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MEASURING THE SCALE OF SEGREGATION IN MIXING

DATA
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Four methods were used to extract length scales from mixing data: the maximum striation thickness, point-to-nearest-neighbour (PNN) distri-

butions, the correlogram and the variogram. Four test data sets were analysed: blending in a micromixer; particle dispersion in a stirred tank;

dispersion of a smoke plume and a pulse tracer test in a reactor. The maximum striation thickness captures the largest length scale. The PNN

method quantifies differences between clustered, random and regular spatial distributions. The correlogram calculation cannot be consistently

used for all types of mixing data and has therefore been rejected. The variogram reveals both large-scale segregation and periodicity. Sub-sampling

is needed to isolate smaller structures. The variogram, PNN and transect methods all successfully extracted mixing length scales from large 2D

data sets.
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INTRODUCTION

T
he scale of segregation is one of three measures of mixing

defined by Kukukova et al. (2009). The scale of segregation

is important for laminar mixing where the maximum stri-

ation thickness determines product quality, and for multi-phase

mixing where the size of the particles drops and bubbles either

determines mass transfer rates, or is the main objective of the

operation. Industrial examples where the scale of segregation is

the primary process objective are the formation of emulsions of

a specified drop size (Atiemo-Obeng and Calabrese, 2004; Liu et

al., 2005; Chu et al., 2007), the production of nanoparticles (John-

son and Prud’homme, 2003), the deliberate use of micromixing to

reduce both the quantity of chemicals used and the environmen-

tal impact of the pulp and paper industry (Bennington, 2004), or

to maximise reaction yield in mixing sensitive reactions (Bałdyga

and Bourne, 1999), or to minimise NOx emissions from rotary

kilns (Newbold et al., 2000; Nathan et al., 2006). In all of these

processes, the scale of segregation is the determining variable in

the process. A simple illustration of the reduction of the scale of

segregation as mixing progresses is shown in Figure 1.

A survey of the literature shows that the scale of segregation

is important in a surprisingly wide spectrum of disciplines and a

number of methods for its calculation have been proposed. The

concept of the scale of segregation in engineering was introduced

by Danckwerts (1952). He suggested the calculation of a mean

length scale based on the correlogram—a plot of the coefficient

of correlation of concentration, or concentration autocorrelation,

versus the distance separating the data points. The scale of segre-

gation based on autocorrelation was revisited by Lacey and Mirza

(1976). At that time, the calculation was not deemed practical

because of the large number of data pairs that have to be mea-

sured and analysed in order to get meaningful results. Due to the

exponential increase of computer power and the increasing res-

olution and accessibility of digital images, the correlogram and

related calculation methods are now practical for the analysis of

quite common experimental data sets.

The scale of segregation can also be represented by the physi-

cal thickness of striations in a mixing field. In polymer processing

applications, Mohr et al. (1957) developed a relationship between

striation thickness and shear rate. Later, Muzzio et al. (1991) used

a model mixing field with several million tracer particles to study

the relationship between the striation thickness distribution and

the stretching distribution. While the stretching distribution is the
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Figure 1. The classical checkerboard problem. The scale of segregation decreases from left to right while the intensity of segregation stays the same.

more mathematically transparent approach because it is directly

related to the shear field, the striation thickness distribution is

the result needed for engineering design. They were able to show

that the stretching distribution and the striation thickness dis-

tribution are directly coupled and inversely proportional, so that

the striation thickness distribution can be directly calculated from

the stretching distribution. If the stretching distribution can be

calculated from the velocity field, the need to track millions of

tracer particles in order to resolve the finest striations can be elim-

inated. When resolution of the finest scales of mixing is required,

this can significantly reduce the computational requirements for

a numerical solution. When macroscale segregation is the vari-

able of interest, a small number of tracer particles can be used

and the maximum striation thickness can be determined along a

single reference transect. The maximum striation thickness on a

transect is an important measure of equipment performance and

product quality in laminar mixing (Aubin et al., 2005).

There is also a well-developed literature on segregation

problems and measures of segregation in population ecology, geo-

statistics, segregation of minority populations, forestry, medical

imaging and basic applied statistics. These data take the form

of locations of members of a population at an instant in time,

resulting in a spatial point pattern. A number of distance meth-

ods for analysing spatial point patterns which were developed in

the American forestry literature (Cottam and Curtis, 1949) are

based on the distribution of distances between neighbours (Dig-

gle, 2003). Three methods for analysing spatial point patterns are

identified in the spatial statistics literature. Since all of the spa-

tial point patterns in this paper are made up of tracking particles,

and the particles are located within a set of grid points, we refer

to the data as particles and the grid points as points. The first

method analyses all inter-particle distances within a population;

the second calculates the distribution of distances between each

particle and its nearest neighbour and the third and most com-

mon method measures the distance from a set of grid points to

the nearest particle (point-to-nearest-neighbour (PNN) method).

The spatial distribution of the population is evaluated by com-

paring the nearest neighbour distribution to a completely random

Poisson distribution. When the PNN distribution is random, the

match with the Poisson distribution is close, and when clustering

is present, the distribution is distorted. Spatial point patterns have

only recently been used to assess the scale of segregation and the

quality of mixing (Aubin et al., 2005; Kukuková et al., 2008).

Carle and Fogg (1996) evaluated the mean length scale in geo-

statistics using variograms, which quantify the spatial correlation

of data based on the variance between data versus the distance

separating them. A similar approach is to use the variance of the

average of several contiguous concentrations (Gullett et al., 1993).

Although the variogram is used primarily for modelling when

only limited data are available (Deutsch, 2002), this calculation

also appears useful for the analysis of dense data sets. The var-

iogram is closely related to the Danckwerts correlogram (1952).

Correlograms and variograms both show the spatial variability or

continuity of the underlying data set. The resulting curves can

reveal both large-scale segregation and periodicity in the data.

Correlograms and variograms also allow the calculation of length

scales. The scale of segregation can be evaluated in several direc-

tions of interest or, if all data are combined together, an average

length scale of the whole field can be obtained.

The authors’ previous work (Kukukova et al., 2009) presents

an introduction into the three dimensions of segregation, their

definitions and possible applications. A second paper (Kukuková

et al., 2008) explores the first dimension—the intensity of

segregation—in detail and focuses on accurate sampling strate-

gies. This work concentrates on the second dimension—the scale

of segregation. In this study, four methods of measuring the scale

of segregation were considered for application to mixing data: the

maximum striation thickness on a transect, PNN distribution, the

correlogram and the variogram. The methods are compared to

determine their strengths and limitations for the analysis of mix-

ing data. Five questions are of interest when evaluating the four

measures:

1. What type of data is the method suitable for?

2. What information does it provide?

3. Are the results physically meaningful?

4. What is the smallest scale of mixing resolved by the method?

5. How fast is the calculation?

While conditions 1 and 5 have straightforward answers, the

other questions require testing and illustration with representative

data sets. The goal of this work is to provide a toolkit of fast

methods for length scale characterisation, as well as benchmarks

for the proper use and limitations of each tool. In the next section,

each of the methods is discussed in detail.

METHODS

This section will review the four methods chosen to measure

the scale of segregation: the maximum striation thickness on a

transect, the PNN distributions, the correlogram and the vari-

ogram. The four test cases are presented after this section, and

details about the practical application of the methods to the test

cases are given in the Results and Discussion Section. Calculation

algorithms for all of the methods are available as supplemen-

tary material from the Journal or on request to the corresponding

author.

Maximum Striation Thickness on a Transect

For spatial point patterns, the maximum striation thickness on

a transect can be evaluated using inter-particle distances (Aubin



Figure 2. Example of transect sampling in a plane of data.

et al., 2005). In such applications, a transect through a data plane

or volume is chosen and the distance between two consecutive

particles lying on the transect is measured. The inter-particle dis-

tances are then compared with a threshold value to determine

if they are part of the same striation or not. A distribution of

striation thicknesses is obtained and the thickness of the largest

striation can be found. The latter is a measure of the limiting scale

of segregation.

To get the most valuable information about mixing, a transect

should pass through the worst mixed part of the mixing field, and

should be perpendicular to the striations of greatest interest, as

shown in Figure 2. Transects are of zero thickness mathematically,

but numerically, a finite thickness is required to sample a statis-

tically and physically meaningful number of particles. A transect

has two variable dimensions: the height of the transect, "z, and

the particle separation threshold "x. A particle is included in the

transect if its z-coordinate equals the z-coordinate of the transect

±"z/2. Aubin et al. (2005) recommend a transect height, "z,

equal to the mean particle spacing in the mixing field. The height

of the transect, "z, allows for the capture of a single particle so

that all particles in the 2D transect are associated with the equiv-

alent 1D line through the mixing field. The striation thicknesses

on the transect are determined using the function f, which has

the following properties:

"x(neighbours) ≤ "x : f (x) = 1

"x(neighbours) > "x : f (x) = 0
(1)

Striation thicknesses on the transect are calculated directly from

the function f(x): when two consecutive particles in the transect

are within "x of each other, they are both in the same striation.

If "x is too large, the striations will be unrealistically large; if it

is too small, no striations will be detected. In our previous work

(Kukuková et al., 2008), several transect heights, "z, and striation

thickness thresholds, "x, were studied. It was concluded that a

value of "x = "z equal to the mean particle spacing gives the best

resolution.

Point-to-Nearest-Neighbour Distributions

The PNN method measures the distance xi from each of m grid

points to the nearest of the n particles, as illustrated in Figure 3.

In fields of demography, ecology, geography and forestry, these

distance data are analysed using a test of complete spatial ran-

domness (CSR). The CSR hypothesis asserts that for a completely

random distribution of particles in region A, any particle has an

Figure 3. Illustration of the PNN method: (a) Hexagonal grid in a stirred tank. (b) Enlarged grid. (c) Construction of the base unit of the grid. (d)
Particle locations in the tank. (e) Search for nearest neighbours of each grid point.



equal probability of being at any position in region A and the posi-

tion of any particle is independent of the position of any other

particle. If the particles are randomly distributed in space, the

PNN distances should follow a Poisson distribution. Deviations

from the random Poisson distribution allow regular and clustered

spatial patterns to be distinguished.

For PNN measurement on a plane of data, m grid points are

arranged in a regular k × k grid. Diggle and Matern (1980) rec-

ommend using a number of grid points equal to the number

of tracking particles, giving k ≈
√

n. Using a grid that is well

matched to the number of particles maximises the use of each

particle in the analysis, and also optimises the resolution of the

PNN distribution. The most uniform pattern for a set of points

occurs in a regular hexagonal lattice. The mean grid spacing, xG,

for the hexagonal lattice shown in Figure 3c is:

xG =
2dx + 4dxz

6
∼= 1.08dx (2)

where dx is the horizontal spacing, dx = dz and dxz is the diagonal

grid spacing. When the number of grid points is matched to the

number of particles, xG also approximates the spatial resolution

of the measurement.

Clustering can be qualitatively evaluated from the shape of the

PNN distribution. A wide distribution indicates clustering; a nar-

row distribution corresponds to a regular spatial distribution of

particles. Another indicator that the particles are well mixed is

the mean PNN distance x̄i. As the PNN distribution approaches

perfect homogeneity, x̄i approaches the point–particle distance for

a perfectly homogeneous distribution.

A more quantitative measure of clustering and departure from

CSR is the index of dispersion, Idisp (Diggle, 2003), which is the

ratio between the variance of the PNN distribution and the mean

of the distribution:

Idisp =
�2

xi

(3)

Because the Poisson distribution has a variance equal to its

mean, the index of dispersion will be equal to 1 for a random

distribution, larger than 1 for a clustered distribution and smaller

than 1 for a regular distribution of particles.

A filtered variance of the PNN distribution can be used to eval-

uate the deviation of the spatial arrangement of particles with

respect to the expected homogeneous distribution defined by the

grid points. A filter threshold, xR is imposed such that at any value

of xi < xR, the particle is considered to be close enough to the grid

point and xi is assigned a value to xR. A variance of zero corre-

sponds to the situation where the nearest neighbours of all grid

points lie inside virtual circles with a radius of xR and centred

at grid points, thereby lying close enough to the grid points to be

considered homogeneously distributed. The filtered point–particle

variance is given by:

�2
R =

1

m−1

m
∑

i=1

(xi−xR)2 where xi = xR if xi < xR (4)

The choice of xR depends on the scale of interest but is limited

by the resolution of the sampling grid, which is in turn dependent

on the number of particles. The maximum meaningful value of xR

is one half of the mean grid spacing xG, in order not to have over-

lapping filter areas. As xR decreases, the homogeneous criterion

becomes stricter.

Correlograms and Variograms

The correlogram probes the underlying structure in the data by

plotting the coefficient of correlation versus the distance sep-

arating data points. For concentration data, the coefficient of

correlation is given by:

Rx(h) =
1/(N(h))

∑

N(h)
(Ci(x)−C̄)(Ci(x + h)−C̄)

�2
(5)

where N(h) is the total number of pairs of data separated by dis-

tance h, and C̄ and �2 are the mean and variance of the full 2D

data set.

The variogram is calculated from:

x(h) ≡
1

2N(h)

∑

N(h)

(Cis(x)−Cis(x + h))2 (6)

where Cis is the standardised concentration value at location x,

which is the concentration centred with the mean and normalised

with the standard deviation:

Cis(x) =
Ci(x)−C̄

�
(7)

The variogram is closely related to the coefficient of correlation.

For data where the mean and the variance of the population do not

change with sample location, the following relationship holds:

x(h) = 1−Rx(h) (8)

This equation will not hold exactly for data with large-scale

segregation because the mean and variance of the data will vary

with location in the field and the normalising of the data occurs in

a different order for the correlogram and the variogram. For these

situations, the two measures should be calculated separately.

The coefficient of correlation and variogram are very similar.

Both are performed for a number of separation distances, with

a maximum distance equal to about the half of the studied field

in order to have enough pairs to statistically represent the entire

field. The correlogram and variogram curves can be obtained for

several directions of interest to reveal directional anisotropy. If the

number of available data points is very small, all directions can

be combined in one omni-directional plot, creating a picture of

average spatial correlation or variability in the mixing field.

A comparison of the correlogram and the variogram is shown in

Figure 4. The coefficient of correlation is always one at zero sep-

aration distance, which means that the concentration is perfectly

correlated with itself, and falls towards zero as the separation dis-

tance increases. A value of zero indicates no correlation. If the

correlogram crosses zero and reaches negative values, as shown

in Figure 4, there is large-scale segregation. The variogram shape

is exactly opposite to the correlogram. Variograms start with a

value of zero at zero separation distance, meaning there is no

variability. The curve then increases towards one, and sometimes

exceeds it. A variogram equal to one means that the variability

at h has reached the variance of the whole data set and there

is no remaining spatial correlation in the data. Similar to the

correlogram, when the variogram increases beyond one, there is

large-scale segregation. Periodic oscillations in both the correlo-

gram and variogram plots indicate underlying periodicity in the

data.

If good mixing is characterised as the random spatial distri-

bution of concentrations, the correlogram of a perfectly mixed



Figure 4. Comparison of the correlogram and the variogram for a
representative sample of the smoke data.

population will drop to zero for all separation distances bigger

than zero, showing there is no correlation in the data. Similarly,

the variogram will rise instantly to one for separation distances

bigger than zero, indicating that the variability everywhere is

equal to the overall data variance.

Integration of the correlogram curve from h = 0 to the point

where the coefficient of correlation Rx equals zero gives a mean

length scale (Danckwerts, 1952):

LD =

�
∫

0

Rx(h)dh (9)

as shown in Figure 5a. The length scale obtained in this calcu-

lation is not the exact size of clumps or clusters but an average

over the mixing field. Danckwerts specified that this calculation

should only be used for data with no large-scale segregation and

no periodic patterns, giving correlograms that are always positive

and non-periodic. In the context of today’s mixing research, this

seems unrealistic.

For variograms, a more flexible length scale calculation was pro-

posed by geostatisticians Carle and Fogg (1996), who evaluated

the mean length scale from the inverse of the initial variogram

slope:

LV =
[

∂x

∂h

]−1

h→0

P (10)

as illustrated in Figure 5b. In this calculation, P is the propor-

tion of the minor species in the sample region. They showed that

the resulting scale of segregation is proportional to the average

length scale in the sample region. The reasoning behind this cal-

culation is the following: if we place the origin at the centre of

an average-sized blob of diffusive tracer in the field and move

from the origin toward the blob boundaries and to the surround-

ings, the variability of concentration will increase much faster for

small blobs due to the jump of concentration at the boundaries

and slower for bigger blobs. This length scale calculation can be

performed for all kinds of data and variogram plots, regardless of

oscillations or large-scale segregation.

TEST CASES

Two types of data were used for the scale of segregation measure-

ments: particle tracking data, and concentration field data. The

particle tracking data provide spatial point patterns where the

locations of discrete particles, or members of a population, are

known. The second data type is concentration maps, also called

lattice data because the data values are available for a complete

lattice of points. In digital images, the lattice is made up of pixels.

Two data sets of each type were used to evaluate the measurement

methods. The first test case is the laminar mixing of mass-less

tracer particles in a staggered herringbone micromixer, shown in

Figure 6. The second test case is the dispersion of floating parti-

cles in a turbulent stirred tank, shown in Figure 7. The third test

case is the dispersion of smoke in a wind tunnel for a range of

laminar to turbulent flow regimes, shown in Figure 8. The last

test case is a concentration step change experiment in a contin-

uous flow industrial reactor geometry, shown in Figure 9. In the

first two cases, CFD provided complete 3D data sets and planes of

data were extracted for analysis. In the third and fourth test cases,

planar experimental data from digital images was used. While

only 2D data sets were analysed in this work, the extension of the

calculations to 3D analysis is straightforward.

Figure 5. Length scale calculation from the correlogram and variogram: (a) Mean length scale evaluated as the area under the correlogram curve. (b)
Sample variogram length scale proportional to the inverse of the initial slope.



Figure 6. Staggered herringbone micromixer geometry and sample data for 2480 tracer particles and 10 mixer elements.

Detailed specifications of the first and second test cases are

described in Aubin et al. (2005); and Hartmann et al. (2006),

so only a brief summary is given here. For the herringbone

micromixer shown in Figure 6, a total of 2480 uniformly dis-

tributed mass-less particles were placed on the right hand side

of the solved flow field at the mixer inlet and were followed using

the Lagrangian particle tracking method. Vertical planes along

the micromixer were sampled at intervals of 100 !m to be used

for analysis. The geometry used was the reference geometry with

a width W = 200 !m, height H = 77 !m, groove depth dg = 0.23H

and groove width wg = 50 !m.

The second test case is the dispersion of floating particles sus-

pended in a baffled tank stirred by a Rushton turbine, shown in

Figure 7. In this simulation, 7 × 106 mono-disperse spherical par-

ticles were tracked during a transient large eddy simulation. The

data extracted from the simulation are the particle positions in a

vertical cross-section mid-way between two baffles at six different

times during the simulation.

The third test case is a jet in cross-flow forced with a synthetic

jet of increasing strength (Watson, 2007; Watson and Sigurd-

son, 2008), as shown in Figure 8. In these experiments, a pipe

with outer diameter Dpipe = 2.54 cm was inserted in a rectangular

30.5 × 30.5 cm wind tunnel with a turbulence intensity of 16%.

Inside the outer pipe, an inner pipe of 20.6 mm was inserted,

through which a jet flow was introduced at a range of Reynolds

numbers, Red. This flow was further controlled and modified by

velocity oscillations in the annular flow between the two pipes.

This resulted in a ‘synthetic jet’ in different flow regimes spread-

ing from the pipes into the wind tunnel. More experimental details

can be found in Watson (2007); and in Watson and Sigurdson

(2008). To visualise the flow, either the jet or the cross-flow

was seeded with a glycerol and water based fog vapour, giving

Figure 7. Stirred tank particle tracking data; T = 0.2335 m, D = T/3, impeller off-bottom clearance Cimp = T/3; 7 × 106 particles; Nt = number of
impeller rotations.



Figure 8. Jet in cross-flow photographs of different flow regimes: (a)
Free jet, Red = 570. (b) Relaminarised jet, Red = 660. (c) Flow with
upstream-pointing vortex structures, Red = 1130. (d) Flow with
downstream-pointing vortex structures, Red = 1130. (e) Turbulent jet,
Red = 1500. The flow is visualised by seeding the jet flow (pictures on the
left) and the cross-flow (pictures on the right) with smoke. The image
size is 3008 × 1960 pixels.

two photographs for each configuration. The 3008 × 1960 pixel

greyscale images were analysed based on the greyscale intensity

of the pixels corresponding to the smoke concentration.

The fourth data set is concentration maps of a glycerine–water

mixture in a continuous flow industrial stirred tank reactor. The

reactor is filled with dyed fluid at the beginning of the experiment.

At time zero, a clear fluid is introduced into the reactor, mixing

with and continuously washing out the dyed fluid. The feed loca-

tion is on the side of the reactor and the exit is at the top. The

experiment was performed for a range of Reynolds numbers from

laminar to high transitional: Re = 17, 165, 1478 and 4498. The

fluorescent dye is illuminated by a laser sheet and images of the

reactor are captured by a camera as the experiment progresses.

The image dimensions are approximately 1290 × 225 pixels. The

resulting data are normalised tracer concentration measurements

at each pixel. The concentrations of the tracer fluid change from 1

at the beginning to 0 when all the dyed fluid is washed out. Sev-

eral image frames from the experiments are shown in Figure 9.

Figure 9. Reactor concentration data for two Reynolds numbers with the
frame numbers shown below the images: (a) Re = 17. (b) Re = 1478. The
average image size is 1290 × 225 pixels.

Before further processing, the experimental data were filtered to

eliminate the Gaussian white noise coming from the camera.

RESULTS AND DISCUSSION

The four methods of measuring the scale of segregation were

applied to the four test cases and the results are discussed with

respect to the five criteria defined in the introduction. First, the

suitability of the methods for either point pattern or concentra-

tion data is noted. For each method, the practical considerations

for application to the test cases are given, together with directions

and suggestions on the best settings to use. This is followed by

a comparison of the results of the length scale analysis with the

scales visualised in the images and the physical meaning of the

calculated scales is discussed. The conclusions for each method

summarise the results of the evaluation criteria. Finally, the speed

of the calculations for each method is compared at the end of the

section.



Figure 10. Maximum striation thickness as it decays along the
micromixer.

Maximum Striation Thickness on a Transect

Transect sampling is suitable for both point and concentration

data. It was used to determine the maximum striation thickness

in the micromixer, stirred tank and the smoke test cases.

For the staggered herringbone micromixer, the transect was

located at mid-height of the microchannel, as illustrated in

Figure 2, and the striation thickness calculation was performed

using a resolution of "z = "x = 5 !m, which is equal to the mean

particle spacing.

The calculated maximum striation thickness along the

micromixer is shown in Figure 10. The width of the largest stria-

tion decreases exponentially as the fluid passes along the mixer.

This is characteristic of chaotic flows as the flow is divided and

reoriented at each element in the mixer, so the number of stria-

tions is expected to increase as Kn
0 , where K0 is the number of times

the fluid is divided in each mixer element and n is the number

of elements (Etchells and Meyer, 2004). As the number of stri-

ations increases, the CoV and the maximum striation thickness

will necessarily decrease, but the rate of decrease cannot easily

be predicted from the mixer geometry. In the laminar micromixer,

volume filling and scale reduction happen simultaneously and

the decay in the maximum striation thickness is a smooth curve.

Based on the slope of the curve in Figure 10, K0 is estimated to be

1.33. Using this value, 1.33, 4.2 and 17.3 striations are calculated

for 1, 5 and 10 mixer elements, respectively, which agrees well

with the data in Figure 6.

For particle dispersion in the stirred tank, the transect was

located at two-thirds of the tank height, as shown in the first image

of Figure 7. The transect resolution was based on the mean parti-

cle spacing, in the same way as for the micromixer data, giving a

transect height, "z ∼= 1 mm, and a striation thickness threshold,

"x ∼= 1 mm.

Figure 11 shows a rapid decay of maximum striation thickness

during the initial stages of mixing, but no significant reduction

in the scale of segregation after 10 impeller revolutions. Referring

to Figure 7, and recalling that the only striations measured are

for the black particles, not for the white spaces, the initial cluster

sizes are less than one-tenth of the tank diameter, and the parti-

Figure 11. Maximum striation thickness on a transect in the stirred tank;
Nt = number of time steps.

cles are rapidly dispersed throughout the tank: the first stage is

dominated by macromixing with a rapid decay of the maximum

striation thickness and CoV (Kukuková et al., 2008). During the

later stages of turbulent mixing, accurate definition of a maximum

striation thickness is difficult due to the sparse particle density at

the smaller scales of segregation, and the fact that the particles dis-

perse randomly in all directions, rather than through stretching

distributions in the underlying velocity field.

The species concentration data in the last two test cases cover

a continuous range of intensities due to the effects of molecular

diffusion and turbulent eddies. As a result, the evaluation of stri-

ation thickness is based on a threshold concentration, instead of

a threshold distance between tracking particles. For the smoke

distribution test case, the saturated white smoke was assigned a

concentration of 1 and the black background was assigned a con-

centration of 0. Several concentration thresholds were tested. By

analogy with Equation (1), the f function was used to identify

striations:

C > Cmin f (x) = 1

C ≤ Cmin f (x) = 0
(11)

where Cmin = 0.2, 0.3, 0.4, 0.5 and 0.6 and the mean concentration

is close to 0.2, but varies from image to image. When the lower

concentration limit is set too low, too much data are included

and the striations blur together, making them hard to distinguish.

In contrast, when the limit is set too high, visible striations of

low concentration may not be detected. The maximum striation

thickness for the smoke test case was measured on 15 vertical

transects distributed along the streamwise direction, as shown in

Figures 12 and 13.

Figure 12 shows the maximum striation thickness on 15 tran-

sects for the smoke distribution in Figure 8e. The maximum

striation thickness gets higher as the concentration threshold

drops. The smoke plume spreads as it flows from the jet outlet

towards the right side of the picture, while the smallest scales of

segregation get smaller and less distinct. The plume width, or the

macroscale of segregation, is accurately captured with a concen-

tration threshold of 0.2. Increasing the concentration threshold

leads to the detection of the mesoscales of segregation, which



Figure 12. Maximum striation thickness on 15 transects for the smoke
image in Figure 9e jet flow, showing a strong dependence on the
concentration threshold. The image is 3008 pixels wide and 1960 pixels
high. A greyscale intensity of 0.2 is equal to 82% of the mean
concentration (0.24) for the whole image.

decrease in size from left to right. The smaller scales of segre-

gation are difficult to confirm because the striations are not very

well defined in the image.

The maximum striation thickness for an image with clearly dis-

tinguishable striations is plotted in Figure 13. As in the previous

case, the lowest concentration threshold accurately captures the

macroscale of the smoke. In the first few transects where no large

structures are present, the calculation gives the size of the visi-

ble small striations (15–20 pixels). Further along the image, the

smallest striations cannot be detected by the maximum striation

thickness measurement because the transects cut across much

bigger smoke eddies. We conclude that if striations or any other

small to moderate sized structures are to be detected using this

method, the data set has to be free of structures bigger than the

scale of interest. This can be accomplished by sub-sampling part

of the image in a section that contains only striations, or only the

mesosized structures.

To compare the results more directly with a homogeneous mix-

ing field, two additional concentration thresholds were tested.

A concentration threshold of 95% of the mean concentration

Cmin = 0.95C̄ was chosen in analogy to the mixing time criterion,

and a limit of 200% of the mean concentration Cmin = 2C̄ was

tested in an attempt to reveal scales smaller than the macroscale,

based on the observation that the initial results presented in the

previous section tend to change from macroscale characterisation

to measurement of smaller scales at around Cmin = 0.4, which is

about 200% of the mean concentration. These limits were tested

on a series of three images shown in Figure 14. Figure 14a shows

the first image, originally part of Figure 9a. For this image, the

transect is located at 2/15 of the image width, corresponding to the

second transect in Figures 12 and 13. This transect location was

Figure 13. Maximum striation thickness on 15 transects for the smoke
image in Figure 9d cross-flow, showing a strong dependence on the
threshold concentration range. The image is 3008 pixels wide and
1960 pixels high. A greyscale intensity of 0.2 is 103% of the mean
concentration (0.195) for the whole image.

chosen because only striations and no bigger structures cross this

transect. The first enlarged sample, shown in Figure 14b, is 1/6

of the big image and contains only striations and no other struc-

tures. The third sample, shown in Figure 14c, is a 200 × 200 pixel

sample showing three striations. The transects for both enlarged

images are located at one half of the sample width. The maxi-

mum striation thicknesses for the 95% threshold were 34, 30 and

33 pixels, for the big, medium and small images, respectively. The

calculated scales are very similar to each other for all analysed

images. This shows that the maximum striation thickness on a

transect accurately and consistently captures the largest scales in

the data. For the 200% threshold, the maximum striation thick-

nesses were 13, 16 and 18 pixels, for the big, medium and small

images, respectively. This measurement produces smaller scales

than the 95% threshold and is well matched to the visual obser-

vation. The resulting length scales are obviously very sensitive

to the concentration threshold. When the scale of smaller struc-

tures is needed, the data have to be re-sampled to isolate the small

striations or eddies. There is no general recommendation for the

selection of Cmin. Different thresholds reveal different scales in the

data, so a meaningful Cmin threshold has to be chosen for each

problem.

The maximum striation thickness accurately captures the max-

imum length scale on a transect for either point or concentration

data. The spatial resolution matches the mean particle spacing

for particle data, and the pixel spacing for concentration data.

The method is very fast to apply, but the results represent only a

small sample of the population. Also, care must be taken to orient

the transects perpendicular to the striations of interest and to let

them pass through the worst mixed part of the mixing field. If

smaller structures are to be captured, sub-sampling of the image



Figure 14. A series of enlarged smoke cross-flow images showing the
transect locations.

may be required to isolate these structures. The maximum stria-

tion thickness is easiest to apply to point pattern data since the

mean particle spacing for a perfectly regular distribution is easily

determined. If concentration data are analysed, a concentration

threshold has to be selected in order to define the striations and

the results are very sensitive to this choice.

PNN

The PNN method is specifically suited to point pattern data and

cannot be applied to concentration data. In this paper, it will be

used for the micromixer and the stirred tank test cases. For both

cases, a hexagonal grid of sampling points was used, as shown in

Figure 3c. Figure 3d shows an example of the stirred tank parti-

cle data and Figure 3e illustrates the procedure used to find the

nearest neighbours for each grid point.

For meaningful statistical analysis, the distribution of distances

has to be normalised with some characteristic length scale. For

mixing analysis, this scale should be independent of time or mea-

surement resolution. The mean of the distribution changes with

time and the grid spacing and the mean homogeneous particle

spacing depend on the grid resolution and the number of particles,

respectively. The maximum separation distance between two par-

ticles in the plane offers a physically meaningful measure, which

is both time and resolution independent. In addition, the diagonal

of a rectangle, or the diameter of a pipe could both be used so this

normalisation can accommodate a range of mixing equipment.

All PNN distances were normalised with the maximum separa-

tion distance and then multiplied by 100, giving distributions in

terms of the percent of maximum separation for both geometries.

The effect of grid resolution was tested to verify the recom-

mended selection of k ≈
√

n (Diggle and Matern, 1980). For the

stirred tank data, an image containing 32 000 particles was evalu-

ated using sampling grids ranging from 130 grid points to 136 000

grid points. The mean PNN distance was consistent down to 512

grid points, and a smooth PNN distribution was obtained for grids

of 8600 grid points and higher. To maximise the use of the parti-

cle tracking data, the number of grid points was matched to the

number of particles for all subsequent calculations. The number

of points in the grid was 2480 for the micromixer and ranged from

28 000 to 56 000 for the stirred tank to allow for the variation in

the number of particles. The mean grid spacing for the micromixer

is 2.7 !m and for the stirred tank, it ranges from 1.1 to 1.5 mm.

The normalised PNN distributions are compared with a Pois-

son distribution in Figures 15 and 16. The Poisson distribution

has a mean and variance equal to the mean of the PNN distribu-

tion in all plots. Figure 15 shows the PNN distributions for the

micromixer test case. Moving along the length of the micromixer,

the distributions evolve from clustered to more random, which

is illustrated by their approach to the random Poisson distribu-

tion. However, even at the micromixer outlet, the PNN distribution

is more clustered than a random distribution. This accurately

reflects the presence of visible striations at the end of the mixer in

Figure 6. Notice that on the x-axis, the maximum measured sep-

aration drops from 40% of the diagonal to 10% of the diagonal

over the length of the mixer.

Figure 16 compares the PNN distribution with the Poisson

distribution for the stirred tank test case shown in Figure 7.

As the mixing progresses, the PNN distribution approaches the

random Poisson distribution, and the maximum measured sepa-

ration decreases from 40% of the diagonal to less than 1% of the

diagonal. At the beginning, the particle distribution is clustered,

indicated by a wide distribution with a peak at a small distance. A

skewed bell-shaped distribution appears at Nt = 10, which is the

time when the particles have filled the volume of the tank. As the

PNN distribution approaches the Poisson distribution, clustering

is reduced and the particles are more evenly distributed at the

smallest detectable scales.

In further studies, it might be interesting to investigate how the

PNN distribution relates to the distribution of striation thicknesses

in a sample area. This comparison was not completed in this work

because the total number of measured striation thicknesses on a

1D transect did not provide enough data to represent the whole

population of striation thicknesses in the 2D sample area.

The evolution of the index of dispersion is shown in Figures 17

and 18. The index of dispersion is the ratio of the population

variance to the population mean. For a random distribution of par-

ticles, the index of dispersion is equal to one. For the micromixer

test case in Figure 17, the curve decreases along the micromixer

and tends to a value of one at the end of the micromixer as the

particle distribution approaches a random state.

Figure 18 shows the index of dispersion curve for the stirred

tank. The curve rapidly decreases and drops below a value of one

after the first 10 time steps. Thereafter it decreases only slightly.

These two parts of the curve indicate a two-stage process of mix-

ing: the volume filling stage over the first 10 time steps, followed

by a scale reduction stage in the later time steps (Kukuková et

al., 2008). Index of dispersion values that are less than one show

that the particle distribution quickly becomes more regular than

a Poisson distribution.

The filtered point–particle variance, as defined in Equation (4),

is shown in Figures 19 and 20 for several values of the filter thresh-

old xR. Figure 19 shows the evolution of the mixing quality in the

micromixer expressed as the filtered PNN variance normalised by

the variance at the inlet. Four PNN variance curves for xR val-

ues of 0.5, 1.0, 2.5 and 5 !m correspond to approximately 20%,



Figure 15. Comparison of the nearest distance distributions (histogram) with the Poisson distribution (curve) for several sampling planes along the
micromixer.

40%, 100% and 200% of the mean grid spacing, respectively. As

xR increases, the PNN variance decreases because the criterion

of what is considered close enough to the expected homogeneous

distribution is more relaxed and it is easier to achieve the required

scale of segregation.

Figure 20 presents the evolution of the filtered PNN variance

over time in the stirred tank test case. The local point–particle

variance is normalised by the point–particle variance at time equal

to zero. Four xR values of 0.5, 1.0, 1.5 and 3 mm, corresponding

to approximately 33–50%, 67–100%, 100–150% and 200–300%

of the mean grid spacing, were used. The percentage varies here

since the number of particles—and therefore the number of grid

points—varies slightly with each time step. The filtered variance

shows a trend similar to the index of dispersion curve: a rapid

decrease in the variance at the beginning, followed by a grad-

ual decrease after 10 time steps. As expected, the PNN variance

decreases as xR increases and the scale of segregation requirement

is relaxed. It can also be seen that the values of the filtered PNN

variance for the turbulent stirred tank drop to a much smaller

fraction of the initial variance than for the laminar micromixer.

The PNN method is only suitable for point pattern data. It

is able to distinguish between segregated, clustered and regular

Figure 16. Comparison of the nearest distance distributions (histogram) with the Poisson distribution (curve) for each time step in the stirred tank.



Figure 17. Evolution of the index of dispersion for the laminar
micromixer.

Figure 18. Evolution of the index of dispersion for the turbulent stirred
tank.

distributions of particles. The index of dispersion provides a more

quantitative measure of these characteristics, while the filtered

PNN variance measures the uniformity of the distribution relative

to a minimum acceptable scale of segregation. The advantage of

the PNN method is that the results always represent the whole

population and have an underlying physical meaning. The disad-

vantage of this method is that the calculation is time-consuming.

The resolution of the PNN method ultimately depends on the

number of tracking particles in the data set, and the matching

of the grid to the number of particles, both of which increase the

computational time.

Correlograms and Variograms

In order to use correlograms and variograms for point pattern data,

concentrations would have to be calculated from quadrat sam-

pling. Since it is known that quadrat sampling reduces the spatial

resolution of the data, this approach is not recommended. Correl-

Figure 19. Normalised PNN variance for the micromixer test data
showing the effect of the filter threshold, xR. The mixing quality is
expressed as the filtered PNN variance normalised by the PNN variance
at the inlet.

Figure 20. Normalised PNN variance for the stirred tank test data
showing the effect of the filter threshold, xR. The mixing quality is
expressed as the filtered PNN variance normalised by the filtered PNN
variance at time = 0.

ograms and variograms are best suited for full field concentration

data.

The difference between the correlogram and the variogram

was illustrated in Figure 4. We now return to a quantitative dis-

cussion of the plot, which shows the horizontal variogram and

correlogram for the smoke image in Figure 8b cross-flow. The cor-

relogram curve drops below zero and the variogram curve exceeds

the value of one, indicating the presence of large-scale segrega-

tion. The original image reveals a large black area and another

large unmixed area containing smoke striations. The evaluation

of length scales from the correlogram is not defined for this kind

of data because of the presence of macrosegregation and small

oscillations due to local striations. Since large-scale segregation

is common in the initial stages of mixing and the quantifica-

tion of scales is desirable even for this type of mixing field, the



correlogram cannot be used consistently and only variogram

results are discussed for subsequent calculations.

The length scale calculation from the variogram slope (Equation

10) involves a quantity P which characterises the proportion of

minor species in the sample region. For the analysed images, the

concentrations have a form of intensity with the scale going from

zero to one, so P can be evaluated as the mean intensity in the

image.

The variograms and the associated length scale calculations

for the reactor test case were performed for all time steps

and Reynolds numbers and representative results are shown in

Figure 21. For both Reynolds numbers, the variograms approach

one as time progresses, indicating little remaining correlation

and thus good mixing. Both cases show a steadily increasing

variogram curve, indicating large-scale segregation in the mix-

ing field. Over time, the large-scale segregation diminishes for

the higher Reynolds number case but remains in the laminar

case. The persistent macroscale segregation, or lack thereof, is

clearly visible in Figure 9. The variograms for the higher Reynolds

number flow have periodic oscillations, which indicate an under-

lying periodicity in the data—in this case striations. Comparison

of the horizontal and vertical variograms reveals a much big-

ger segregation in the vertical direction, where the variogram

curves significantly exceed the value of one. In both directions,

the macrosegregation reduces with time.

Horizontal and vertical length scales calculated from the var-

iograms are shown in the bottom row of Figure 21. The length

scales for the higher Re are about 10 times smaller than for the

lower Re, which is expected. The scales increase initially as the

clear fluid begins to fill the vessel, reach a peak, and decrease

Figure 21. Reactor variograms and length scales; from top to bottom: horizontal variogram, vertical variogram and mean length scales; (a) Re = 17
and (b) Re = 1478.



as the injected fluid mixes with the contents of the reactor. The

length scales at the end of the experiment are much lower for

the higher Re case. The horizontal and vertical length scales are

comparable for the higher Re flow, but for the laminar case, the

vertical length scale is larger than the horizontal one. When the

length scale is compared with the image and the pixel size of the

image, some interesting results emerge. Comparing the horizon-

tal and vertical length scales for the low Re case with the original

image, the white area in frame 100 is about 190 pixels wide by

430 pixels high. The measured average length scale is 50 pixels in

the horizontal direction and 200 pixels in the vertical direction.

If the actual horizontal length scale is multiplied by the fraction

of the vertical space taken up by the blob, the estimated mean

length scale is 62, which approaches the variogram result of 50.

Applying this same logic to the vertical length scale gives an esti-

mate of 360 pixels, which is much larger than the reported result

of 200 pixels. Similar comparisons can be applied to the rest of the

images. The inevitable conclusion is that the mean length scale

correctly tracks the progress over time to a better mixed image, but

contains very little information about the complex mixing struc-

tures in the image, which necessarily contain a wide distribution

of length scales. The length scale obtained from the variogram

does not give a direct measure of the striation thickness.

Variograms for the smoke data are shown in Figure 22. The posi-

tive slope of the curves, which persists over most of the calculation

range, arises from the large-scale segregation in the mixing field.

The large black areas in the photographs dominate the results. The

variograms also reveal periodicity in the concentration, which is

most visible for the vertical cross-flow case. For some jet images,

there is a slight periodicity of flow in the horizontal direction, but

it is not as easily observed as the striations in the cross-flow case.

This is due to the periodic repetition of smoke eddy structures,

which can be seen in Figure 8a, c and d. For the laminar (Figure 8a)

and turbulent (Figure 8e) smoke images, no periodicity can be

either visually observed or detected using the variogram.

The horizontal and vertical mean length scales calculated from

the initial slope of the variogram are presented in Figure 23. A first

look at the figure reveals that the scales for the cross-flow images

are always smaller than for the jet images. Indeed, the size of the

smoke structures is smaller when the cross-flow is seeded with

smoke, in contrast with the seeded jet flow. Further examination

shows that the length scales in the horizontal direction are always

bigger than in the vertical direction. For all the jet pictures, this is

caused by the dimensions of the smoke cloud structure; its length

is always bigger than its height. For the cross-flow image, this

phenomenon arises because the horizontal direction cuts through

the length of the smoke striations and the vertical direction cuts

across their width.

Length scales calculated from variograms contain information

about the mean macroscale of the concentration field. To inves-

tigate whether smaller scales can be captured, for example the

width of smoke striations in the smoke images, the same enlarged

images that were used for the maximum striation thickness analy-

sis, shown in Figure 14, were used for the length scale calculation.

The calculated vertical length scales were 11, 2.2 and 2.8 pixels for

the big, medium and small images, respectively. The length scale

was smaller for the enlarged images that contained striations only.

The scale did not change much as the medium image was mag-

nified further to show three striations only. These results show

that smaller scales can be captured if a sub-sample containing

Figure 22. Horizontal (top) and vertical (bottom) variograms for the smoke data: (a) Jet flow and (b) cross-flow; results for data from Figure 9a–e, as
shown in the legend.



Figure 23. Mean horizontal and vertical length scales for the jet images.

only structures at the scale of interest is used for analysis, pro-

vided that a good data resolution is maintained. Comparing these

variogram length scales with the maximum striation thicknesses

for the same data clearly illustrates the difference between the

two methods—the maximum striation thickness is sensitive to

the concentration threshold, but accurately captures the striation

size of 30 pixels; the variogram length scale of 2 pixels has no

adjustable parameters, but also does not give the striation thick-

ness directly.

The variogram is a useful tool for characterising the correlation

or variability in concentration fields and has a resolution equal to

the pixel resolution of the data. The variogram reveals both large-

scale segregation and periodicity. The length scales calculated

from variograms represent the average of the whole population

in the concentration field, so sub-sampling is required if smaller

structures in the mixing field are of interest. When interpreting

the length scales, one must also bear in mind that they are not

a direct measure of the striation thickness, or even an area aver-

aged striation thickness. No simple method has yet been proposed

to extract a distribution of length scales directly from variogram

data. In comparison to the maximum striation thickness and PNN

calculations, this method is moderately fast.

CONCLUSIONS

The objective of this work was to examine four methods of mea-

suring the scale of segregation and to test their application to

2D fields of mixing data: the maximum striation thickness on a

transect, PNN distributions, the correlogram and the variogram.

Two types of data were used to evaluate the measurement meth-

ods: particle tracking data and concentration field data, with two

test cases of each type. The particle tracking data were obtained

from laminar mixing of particles in a staggered herringbone

micromixer and turbulent dispersion of particles in a stirred tank.

The concentration field data were for a jet in cross-flow and for a

concentration step change experiment in a continuous flow indus-

trial reactor.

The methods were compared and evaluated in order to deter-

mine their strengths and limitations for the analysis of mixing

data. Five questions were addressed during the evaluation of the

four measures:

1. What type of data is the method suitable for?

2. What information does it provide?

3. Are the results physically meaningful?

4. What is the smallest scale of mixing resolved by the method?

5. How fast is the calculation?

The answers to this set of questions are conveniently sum-

marised in Table 1, followed by a more detailed discussion of

each of the criteria.

The suitability of a measurement method varies for different

types of data. The maximum striation thickness on a transect is

easiest to apply to point pattern data since the sharp striation inter-

faces are easily determined. If concentration data are analysed, a

concentration threshold has to be selected in order to define the

striations and the results are very sensitive to this choice. The

PNN method is only suitable for point pattern data and cannot

be used for concentration data. Both the variogram and correlo-

gram are useful for characterising concentration data, however,

only the variogram can be used to determine length scales from

data containing large-scale segregation or periodicity. Because this

type of data is common in today’s mixing research, correlogram

calculations were not pursued.

The methods provide scale measurements in different forms.

The maximum striation thickness accurately captures the max-

imum length scale on a transect. The PNN method is able



Table 1. Comparison of the four methods for measuring the scale of segregation

Maximum striation

thickness on a transect PNN Correlogram Variogram

What type of data is the

method suitable for?

Location data (point

patterns) concentration

data (not so easy)

Location data (point patterns) Concentration data; no

large scale segregation,

no periodicity

Concentration data

What information does it

provide?

Maximum length scale;

sampled data

Clustering character, closeness

to homogeneous

distribution; whole

population

N/A Integral length scale;

whole population

Are the results physically

meaningful?

Exact length scale Exact distance distribution N/A Proportional to real

scales

What is the smallest scale

of mixing resolved by

the method?

Mean inter-particle

spacing

Mean grid spacing N/A Measured data spacing

(e. g. 1 pixel)

How fast is the calculation? Fast, 7 sa Time consuming, 9 mina N/A Moderately fast, 6 min

25 sa

a The calculation times are for one frame, calculated in Matlab R 2009a using the AMD Athlon 64 processor, 2.41 GHz and 2 GB RAM.

to distinguish between segregated, clustered and regular dis-

tributions. The index of dispersion calculated from the PNN

distributions provides a more quantitative characterisation of the

distribution of the population. The filtered PNN variance measures

the uniformity of the distribution relative to a reference scale of

segregation, xR. The variogram is a useful tool for characterising

the correlation or variability in concentration data and can reveal

both large-scale segregation and periodicity. The length scales cal-

culated from variograms represent a proportional average of the

whole data field.

The physical meaning of the results depends on the quality of

sampling. The maximum striation thickness on a transect repre-

sents only a small sample of the population, so to get meaningful

results, care must be taken to orient transects perpendicular to

the striations of interest and to let them pass through the worst

mixed part of the mixing field. If smaller structures need to be

captured, sub-sampling of the image may be required. The PNN

distributions always represent the whole population and have an

underlying physical meaning provided enough tracking particles

are used to resolve the scales of interest, and the number of grid

points is matched to the number of particles. The index of disper-

sion provides a measure of departure from a random distribution

for the whole population. The filtered PNN variance uses a sample

of the population, which depends on the filter size xR. Increasing

the filter size relaxes the homogeneity criterion. The length scales

calculated from variograms represent the average of the whole

population in the data field, so sub-sampling is required if smaller

structures in the mixing field are of interest. When interpreting

the variogram length scales, one also has to bear in mind that they

are not exact length scales but proportional length scales, and no

simple method has yet been proposed to extract a distribution of

real length scales from variogram data.

The smallest length scale that can be obtained from the striation

thickness calculation is slightly smaller than the mean particle

spacing that is used to define the striation threshold. For complex

data sets, sub-sampling of data is needed to measure the size of

small structures. For the PNN distributions, the smallest scales

are given by the mean grid spacing. The minimum scale of the

variogram measurement is fixed by the image resolution.

The speed of calculation is directly proportional to the size of the

data set and the number of operations for each frame. The max-

imum striation thickness on a transect calculation is the fastest

because it involves just one or a few line samples of the data.

The PNN calculations were the most time consuming because the

number of grid points was matched to the number of particles and

the distances from all grid points to all particles were calculated.

The variogram calculations were moderately fast compared to the

other methods. Both the PNN and the variogram algorithms could

be optimised to get faster results, but in both cases the computa-

tions were fast enough that this was not deemed necessary.

This study provides a toolkit of methods for length scale charac-

terisation, together with benchmarks for the use and limitations

of each tool. The calculation algorithms for each method are avail-

able as supplementary material from the Journal or on request to

the corresponding author.

NOTATION

A sample region

C concentration (mol/L or 1)

C̄ mean concentration (mol/L or 1)

Ci(x) concentration at location x (mol/L or 1)

Cimp impeller off-bottom clearance (m)

Cis standardised concentration value at location x

Cmin lower limit of the concentration threshold (mol/L or 1)

CoV coefficient of variance

dg micromixer groove depth (!m)

D impeller diameter (m)

Dpipe pipe diameter (m)

dx grid spacing in x direction (m)

dxz length of the hexagon side in the sampling grid (m)

dz grid spacing in z direction (m)

f(x) function for distinguishing striations

h data separation distance (m, pixels)

H micromixer height (!m)

k number of grid points in one direction

m number of grid points or nearest distances

n number of particles in area A, number of mixer elements

N(h) total number of pairs of data separated by distance h

Nt number of time steps/impeller revolutions

i measurement location number

Idisp index of dispersion (m)

K0 number of fluid divisions in a mixer element



LD mean length scale calculated from the correlogram (m,

pixels)

LV mean length scale calculated from the variogram (m, pix-

els)

P proportion of species of interest in the sample region

Re Reynolds number

Red jet Reynolds number

Rx(h) coefficient of correlation at separation distance h

T tank diameter (m)

wg micromixer groove width (!m)

W micromixer width (!m)

x, y, z Cartesian coordinates (m)

xG mean grid spacing (m)

xi nearest distance for ith grid point (m)

x̄i mean PNN distance (m)

xR PNN variance filter threshold (m)

"x particle separation threshold (m)

"z transect height (m)

Greek Letters

x(h) variogram at separation distance h

�2 variance (mol2/L2 or 1)

�2
R filtered PNN variance (m2)

�2
R filtered PNN variance at the micromixer inlet or at time = 0

(m2)

� x coordinate of the point on the Rx(h) curve where the

curve crosses 0 (m)
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