to pass from A to B, and only the slower molecules to pass from B to A. He will thus, 

without expenditure of work, raise the temperature of B and lower that of A, in contradiction to the second law of 

thermodynamics [7].  

4 Une intelligence qui, à un instant donné, connaîtrait toutes les forces dont la nature est animée et la situation 

respective des êtres qui la composent, si d’ailleurs elle était suffisamment vaste pour soumettre ces données à 

l’analyse, embrasserait dans la même formule les mouvements des plus grands corps de l’univers et ceux du plus 

léger atome ; rien ne serait incertain pour elle, et l’avenir, comme le passé, serait présent à ses yeux [8]. 
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extension to microscopic particles may be fraught with difficulties. Quantum mechanics is 

better qualified for this molecular and atomic scale. However, the optimism of interpreting the 

second law within quantum mechanics [9] has its limits because many systems obeying second 

law may be composed of large enough corpuscles obeying classical mechanics. It is of first 

necessity to address the second law within classical mechanics.  

The trouble of the classical mechanics approach to the second law is the conflict between 

the time symmetric or reversible character of mechanics laws and the time asymmetric or 

irreversible character of second law. This is the key point of the debate opposing Boltzmann to 

Loschmidt5. Although this debate remains open today, the Boltzmann's statistical interpretation 

of second law is one of the widely accepted, probably the surest and simplest way, to make 

peace between mechanics laws and the second law. The consensus is the following: the 

mechanics laws are fundamentally inviolable iron rules at any scale; while the second law is 

only a statistical behavior, sometimes verified, sometimes violated. Put it differently, when an 

isolated thermodynamic system obeys the second law, it is perfectly normal because it is a 

consequence of the fundamental laws of mechanics; when the system violates the second law, 

it is completely normal as well because it is also a consequence of the same fundamental laws. 

In any case, the classical mechanics laws are fundamental, inviolable, and absolute, no matter 

what is the behavior of entropy. Moreover, all suggestions of violation give you the impression 

that the second law is an isolated phenomenon independent of all other physical and chemical 

phenomena, so that its violation does not have any impact on other laws of physics and 

chemistry, as if nothing important had happened.  

In this paper, we address this debate under a different angle to show that this isolation of 

the second law is illusory. The second law actually has a vital connection to other fundamental 

laws, especially to the law of conservation of energy and mass. For this purpose, we propose to 

revisit succinctly the history of the discovery of the second law. In the course of those exploits 

from Carnot [1], Kelvin[17] to Clausius [2], we cannot but notice that the second law and the 

energy law are mutually conditioned, like conjoined twins. Energy conservation is a necessary 

condition for the second law (no energy conservation, no second law). Inversely, if the second 

law is broken, the law of energy conservation collapses at once.  

                                                 

5 https://en.wikipedia.org/wiki/Loschmidt%27s_paradox  

https://en.wikipedia.org/wiki/Loschmidt%27s_paradox
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After this demonstration, we discuss a new approach to the reconciliation between 

mechanics laws and second law. This approach is different from statistical mechanics in that it 

takes into account a key characteristic of random motion: the multiplicity of paths; this is the 

fact that a random motion can take different paths from a given initial state, contrary to classical 

mechanics motion taking only a single unique path from a given state. In this framework, the 

obstacles to the entropy increase of the second law, such as Liouville's theorem [12], Poincaré's 

recurrence theorem [13], and time symmetry [15], are removed once and for all [16][21]. 

Detailed discussion is given in the concluding remarks. 

2) Discovery of entropy 

We see sometimes in textbooks that the second law is an empirical finding6. It is not true. 

The discovery of the second law is actually a result of pure thought experiments and 

mathematical calculations. 

The history of entropy has something to do with a decree of the Academy of Science of 

Paris in 1775 deciding not to examine any proposition of perpetual mobile machines7 [14]. 

Since then, the impossibility of perpetual mobile began to be taken for granted on the basis of 

a common belief that energy and motion cannot be created from nothing [1]; the law of energy 

conservation was not yet known to the scientific community at that time. Today we have the 

mathematical proof that this machine cannot exist because it violates the law of conservation 

of energy. This decree is the starting point of the remarkable work of Carnot in the study of the 

efficiency of thermal engine [1], leading to the second law many years later. We can at once 

guess that there must have some vital connection between the second law and its starting 

hypothesis. In order to highlight this connection and the mathematical rigor in it, we will retrace 

the impressive trilogy from the impossibility of perpetual mobile all the way to the discovery 

of the second law. The reader will see a summary of the key elements of the story below. The 

details of the mathematics are described in Appendix. 

                                                 

6 https://en.wikipedia.org/wiki/Second_law_of_thermodynamics  

7 A dream of many engineers of that time is to construct what is called today the perpetual mobile of first kind, a 

machine that can produce unlimited amount of work without consuming heat or other forms of energy. 

https://en.wikipedia.org/wiki/Second_law_of_thermodynamics
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a) From perpetual mobile to Carnot theorem 

Carnot was concerned with heat engine and its efficiency. In 1824, he published the 

extraordinary idea of a reversible heat engine8, now called Carnot engine. This ideal engine can 

work in a reversible cycle between two reservoirs of heat, one at higher temperature 𝑡1 and the 

other at lower temperature 𝑡2. The reversible cycle means that the engine can work in a forward 

cycle, extract a heat 𝑄1 from 𝑡1, reject a heat 𝑄2 (<𝑄1) to 𝑡2 and produce a mechanical work 

𝑊 = 𝑄1 − 𝑄2; it can also backtrack the same cycle inversely, extract the heat 𝑄2  from 𝑡2 , 

consume the work W, and reject the heat 𝑄1 to 𝑡1. Carnot engine works in both directions with 

the same efficiency defined by  =
𝑊

𝑄1
=

𝑄1−𝑄2

𝑄1
= 1 −

𝑄2

𝑄1
. The capacity of this reversible engine 

is extremely nontrivial because such a machine cannot exist. It is impossible for a real machine 

to perform such reversible operation due to friction or other form of energy loss. So all real 

engines are irreversible machines. With the help of this his magic machine, Carnot discovered 

the efficiency limit for all possible engines; he described this discovery in the first part of his 

theorem, asserting that9: 

All irreversible heat engines between the two reservoirs are less efficient than the reversible 

engine working between the same reservoirs. 

Carnot proved this theorem by reductio ad absurdum based on the impossibility of perpetual 

mobile10. The details of his proof are illustrated in Appendix i. To summarize, this theorem is 

true if and only if the perpetual mobile does not exist. In other words, if an irreversible engine 

working between the same reservoirs is more efficient than the Carnot engine, we can then use 

this irreversible engine to construct a perpetual mobile engine (Figure A1 of Appendix i) to 

produce energy with no need of energy source; this engine would solve our big worry about 

renewable energy source and environment11. 

We will see below that the meaning of the existence of this perpetual mobile is much deeper 

than giving a solution to our energy concern. This first part of Carnot theorem is crucial for the 

                                                 

8 Ref [1], pp17-20 

9 Le maximum de puissance motrice résultant de l'emploi de la vapeur est aussi le maximum de puissance 

motrice réalisable par quelque moyen que ce soit. Ref [1], p22 
10 Ref [1], pp21-22 

11 Ref [1], p22 
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discovery of the second law. But this discovery would be impossible without the second part of 

Carnot theorem.  

The second part of Carnot theorem is somewhat implicit in the first part. Since the Carnot 

engine is the most efficient of all possible engines, all Carnot engines, each working with a 

different substance (air, steam, etc.), must be equally efficient. If two Carnot engines were not 

equally efficient, we would be able to replace the first irreversible engine in the Carnot's proof 

(Appendix i) by this more efficient Carnot engine, in order to make a perpetual mobile. If all 

Carnot engines have the same efficiency regardless of their working substances, then this 

efficiency, say, , can only depend on the temperatures of the reservoirs 𝑡1 and 𝑡2. The second 

part of the theorem states:  

All Carnot engines have the same efficiency regardless of their working substances; this 

efficiency only depends on the temperatures of the reservoirs: (𝑡1, 𝑡2). 

For Carnot, the only interest of his magic engine is to specify the limit of the efficiency of 

all possible heat engines. A practical question is how to calculate this limit (𝑡1, 𝑡2) when the 

temperatures of reservoirs are given? Physicists had to wait about thirty year to see the answer 

given by Kelvin [17]. 

b) Kelvin's efficiency of Carnot engine 

In 1854, Kelvin found the expression of (𝑡1, 𝑡2) by considering the second part of the 

Carnot theorem and using a new scale of temperature called absolute temperature denoted by 

𝑇 [17]. The expression is  

 = 1 −
𝑇2

𝑇1
 

(1) 

for a Carnot engine working between two reservoirs of absolute temperature 𝑇1 and 𝑇2 (𝑇1 >

𝑇2). This expression can be found in a general way using a combination of two Carnot engines 

in series, the first one working between the reservoir 1 at 𝑇1 and the reservoir 2 at 𝑇2 (𝑇1 > 𝑇2), 

the second one working between the reservoir 2 and the reservoir 3 at 𝑇3  (𝑇2 > 𝑇3 ). The 

mathematic tricks are straightforward as shown in Appendix ii. This expression is an 

unavoidable consequence following the second part of the Carnot theorem that the efficiency 

only depends on the temperatures of the two reservoirs. 
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Now let ∆𝑄1 be the heat absorbed by the Carnot engine from reservoir 1, and ∆𝑄2 the heat 

it “absorbs” from reservoir 2 (it actually rejects −∆𝑄2 to reservoir 2). After a cycle, the engine   

returns to the reservoir 1, and produces a positive work 𝑊 = ∆𝑄1−(−∆𝑄2), we can write  =

𝑊

∆𝑄1
= 1 −

(−∆𝑄2)

∆𝑄1
= 1 −

𝑇2

𝑇1
, leading to 

∆𝑄1

𝑇1
+

∆𝑄2

𝑇2
= 0. Suppose now the number of the reservoirs 

contacted by the engine during a cycle is N, the ith reservoirs (𝑖 = 1,2 … 𝑁) at temperature 𝑇𝑖 

gives 𝛿𝑄𝑖 to the engine, Kelvin obtained 

∑
𝛿𝑄𝑖

𝑇𝑖

𝑁

𝑖=1
= 0 

(2) 

Then he stopped here in his quest of the second law without reaching the concept of entropy 

[17][18]. 

c) Clausius' perception 

The very discovery of what is called the second law finally came to Clausius who, like 

Kelvin, reached also Eq.(2) [2]. But he saw something deeper in it. If the number of reservoirs 

contacted by the engine is very large, Eq.(2) takes the form of a closed line integral : ∮
𝛿𝑄

𝑇
= 0. 

This integral over a reversible cycle implies that the quantity 
𝛿𝑄 

𝑇
 is the variation of a state 

variable, he denoted by 𝑆, of the engine. During the contact with a reservoir at T, the engine 

gets 𝛿𝑄 as well as a variation of S: 𝑑𝑆 =
𝛿𝑄

𝑇
. After a cyclic evolution, the engine comes back to 

its initial state, the total variation of 𝑆 is zero: ∮ 𝑑𝑆 = ∮
𝛿𝑄

𝑇
= 0.  

Clausius didn't stop here with 𝑑𝑆 =
𝛿𝑄

𝑇
 for reversible process. He had the genius idea to 

make the same analysis as above for a real irreversible engine, of efficiency ′, cycling between 

the same reservoir 1 and 2, absorbing ∆𝑄1 and ∆𝑄2, and doing a work 𝑊′ after a cycle. We 

have ′ =
𝑊′

∆𝑄1
= 1 −

(−∆𝑄2)

∆𝑄1
. But this time he considered the first part of Carnot theorem ′ <

, and Kelvin's limit  = 1 −
𝑇2

𝑇1
, to write 

1 +
∆𝑄2

∆𝑄1
 < 1 −

𝑇2

𝑇1
 

(3) 

which means 
∆𝑄1

𝑇1
+

∆𝑄2

𝑇2
< 0. For a large number of reservoirs on the cycle, he wrote ∮

𝛿𝑄

𝑇
< 0, 

which yields (see Appendix iii): 
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𝑑𝑆 ≥
𝛿𝑄

𝑇
 

(4) 

for both irreversible (>) and reversible (=) processes. Clausius coined the name entropy for this 

variable S because he wanted to find a Greek word that is parallel and analogous to the Greek 

word energy12 [19]. He certainly felt some intrinsic link between energy and entropy; himself 

had just at that time proposed the first law of thermodynamics of energy conservation [20]. 

3) If we backtrack the trilogy 

By summarizing the trilogy of discovery of the second law, we wanted also highlight the 

impressive and infallible mathematical tricks going from the impossibility of perpetual mobile 

all the way to the second law. These rather straightforward mathematical deductions show that, 

if perpetual mobile is impossible, then there must be the Carnot theorem, and then the second 

law follows; you cannot get other thing different; and inversely, if the second law is broken, 

i.e., Eq.(4) breaks down, you can backtrack all the mathematical calculations of Clausius from 

Eq.(2) to Eq.(4), to prove Eq.(3) untrue. Eq.(3) stems from Eq.(1) and the first part of Carnot 

theorem. Its falseness implies either the falseness of Eq.(1) or that of the first part of Carnot 

theorem.  

Now suppose Eq.(1) is false, in view of the infallible mathematics of Kelvin using Figure 

A2 (Appendix ii), the second part of Carnot theorem must be untrue. In other words, different 

Carnot engines using different working substances may have different efficiencies. According 

to the discussion in the section 3a), we will be able to construct a perpetual mobile using two 

Carnot engines of different efficiencies.  

If now we suppose Eq.(1) and the second part of the Carnot theorem are true but the first 

part of the theorem is false, so there may be engines more efficient than Carnot engine. Then 

we can use these more efficient engines, as shown in Figure A1 of Appendix i, to fabricate 

perpetual mobiles, which will give us infinite quantity of clean energy we need to preserve our 

pet planet.  

                                                 

12 I prefer going to the ancient languages for the names of important scientific quantities, so that they may mean 

the same thing in all living tongues. I propose, accordingly, to call the entropy of a body, after the Greek word 

'transformation.' I have designedly coined the word entropy to be similar to 'energy,' for these two quantities are 

so analogous in their physical significance, that an analogy of denomination seemed to me helpful [19]. 
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To summarize, the violation of the second law necessarily entails the existence of perpetual 

engine. Well, perpetual engine and free source of energy come into being! Granted! So what!  

4) So what if the second law is violated? 

The most important implication of the violation of second law is not the existence of 

perpetual mobile as a source of infinite energy. There is another much deeper meaning behind 

the perpetual mobile : energy becomes something you can create or annihilate as much as you 

please, and loses at once the attribute of a conservative fundamental quantity of motion, 

regardless of its form, thermal, mechanical, electromagnetic, gravitational, and so on. The first 

mathematical consequence is the collapse of the first law of thermodynamics 𝑑𝑈 = 𝛿𝑄 + 𝑑𝑊. 

Why? Because after a cycle of the perpetual engine in the Figure A1 of appendix i for instance, 

𝑑𝑈 = 𝛿𝑄 = 0, but 𝑑𝑊 ≠ 0; this is the work done by the perpetual engine without consuming 

heat. Needless to say, the whole theoretical edifice of the thermodynamics will collapse. 

This is not all. As well known, energy conservation is not only one of the cornerstone of 

thermodynamics, it is also a key pillar of the whole edifice of physical and chemical science, 

as well as a fundamental rule guaranteeing the stability of all natural systems. For example, our 

pet planet is in stable revolution around the sun because its total mechanical energy remains 

constant (conserved) when the pair earth-sun is a good isolated system, at least for a period 

sufficiently long for our intelligence to develop, fortunately. Now if the energy of the isolated 

earth-sun was no longer a constant due to a perpetual engine in the system modifying arbitrarily 

the energy of the earth without changing anything else, the earth would have fallen in the sun 

or flight to the border of Milky Way since long. Please make the same reasoning for nuclei, 

atoms, molecules and any energy conservative system in Nature; do you think that they can be 

there as stable components our universe? Imagine also that you want to make a solid state 

synthesis; you put the prepared sample in the oven and increase the temperature to 1000 K. But 

one day you realize that the sample is freezing! Why? Because the heat is flowing from the 

colder sample into the hotter oven, a direct consequence of the violation of the second law and 

of the energy conservation! Think also that most, if not all, fundamental equations in physics 

and chemistry are based on the energy and mass conservation. Energy and mass are connected 
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by Einstein's equivalence formula13; so if energy is not conserved, the mass neither. We would 

see the disappearance of Newtonian equation, Maxwell equations, chemical reaction equations, 

stoichiometry formula, Maxwell's equations, Fick's laws of diffusion, Einstein's equation of 

general relativity, and, finally, Schrödinger equation! After these losses, what does remain in 

physics and chemistry?  

Indeed, when the violation of the second law is regarded as isolated phenomenon, it looks 

like something plausible and interesting even exciting to talk about. However, when it is 

coupled to the violation of the law of energy conservation, we quickly understand to what extent 

the second law of thermodynamics is an inviolable iron rule. Can we imagine a violation of 

energy and mass conservation, even probabilistic with infinitesimal likelihood, as the 

fluctuation theorem stated for second law violation [10][11]? Can we imagine that energy and 

mass are no more conservative quantities? Simply we cannot! That would be a fatal menace for 

the whole edifice of physics and chemistry, and the whole nature as well, since it would risk 

collapsing into nil even if the violation of the second law and of energy-mass conservation took 

place during only a fraction of second. Now we understand better the comment of Edington 

about the violation of the second law (footnote p.2) [5]. 

5)  Concluding remarks 

We have shown that the second law of thermodynamics is not an isolated phenomenon on 

its own in nature. There is an unbreakable connection between this law and the law of energy-

mass conservation as well as other fundamental laws of physics and chemistry. The violation 

of the second law would lead to fatal failure of energy and mass conservation, implying the 

collapse of the whole physics and chemistry science. Any claim of violation is necessarily 

questionable. We would say that if a theory goes into conflict with the second law, the only 

possible explanation is either the theory is fallacious or the "entropy" violated is not the entropy 

of the second law. 

The suggested violation of the second law is tightly related to a remarkable discordance in 

statistical mechanics between two concepts. The first is entropy as a measure of the dynamic 

uncertainty in the motion of the particles in thermodynamic systems; the second is the motion 

                                                 

13 In relativity theory, we have 𝐸 = 𝑚𝑐2, where 𝐸 is energy, 𝑚 the mass, and 𝑐 the velocity of light in vacuum; 

see  https://en.wikipedia.org/wiki/Mass%E2%80%93energy_equivalence  

https://en.wikipedia.org/wiki/Mass%E2%80%93energy_equivalence
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of these molecules presumably obeying the laws of Newtonian mechanics. There is a 

discordance because motion within Newtonian mechanics does not contain any uncertainty, 

being deterministic and perfectly predictable either to the past or to the future [21]. The twins 

of Maxwell’s and Laplace’s demons mentioned above [7]-[9] are just a product of this absence 

of dynamic uncertainty. Any supposed uncertainty measure in this framework not only carries 

a subjective character, but also is subject to several constraints, such as Liouville's theorem 

[12], the eternal return of Poincare's theorem of recurrence [13] and time symmetry dictated by 

the fundamental principle of least action [21]. On the one hand, Liouville's theorem states that 

the density of states 𝜌 in the phase space of a systems is a constant of motion, i.e., 
𝑑𝜌

𝑑𝑡
= 0. If 

the motion becomes random, the probability distribution of states of the system is proportional 

to 𝜌. So that any function of 𝜌, like the Boltzmann H-function 𝐻(𝜌) and entropy 𝑆(𝜌) [3], must 

be also constant in time because 
𝑑𝐻(𝜌)

𝑑𝑡
= 𝐻′(𝜌)

𝑑𝜌

𝑑𝑡
= 0. This is at odds with the second law of 

increasing entropy. On the other hand, Poincare's theorem of recurrence states that, during its 

movement in phase space, a real system always returns arbitrarily close to its initial states, 

implying that any function of states, including entropy, cannot only increase. If it increases 

during some periods, it must decrease in other periods in order to recover its initial value when 

the system returns to its initial states. This is again at variance with the second law stating that 

entropy never decreases. 

As these theorems are irrefutable in Newtonian mechanics, a possible, if not the only, 

pathway to escape from these constraints is the probabilistic interpretation of the second law 

stating that, although entropy can both increase and decrease, the second law is always observed 

because the entropy has an overwhelmingly larger probability to increase than to decrease [3]. 

This implies that the decrease of entropy, or the violation of the second law, has nevertheless 

an infinitesimal probability to occur. Indeed, at first glance, a possible violation of the second 

law, not that often, seems acceptable to the detriment, at worst, of the Carnot engine as a king 

of all engines. However, when considering the unbreakable connection between the second law 

and other fundamental laws of physics, especially the parallel violation of the law of 

conservation of energy, we should be more vigilant.  

It is obviously that this deadlock of probabilistic interpretation of the second law is a telltale 

sign of the incompatibility between classical mechanics laws and thermodynamics laws. This 

is indeed a nontrivial conflict between two families of physics laws, both being inviolable truth 

and well verified by empirical facts. We have to find a reconciliation between them in order to 
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keep them all in a big family. A possible solution can be perceived in the difference between 

the classical mechanics motion and the thermodynamic motion. All motions in classical 

mechanics are regular and deterministic, characterized by the unicity of path for given initial 

condition, or between any two states, a single path dictated by the least action principle [12]. 

This motion is predictable to both the past and the future with certainty on the unique path 

predetermined by the equation of motion (Newtonian or relativistic). On the contrary, the 

thermodynamic motions are all random, or indeterministic, characterized by multiplicity of 

paths from given initial state. That is, leaving a given state, a motion can take different paths. 

In other words, there are infinite paths between any two given states. The motion becomes 

completely unpredictable or only predictable with more or less uncertainty depending on the 

probability of the all the possible paths. In this regime, the fundamental principle of least action 

and the equations of motion, working only for unique path must be adapted in such a way to 

include many paths and their probability. The new formalism must also allow recovering the 

original principles and equations of motion of classical mechanics whenever the randomness 

cancels and the multiple paths all collapse onto a single path of probability one.  

A formulation of this kind has been proposed in previous works [22]-[25] for the special 

case of random motion of quasi-Hamiltonian systems, i.e., mechanical systems undergoing 

random motion but statistically conserving their energy. A good example of this kind of 

Hamiltonian systems is the ideal gas. When a gas is in expansion, it moves randomly from one 

equilibrium state to another, in keeping its energy constant within fluctuations, and following 

different paths, each having a given probability to happen between the initial and final states. 

This path probability has been investigated by analytical analysis [26] and numerical 

experiments simulating random motions with different randomness [27][28]. The reader can 

find a summary of this probabilistic mechanics in [25]. We would like to just mention that, in 

this frame, Liouville's theorem, originally formulated for the unique path of least action [12], 

has been modified for multiple paths and reads 
𝑑𝜌(𝑡)

𝑑𝑡
= 𝜌(𝑡) 𝑤(𝑡), where 𝑤(𝑡) is proportional 

to the work of random forces around a given point in the system. The solution of this differential 

equation is 𝜌(𝑡) = 𝜌0exp [− ∫ 𝑤(𝑡)
𝑡

0
𝑑𝑡] . This modified Liouville's theorem invalidates the 

proof of Poincare's theorem of recurrence, thus opens the way for a non-probabilistic 

interpretation of the H-theorem and the second law of thermodynamics [16][25]. Wheever the 

random force is absent, or the system does not evolve any longer in an equilibrium state, the 

work 𝑤(𝑡) = 0, Liouville’s theorem 
𝑑𝜌(𝑡)

𝑑𝑡
= 0 is recovered. 



   

14 

 

We would like to close this paper by mentioning a recent work, in which we provided a 

mathematical proof of time irreversibility within classical mechanics in a very general and 

model-independent way, by considering the multiplicity of paths of random motion [21]. For 

the first time, the concept of time was shown to have an arrow pointing in the direction of 

increasing dynamic uncertainty, just as Edington asserted a hundred years ago: Without any 

mystic appeal to consciousness it is possible to find a direction of time … Let us draw an arrow 

arbitrarily. If as we follow the arrow we find more and more of the random element in the state 

of the world, then the arrow is pointed towards the future; if the random element decreases, the 

arrow points towards the past. That is the only distinction known to physics. This follows at 

once if our fundamental contention is admitted that the introduction of randomness is the only 

thing which cannot be undone (see [5] p.35).  

The same statement is true for the arrow of entropy as well.  
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Appendix 
 

This is a summary of the trilogy of the discovery of the second law of thermodynamics over 

thirty years starting from 1824. 

i) Carnot theorem from a thought experiment  

Figure A1 illustrates a combination of an irreversible real engine and a reversible Carnot 

engine, both working between a hot reservoirs at temperature 𝑡1  and a cold reservoir at 

temperature 𝑡2. The irreversible engine produces a work 𝑊′ = 𝑄1 − 𝑄2 in absorbing a heat 𝑄1 

from the hot reservoir and rejecting a heat 𝑄2 to the cold reservoir. Its efficiency is given by 

′ =
𝑊′

𝑄1
. The reversible engine is working in the inverse direction using a work 𝑊 to absorb 

the heat 𝑄2 from the cold reservoir and give a heat 𝑄1 to the hot reservoir. Its efficiency is given 

by  =
𝑊

𝑄1
. After a cycle, the two reservoirs recover their initial states respectively because they 

didn't obtain nor lose heat.  

 

Figure A1, Illustration of a perpetual mobile engine (red line) composed of a real irreversible 

engine having efficiency ′ =
𝑊′

𝑄1
  and a Carnot engine having the efficiency  =

𝑊

𝑄1
= 1 −

𝑄2

𝑄1
. 

If ′ > , the perpetual engine is able to produce the work ∆𝑊 = 𝑊′ − 𝑊 after each cycle 

without consuming heat, so that the energy ∆𝑊 is created from nothing. 
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Now Carnot supposed that the irreversible engine has a larger efficiency than the reversible 

engine, ′ > , or 
𝑊′

𝑄1
>

𝑊

𝑄1
, leading to 𝑊′ > 𝑊. In this case, the reversible engine can use a part 

of 𝑊′ to produce the work 𝑊, so that after a cycle, the only thing changed is the extra work 

∆𝑊 = 𝑊′ − 𝑊 > 0 produced by the ensemble of two engines (red line in Figure A1). This 

means that the ensemble of two engines is a perpetual engine producing the work ∆𝑊 from 

nothing, which Carnot thought impossible according to a common belief that mechanical work 

and motion cannot be created from nothing (a rudimental idea of energy conservation). 

Conclusion: ′ can never be larger than ; which is the first part of Carnot theorem ′ ≤  

[1]. 

From the same reasoning, we can prove that all reversible engines must have the same 

efficiency regardless of their different working substances. This is because if a reversible engine 

was more efficient than another one, we could combine them in the same way as in Figure A1 

with the more efficient Carnot engine replacing the irreversible one; this would make a 

perpetual engine (absurd). Conclusion: all Carnot engines must have the same efficiency 

depending only on the temperatures of the reservoirs 𝑡1 and 𝑡2, which is the second part of 

Carnot theorem [1]. 

ii) Kelvin's efficiency 

It is quite logical that the efficiency  of Carnot engine depends only on the temperature of 

the reservoirs. But what is the form of the function (𝑡1, 𝑡2)? Kelvin is concerned with this 

question, and made a calculation [17] which can be illustrated by the connection of two Carnot 

engines as shown in Figure A2. The first engine works between two reservoirs at 𝑡1 and 𝑡2 

(𝑡1 >  𝑡2 ), absorbing 𝑄1  from 𝑡1 , rejecting 𝑄2  to 𝑡2  and doing a work 𝑊1 = 𝑄1 − 𝑄2 ; the 

efficiency is 
1

= 1 −
𝑄2

𝑄1
. The second engine works between the above reservoir at 𝑡2 and a 

third reservoir at 𝑡3 (𝑡2 > 𝑡3), absorbing 𝑄2 from 𝑡2, rejecting 𝑄3 to 𝑡3, and doing a work 𝑊2 =

𝑄2 − 𝑄3; its efficiency is 
2

= 1 −
𝑄3

𝑄2
. On the other hand, these two engines connected in series 

can be considered as a third engine, working between the hot reservoir at 𝑡1  and the cold 

reservoir at 𝑡3  (𝑡2 > 𝑡3), absorbing 𝑄1  from 𝑡1 , rejecting 𝑄3  to 𝑡3 , and doing a work 𝑊3 =

𝑊1 + 𝑊2 = 𝑄1 − 𝑄3; its efficiency is 
3

=
𝑊3

𝑄1
= 1 −

𝑄3

𝑄1
. 
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Figure A2: Illustration of Kelvin's idea to connect two Carnot engines in series to compose a 

third Carnot engine (red line) working between 𝑡1 and 𝑡3. 

 

The magic trick is the following: from the three efficiencies 1 − 
1

=
𝑄2

𝑄1
, 1 − 

2
=

𝑄3

𝑄2
  and 

1 − 
3

=
𝑄3

𝑄1
, it is straightforward to write (1 − 

1
)(1 − 

2
) = 1 − 

3
. As all Carnot engines 

have the same efficiency depending only on the temperature of the reservoirs, we can write 1 −


1

= 𝑔(𝑡1, 𝑡2) , 1 − 
2

= 𝑔(𝑡2, 𝑡3)  and 1 − 
3

= 𝑔(𝑡1, 𝑡3) , leading to 𝑔(𝑡1, 𝑡2)𝑔(𝑡2, 𝑡3) =

𝑔(𝑡1, 𝑡3), where 𝑔(∙) is any continuous function.  The only way to reach this last equation is to 

let 𝑔(𝑡1, 𝑡2) =
𝑓(𝑡2)

𝑓(𝑡1)
, 𝑔(𝑡2, 𝑡3) =

𝑓(𝑡3)

𝑓(𝑡2)
 and 𝑔(𝑡1, 𝑡3) =

𝑓(𝑡3)

𝑓(𝑡1)
 with certain function 𝑓(𝑡). Now let 

us simply take 𝑓(𝑡) as a temperature scale, say, (𝑡) = 𝑇 , which turns out to be the absolute 

temperature. Kelvin finally got 1 − 
1

=
𝑇2

𝑇1
, 1 − 

2
=

𝑇3

𝑇2
 et 1 − 

3
=

𝑇3

𝑇1
 , or in general, for a 

Carnot engine working between 𝑇1 and 𝑇2 (𝑇1 > 𝑇2):  = 𝟏 −
𝑻𝟐

𝑻𝟏
 [17]. 
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iii) Clausius' discovery 

Clausius' work [2] starts with a Carnot engine working between 𝑇1 and 𝑇2. He writes  =

1 −
𝑄2

𝑄1
= 1 −

𝑇2

𝑇1
 , or 

𝑄2

𝑄1
=

𝑇2

𝑇1
, and 0 =

𝑄1

𝑇1
−

𝑄2

𝑇2
. With a change of notation 𝛿𝑄1 = 𝑄1, and 𝛿𝑄2 =

−𝑄2 , he obtained 
𝛿𝑄1

𝑇1
+

𝛿𝑄2

𝑇2
= 0 . Notice that 𝛿𝑄  is a heat absorbed by the engine from a 

reservoir (see Figure A3). Obviously, if the engine is in contact with N reservoirs during a 

cycle, and absorbs 𝛿𝑄𝑖 from a reservoir at 𝑇𝑖, we necessarily get ∑
𝛿𝑄𝑖

𝑇𝑖

𝑁
𝑖=1 = 0 (Figure A3). 

 

 

Figure A3: Examples of the cycle of Carnot engine in the 𝑇 − 𝑆 diagram. The horizontal 

segments represent the contact of the engine with the reservoirs to absorb heat. The 

vertical segments represent adiabatic compression (left sides) and expansion (right sides). 

Left : a cycle starting from and ending at an initial state A after two contacts with 𝑇1 and 

𝑇2, leading to 
𝛿𝑄1

𝑇1
+

𝛿𝑄2

𝑇2
= 0. Right : a cycle starting from and ending at the initial state A 

after the contacts with N reservoirs at different temperature 𝑇𝑖, each giving 𝛿𝑄𝑖 to the 

engine, leading to  ∑
𝛿𝑄𝑖

𝑇𝑖

𝑁
𝑖=1 = 0. 

Clausius understood at once that 
𝛿𝑄

𝑇
 is the variation of a variable of state, he denoted by S 

(𝛿𝑆 =
𝛿𝑄

𝑇
) and coined the name entropy, because when the engine comes back to its initial state 

after a cycle and a series of variations 
𝛿𝑄𝑖

𝑇𝑖
, this variable also comes back to its initial value with 

zero variation ∑
𝛿𝑄𝑖

𝑇𝑖

𝑁
𝑖=1 = ∑ 𝛿𝑆𝑖

𝑁
𝑖=1 = 0. If N is vary large, we can write a closed line integral  

∮ 𝑑𝑆 = 0 over a cycle. 
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Clausius made the above analysis with Carnot engine. What does happen with a real 

irreversible engine working between the same reservoirs with ′ = 1 −
𝑄2

𝑄1
? Considering ′ <

 and  = 1 −
𝑇2

𝑇1
 , we get 1 −

𝑄2

𝑄1
≤ 1 −

𝑇2

𝑇1
 or 

𝑄1

𝑇1
−

𝑄2

𝑇2
< 0. The same formal change as above 

yields 
𝛿𝑄1

𝑇1
+

𝛿𝑄2

𝑇2
< 0. With N reservoirs during a cycle, we have ∑

𝛿𝑄𝑖

𝑇𝑖

𝑁
𝑖=1 < 0 or ∮

𝛿𝑄

𝑇
< 0. 

Suppose that the variation of entropy of the engine at each equilibrium contact with a reservoir 

is 𝛿𝑆𝑖 , we have, after a cycle, ∑ 𝛿𝑆𝑖
𝑁
𝑖=1 = 0, or ∮ 𝑑𝑆 = 0 for large N. Compare ∮ 𝑑𝑆 = 0 to 

∮
𝛿𝑄

𝑇
< 0, it is straightforward to write 𝑑𝑆 >

𝛿𝑄

𝑇
 for irreversible engine, or 𝒅𝑺 ≥

𝜹𝑸

𝑻
 for any 

engine, reversible or irreversible. This inequality is the mathematical expression of the second 

law of thermodynamics. For an isolated system without exchange of heat with the exterior, 

𝛿𝑄 = 0, and 𝑑𝑆 ≥ 0. This is why the second law is often referred to as the law of increasing 

entropy. Notice that the entropy of an open system exchanging heat with environment has 𝑑𝑆 ≥

𝛿𝑄

𝑇
 and can decrease (𝑑𝑆 < 0) if the system loses heat 𝛿𝑄 < 0 (like our body); this decrease 

does not violate the second law. Again, the violation of the second law implies the decreases of 

entropy in an isolated system. 

 

 


