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Abstract

We construct, for the first time to our knowledge, a one-dimensional stochastic
field {u(x)}x∈R which satisfies the following axioms which are at the core of the phe-
nomenology of turbulence mainly due to Kolmogorov:

(i) Homogeneity and isotropy: u(x)
law
= −u(x)

law
= u(0)

(ii) Negative skewness (i.e. the 4/5th-law):
E
[
(u(x+ `)− u(x))3

]
∼`→0+ −C ` , for some constant C > 0

(iii) Intermittency:
E
[
|u(x+ `)− u(x)|q

]
�`→0 |`|ξq , for some non-linear spectrum q 7→ ξq

Since then, it has been a challenging problem to combine axiom (ii) with axiom (iii)
(especially for Hurst indexes of interest in turbulence, namely H < 1/2). In order
to achieve simultaneously both axioms, we disturb with two ingredients a underlying
fractional Gaussian field of parameter H ≈ 1

3 . The first ingredient is an independent
Gaussian multiplicative chaos (GMC) of parameter γ that mimics the intermittent, i.e.
multifractal, nature of the fluctuations. The second one is a field that correlates in an
intricate way the fractional component and the GMC without additional parameters, a
necessary inter-dependence in order to reproduce the asymmetrical, i.e. skewed, nature
of the probability laws at small scales.
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1 Introduction

1.1 General words concerning the present approach

The quest for a rigorous probabilistic model of the velocity field in a 3d turbulent flow
is a longstanding problem which goes back to the seminal work of Kolmogorov [17]. The
purpose of this work is to propose a new and tractable model in this direction. For the sake
of simplicity, we will restrict to the simplified framework of 1d random fields. However, we
believe our model can be generalized to the realistic 3d case: this generalization will be
considered in a sequel paper.

More specifically, we will construct a one dimensional random field (u(x))x∈R with
remarkable multifractal and asymmetric (or skewed) properties: see equations (1.9) and
(1.13) below. Though it is rather easy and classical to construct a field u which satisfies the
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multifractal property (1.9) or the skewness property (1.13), it is non trivial to construct a
field u which satisfies both properties. As will be explained in section 2.1, both properties
are essential in view of applications to turbulence.

On the mathematical side, the rigorous analysis of the field u is also quite challenging
and relies on a refined analysis of Gaussian multiplicative chaos measures (GMC, hereafter)
and on the study of quite tedious integrals depending on real parameters. The theory of
GMC measures has grown into an essential field of probability theory since the pioneering
work of Kahane [16]: apart from turbulence, GMC measures are also widespread in the
general field of conformal field theory (with applications to Liouville quantum gravity)
and in the field of finance (let us mention that modeling asset prices in a realistic way
bears striking similarities with the topic of this paper, i.e. the modeling of the velocity
field of a turbulent flow). See for instance the review [27] concerning this topic.

The organization of the paper is as follows. Next, we introduce the main notations
of the paper and state the main results, i.e theorem 1.2 and proposition 1.6 which state
the important properties of the field u. In the next section, we present in detail the main
motivations from turbulence that justify the construction of the field u. Then, in the
following sections we proceed with the proofs.

1.2 Notations and statement of the main results

We consider a log-correlated stationary centered Gaussian field X̂ with covariance

E[X̂(x)X̂(0)] = ln+
L

|x|

for some fixed length scale L > 0 where ln+ x = max(lnx, 0) for x > 0. In the sequel, we

will set 1
|x|+ = e

ln+
1
|x| = max( 1

|x| , 1). We also consider a smooth regularization of X̂, call

it X̂ε, with covariance structure satisfying

∀x 6= 0, Ĉε(x) = E[X̂ε(x)X̂ε(0)] →
ε→0

ln+
L

|x| , (1.1)

and set
cε = Ĉε(0) = E[X̂ε(x)2]. (1.2)

One can for instance choose X̂ε = 1
ε (X̂ ∗ θ( .ε)) where θ is a smooth mollifier.

We will focus in the rest of this paper on the following stochastic model of 1-d turbulent
velocity field:

Definition 1.1 (The stochastic field under study). Recall that cε = E[X̂ε(x)2] (1.2) and
consider an independent white noise, call it W . We consider then a regularized field uε(x),
x ∈ R, defined by

uε(x) :=

∫
φ(x− y)Xε(y)eγX̂ε(y)−γ2cεW (dy), (1.3)

where we have set

Xε(y) :=

∫
kε(y − z)eγX̂ε(z)−γ

2cεW (dz), (1.4)
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and the two following deterministic kernels:

φ(x) = ϕL(x)
1

|x| 12−H
, (1.5)

with ϕL(x) a characteristic cut-off function over the (large) fixed length scale L, that we
assume without loss of generality to be even, and

kε(x) =
x

|x|
3
2
ε

1|x|≤L, (1.6)

where |x|ε is a regularized norm of the vector x over the (small) length scale ε. In the
sequel, for the sake of clarity, we will only consider the case L = 1 and will use ϕ = ϕ1.
This is no restriction as the general case can be dealt with similarly.

It is obvious to check that the process uε is statistically homogeneous. The point is to
determine whether the family of processes (uε)ε converges to a non trivial limit as ε→ 0.
For this, we will assume throughout this section that

2γ2 < 1. (1.7)

The requirement (1.7) is the optimal condition ([27]) to ensure that almost surely the
random measures

M ε
2γ(dy) := e2γX̂ε(y)−2γ2cε dy

converge weakly towards a random measure M2γ on R. We also introduce the so-called
Hurst index

H ∈]0, 1[. (1.8)

Now we detail our main results.

Theorem 1.2. Assume (1.7)+(1.8). Then:

1. consider q such that 0 6 q < 1
2γ2
∧ (1 + H

2γ2
). We have for all x ∈ R

sup
ε∈]0,1]

E
[
|uε(x)|q

]
< +∞.

2. the marginals of the family (uε)ε converge in law as ε→ 0 towards the marginals of
some stationary centered stochastic process u, which is continuous and satisfies for
0 6 q < 1

2γ2
∧ (1 + H

2γ2
)

E[|u(x)− u(y)|q] ∼ Cq|x− y|ξ(q) (1.9)

where
ξ(q) = (H + 2γ2)q − 2γ2q2. (1.10)

This is the most general statement that we can claim under rather weak assumptions.
The point that we want to improve is the continuity of sample paths of our process, and
even Holder continuity. Thus we claim
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Corollary 1.3. Assume (1.7)+(1.8), and the further condition H + (
√

2γ− 1)2 > 1, then
the process u given by Theorem 1.2 has almost surely, continuous sample paths, which are
even locally α-Hölder for any α < H + (

√
2γ − 1)2 − 1.

Remark 1.4. In fact, we could certainly prove the almost sure uniform convergence over
compact sets along subsequences of the family (uε)ε but we are more interested in the
existence of the limiting process than the way it can be approximated. Furthermore we do
not expect that the Hölder exponent we give above is optimal.

Coming back to our original motivations in turbulence, we want to make sure that the
field, once the asymptotic limit ε → 0 has been taken, possesses moments of increments
u(x) − u(y) of order at least 3, without the absolute value, and that they go to zero as
a power-law of the distance x − y, reflecting the skewness of the field. The condition for
existence of moments of order 3 is different from the one of the moments of increments,
with absolute value, depicted in Theorem 1.2. Instead, we show the condition for existence
of E[(u(x)− u(y))3] is

γ2 <
1

8
, (1.11)

independently on H ∈]0, 1[. Our analysis of the moment of order 3, asymptotically in the
limit x− y → 0+ (see Eq. (3.14) for a complete expression), leads to

E[(u(x)− u(y))3] ∝ (x− y)3H−12γ2
∫ ∞

0
fH(h)

1

h
1
2

+12γ2
dh,

where is involved a special function fH(h) defined by a integral formula (see Eq. (3.15)).
Whereas we can compute the behaviors of fH(h) for small and large values of the argument
h, and determine the conditions of the existence of this third order moment, overall the
function fH is tedious to study. In particular, it turns out to be difficult to show that
the integral entering in the former expression does not vanish. But a simple numerical
estimation of the function fH , presented in Annex A.1, suggests that the following holds

Assumption 1.5.

∀h > 0, and H ∈]0, 1[/{1/2},
(

1

2
−H

)
fH(h) > 0. (1.12)

Thus, at a given parameter H, the function fH(h) does not change its sign, that would
show that indeed the integral entering in the expression of the third order moment does
not vanish.

Our next proposition relies on assumption (1.12) which seems challenging to prove
rigorously (in spite of overwhelming numerical evidence that it is true):

Proposition 1.6. Assume (1.11) and (1.12). Then

E[(u(x)− u(y))3] ∼
x−y→0+

C ′3(x− y)ξ(3) (1.13)

for some non vanishing constant C ′3.
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Figure 1: An instance of the random process uε defined in 1.3 over 3 cut-off length scale
L. Here, we have renormalized the process by its standard deviation, and we have used
γ2 = 0.025/4 and H = 1

3 + 4γ2, at a given resolution scale ε. See details in Annex A.2.

Remark 1.7. As far as the modeling of turbulence is concerned, analysis of experimental
measurements and numerical simulations of the Navier-Stokes equations give the universal
value 4γ2 = 0.025 [15, 7]. Given this value for γ2, we are led to choose H = 1

3 + 4γ2,
according to Eqs. (1.10) and (1.13), in order to fulfills the requirement of the 4/5th-law
of turbulence (see Section 2.1) that states that ξ(3) = 1. For this set of parameters, the
multiplicative constant C ′3 entering in the proposition 1.6, given the assumption 1.12, is
strictly negative.

With these given values for the free parameters γ and H, we represent in Fig. 1 an
instance of the process uε, at a given resolution scale ε. See Annex A.2 for details on the
numerical simulation. We see by eyes that statistical laws are asymmetric at small scales.
In particular, large negative values of increments are more probable than large positive
ones.
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2 Axiomatics of Kolmogorov’s theory of turbulence, and de-
sign of the velocity field

2.1 The phenomenological theory of Kolmogorov

The statistical theory of incompressible, homogeneous and isotropic hydrodynamic turbu-
lence is notoriously known to be a difficult matter. Making such a statement, as it can be
already found in many classical textbooks [4, 21, 29, 15, 26]), would not surprise anyone
since the underlying dynamics of viscous fluids is given by the Navier-Stokes equations,
the study of which constitutes a difficult mathematical problem. The very link between
the statistical approach and these dynamical equations is discussed in [14], and is known
in the physics literature as the Hopf’s equation.

Based on natural and laboratory observations, the statistics of velocity fluctuations of
fully developed turbulence are mostly understood in a phenomenological framework, given
a limited set of free parameters, for which Kolmogorov made a series of key contributions
[17, 18] (see the textbook of [15] for a extended presentation of this, and related numerous
contributions of several authors).

The approach of Kolmogorov recasts the observed fluctuations of a fully developed tur-
bulent velocity field, stirred at large scale by a stationary, say random, external divergence-
free forcing vector field, into a consistent axiomatic framework [15]. To fix the ideas, call
uνi (x, t)i∈{1,2,3},x∈R3,t∈R such a velocity field, and ν > 0 the kinematic viscosity of the
fluid under interest. The time evolution of the velocity field is given by the incompressible
Navier-Stokes equation (the density of the fluid is taken as unity) and reads

∂tu
ν
i + uνj ∂ju

ν
i = −∂ipν + ν∆uνi + fi (2.1)

where p is the pressure field, determined by the additional incompressibility condition
∂iu

ν
i = 0, and f a divergence forcing field, smooth and typically correlated over a large

spatial scale L, called the integral length scale in turbulence literature. This large scale L
is schematically the scale at which energy is injected into the flow, and is independent of
the viscosity ν.

The phenomenology of Kolmogorov can be decomposed in terms of 3 axioms, that
remain for the most part, as far as we know, unrelated to the Navier-Stokes equations. For
simplicity, we will present them in a uni-dimensional context. Take for instance the velocity
component along a given axis in the laboratory reference frame, say x, and consider its
spatial distribution along that very same axis. This field can be measured experimentally
in wind tunnels or in jets, once the so-called streamwise velocity component is interpreted
in a spatial context using the Taylor’s frozen hypothesis [15]. Henceforth, we work in the
1-dimensional space, and we call the respective velocity field uν(x, t)x∈R,t∈R. The axioms
read

• (concerning the velocity variance) When forced by the divergence-free vector field f
entering in the Navier-Stokes equations (Eq. 2.1), the velocity field reaches a statis-
tically stationary regime, in which the variance of any velocity components remains
finite and becomes independent on viscosity ν when ν gets smaller. In particular, as
far as the velocity component we are interested in is concerned, we write

σ2 = lim
ν→0

lim
t→∞

E
[
(uν(x, t))2

]
<∞. (2.2)
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• (concerning the asymptotics of the mean dissipation) To ensure the finiteness and
ν-independence of the variance, the flow will self-organize to dissipate all the injected
energy at a ν-independent rate. This axiom reads more precisely

0 < lim
ν→0

lim
t→∞

νE
[
|∂xuν(x, t)|2

]
<∞. (2.3)

In other words, as ν gets smaller, this average viscous dissipation becomes indepen-
dent on ν itself. It is known in the literature as the dissipative anomaly [13]. Its
actual value can then only be given by the statistical properties of the flow at large
scale L. From a dimensional point of view, there is no other choice than σ3/L.

• (concerning the asymptotical non-differential nature of the velocity field) As depicted
by the second axiom (Eq. 2.3), as viscosity vanishes, the variance of the spatial
gradients diverges (as 1/ν). In other words, as ν → 0, the velocity field remains
bounded but is rough (i.e. non differentiable). In particular, for q ∈ N, the respective
structure functions behave as

lim
ν→0

lim
t→∞

E [(uν(x, t)− uν(y, t))q] ∼
x−y→0+

Dqσ
q

(
x− y
L

)ξq
, (2.4)

where Dq and ξq are universal functions of the order q, universal in the sense that
they are independent on both characteristic scale and amplitude of the forcing term,
and on viscosity ν. Here, the constants Dq, up to nondimensionalization using σ and
L, are related to the constants Cq (when q is even) and C ′3 (when q = 3) entering
respectively in theorem 1.2 and proposition 1.6. When looking at experimental data,
we can estimate that, in good approximation, ξ2 ≈ 2/3. This is called the 2/3th-law
of turbulence, which is not based on a rigorous derivation assuming axioms 1 (Eq.
2.2) and 2 (Eq. 2.3). It corresponds in a equivalent formulation in Fourier space to
the power-law decay of the velocity power-spectrum with an exponent 5/3, and says
that the Hölder exponent of velocity is close to 1/3 in a statistically averaged sense.
Furthermore, assuming the first two axioms (Eq. 2.2 and 2.3), using the stationary
solution of the so-called Kármán and Howarth equation [17, 15], it can be shown
rigorously that ξ3 = 1, and that D3 is a universal constant, strictly negative, and
related to the ratio of the average viscous dissipation by its naive dimensional estima-
tion σ3/L (multiplied by the factor −4/5). This is called the 4/5th-law of turbulence
[15]. Processing experimental data beyond the second and third order moments sug-
gests strongly that ξq is a non linear and concave function of the order q. This is
known as the intermittency, i.e. multifractal, phenomenon. We note, as a definition,
γ2 = −1

4(∂2ξq/∂q
2)q=0 (consistently with (1.9)) the intermittency coefficient. It is

observed universal, i.e. for any Reynolds numbers and forcing conditions, and it has
been measured that 4γ2 = 0.025 (see for instance [15, 7] and references therein).

2.2 The underlying fractional Gaussian field

To go further in this statistical picture of turbulence, we could wonder whether it is
possible to give a rigorous meaning of this ensemble of three axioms. We are thus asking
whether we can build up a 1d-velocity field that mimics the fluctuations of fully developed
turbulence, using, as it is classically done in a Wiener chaos expansion, Wiener integrals
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[23]. A proposition of such a stochastic representation of turbulence was firstly made by
Kolmogorov, and formalized by Mandelbrot and van Ness [20] in the more general class of
Gaussian fractional Brownian motions. Call ug

ε(x)x∈R such a Gaussian process, defined by

ug
ε(x) =

∫
φε(x− y)W (dy), (2.5)

where φε is a deterministic kernel given by

φε(x) = ϕL(x)
1

|x|
1
2
−H

ε

, (2.6)

and |x|ε a regularized norm of the vector x over the (small) length scale ε, and ϕL(x) a
characteristic cut-off function over the (large) length scale L. Adapting the arguments of
Ref. [20], as it is done in Refs. [28] and recalled in [24], it can be shown that the Gaussian
process ug

ε(x) (Eq. 2.5) converges when ε → 0, whatever the regularizing mechanism
(entering in the very definition of the regularized norm |x|ε) and for H ∈]0, 1[/{1/2},
towards a finite variance Gaussian process ug(x), which is non-differentiable. Its structure
functions are given by

E [(ug(x)− ug(y))q] ∼
x−y→0+

Dg
qσ

q

(
x− y
L

)qH
, (2.7)

where Dg
q are universal constants, in the sense we have defined before. Moreover, Dg

2q+1 =
0. Going back to the physics of turbulence, considering the particular case H = 1/3, we see
that this Gaussian field fulfills axiom 1 (Eq. 2.2), the regularizing scale ε can be eventually
chosen with the appropriate dependence on ν in order to fulfill axiom 2 (Eq. 2.3), but fails
at reproducing both the 4/5th-law of turbulence (i.e. Cg

3 = 0) and the nonlinear behavior of
the spectrum of exponents ξq related to its non-vanishing curvature at the origin (γ 6= 0).
Nonetheless, a Gaussian process as a underlying random field is an appealing starting
point since it allows to reproduce the first two axioms and the 2/3th-law of turbulence.
The purpose of this article is to show how to properly disturb this Gaussian field in order
to reproduce the missing key behaviors of turbulence, which are the 4/5th-law and the
intermittency phenomenon.

2.3 Introduction of the Gaussian multiplicative chaos

To do so, let us first focus on the intermittency phenomenon. One of the simplest way
to understand and model this intrinsically non Gaussian nature of turbulence and its
related non-vanishing intermittency parameter γ 6= 0, is to consider the exponential of
a logarithmically correlated Gaussian field X(x), as it was proposed by Mandelbrot [19].
In this spirit, the theory of multiplicative chaos [16, 27] gives a rigorous meaning to the
random measure “eγX” applying a proper regularizing procedure and taking the limit.

Remark that the Gaussian process X is assumed to be logarithmically correlated, in
particular the variance has to diverge. One could then wonder what meaning can be given
to the exponential of it. This is properly understood in the framework of multiplicative
chaos [16, 27]. Disturbing the underlying Gaussian field ug(x) previously described would
be naturally done while multiplying the Gaussian white measure W entering in its defini-
tion (c.f. 2.5) by this singular measure “eγX”. Thus, we are asking for a proper meaning
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of not only the exponential of the logarithmically correlated Gaussian process X, but
also the meaning of this multiplicative chaos multiplied by a distributional white noise
W . Preliminary mathematical study of this was done in Ref. [28], also in the context of
fully developed turbulence. It turns out that giving a meaning to the random distribution
“eγX(x)W (dx)” is not obvious, besides the trivial case of taking X and W independent. It
is easy to see that if indeed the multiplicative chaos and the white measure are taken inde-
pendent, this will lead to a vanishing third order moment of velocity increment, and thus
to the impossibility of reproducing the 4/5th-law of turbulence. The difficulty in defining
“eγX(x)W (dx)” as a well defined random measure lies in the necessity, in particular for
turbulence modeling purposes, to consider the two fields X and W being correlated. Let
us also keep in mind that at the end, we would like furthermore to apply a linear operation
on this measure with a kernel φ (Eq. 2.6) that becomes singular in the range of interesting
values H < 1/2.

In this context, considering, instead of the product of the two random distributions
eγX(x) and W (dx), the product of the distribution eγX(x) by a finite-covariance field, say
ω(x)dx, appears to be a natural way to properly define such a measure. This has been
studied in Ref. [2] for financial applications. It turns out that their proposition, that is
to take for the Gaussian field ω(x) a fractional Gaussian noise as considered in [20] (see
Ref. [2] for details) and a given cross-covariance structure of the fields ω(x) and X(x),
allows to reproduce a non-vanishing third-order structure function when H > 1/2, making
such a process skewed. Unfortunately for applications in turbulence theory, the interesting
case H < 1/2 is not included in their results. Further theoretical works in this direction
[1, 25], taking as a simplified framework the case of independent fields ω(x) and X(x),
indeed show that the predicted spectrum of exponents ξq becomes independent on H when
H < 1/2. This is related to the pathological behavior of the fractional Gaussian noise at
a high level of roughness H < 1/2.

We see that constructing a uni-dimensional random field that fulfills the three axioms of
Kolmogorov, including intermittency γ 6= 0, the skewness phenomenon (i.e. D3 6= 0) and ξ2

close to 2/3, is far from being easy. We thus need to rethink the building block of the Wiener
integrals that we want to make use of. Elaborating on the propositions made in Ref. [28],
it was proposed in Ref. [10], to include in this picture some aspects of the Euler equations,
and more precisely some aspects of the vorticity stretching mechanism. The main output
of this work is the proposition of a homogeneous, isotropic, incompressible (i.e. divergence-
free) random vector field, based on a underlying fractional Gaussian field structure and
a matrix multiplicative chaos (developed in Ref. [9]) that is shown, numerically, to be
realistic of a fully developed turbulent flow. In other words, as far as we could go in a
numerical simulation, the proposed velocity field of Ref. [9] is consistent with the axiomatic
approach of Kolmogorov. Unfortunately, at this stage, an exact derivation of its statistical
properties, and their asymptotical behavior when the resolution scale ε goes to zero, seems
to be out of range. The difficulty in obtaining exact properties is linked to the existence
of correlations between the matrix multiplicative chaos and the underlying vector white
noise entering in the construction. A further theoretical analysis of simplified versions of
this random vector field, assuming for instance independence of the matrix multiplicative
chaos and the underlying Gaussian white vector, or performing a perturbative expansion
in the small parameter γ, was proposed in Ref. [24]. This study confirmed the realism of
the random vector field using massive numerical simulations, and illustrated some of the
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mechanisms at the root of a non-vanishing third order structure function.

2.4 An intermediate non canonical uni-dimensional field

Given the observed (numerically) realism of the vector field proposed in Refs. [10, 24],
and in front of the difficulty of defining rigorously the product of a (matrix) multiplicative
chaos by a (vector) white noise with a given inter-dependence, we make hereafter the choice
to work with a uni-dimensional ersatz. This allows us to push forward our understanding
of such singular measures, and to obtain exact expressions of their statistical properties.
A natural choice of this ersatz, in the spirit of the stochastic structure of the formerly
described vector field, is to consider the following intermediate field

uint
ε (x) =

∫
φ(x− y)eγX̃ε(y)−γ2E(X̃2

ε )W (dy), (2.8)

where enters, compared to the Gaussian version of the field (2.5) (φ being the pointwise
limit of the deterministic kernel φε defined in (2.6) when ε→ 0), an additional multiplica-
tive chaos obtained while exponentiating a Gaussian field X̃ε. It is defined as the following
stochastic integral

X̃ε(y) :=

∫
kε(y − z)W (dz), (2.9)

where enters a deterministic kernel given by

kε(x) =
x

|x|
3
2
ε

1|x|≤L, (2.10)

that ensures to X̃ε a logarithmic correlation structure in the limit ε→ 0. It is a standard
construction in the framework of the GMC [27], that is made to give intermittent, i.e.
multifractal, corrections to the underlying Gaussian structure (2.5). Similar types of fields,
such as (2.8), were considered in Ref. [28], but here, and it is original at this stage, the
kernel entering the construction (2.10) is odd, as suggested by the tensorial kernels entering
in the definition of the vector fields of Refs. [10, 24]. Notice here, and it is crucial to allow
for a possible non vanishing third order moment of velocity increments, that the very
same instance of the white noise W enters in both the first layer of uint

ε (2.8), and the
field X̃ε (2.9), imposing a complex internal correlated structure. In particular, we have
E[X̃ε(x)W (dy)] = kε(x − y)dy. As it is shown in Refs. [8, 6], it becomes necessary here
to specify the regularization procedure. For instance, take |.|ε = 1

ε (|.| ∗ θ( .ε)) where θ is a
smooth mollifier, and remark that |ε.|ε = (|.| ∗ θ(.)) = |.|1. Consider then the rescaled (by
ε) quantities

rε(h) =
√
εkε(εh) =

h

|h|
3
2
1

1|h|≤L/ε →
ε→0

r(h) =
h

|h|
3
2
1

for h ∈ R,

and

Rε(h) = E
[
X̃ε(0)X̃ε(εh)

]
− E(X̃2

ε ) →
ε→0

R(h) =

∫
r(x) [r(x+ h)− r(x)] for h ∈ R.

11



Using the Gaussian integration by parts [23], it is easy to show that the field uint
ε (2.8) is

centered, and we can then obtain [8, 6]

E
[
(uint
ε )2

]
→
ε→0

E
[
(uint)2

]
= E

[
(ug)2

] [
1− γ2

∫
r2(h)eγ

2R(h)dh

]
.

This former expression shows that asymptotically, in the limit ε→ 0, the variance of the
field uint depends on how its approximation at the scale ε has been made, and in particular
on the precise choice of the mollifier θ. From the physical point of view, although the
variance of this field is finite and not vanishing, it contradicts somehow the first axiom
of the phenomenology of Kolmogorov (2.2) since it is not expected that the mechanisms
at play in the viscous dissipation would contribute: only the forcing field and boundary
conditions should determine the variance. In this sense, we will say that the convergence
of the field (as ε→ 0) towards its asymptotical form is not canonical: it keeps track of the
choice that has been made to regularize the field at a given scale ε > 0.

Furthermore, even if the field has a non vanishing third order moment of increments
at a finite ε > 0, it can be demonstrated [8, 6] that it looses this property when ε→ 0, i.e.
for any x 6= y, we have asymptotically

E
[
(uint
ε (x)− uint

ε (y))3
]
→
ε→0

0, (2.11)

showing in a definitive way that the field uint is unable to reproduce in a realistic manner
the set of axioms presented in Section 2.1.

2.5 Present approach

Although the intermediate field uint
ε (2.8) that we considered in the former section exhibits

a non canonical way of convergence when ε → 0 (with a loss of the third order moment
of increments (2.11)), it shows that giving a meaning to “eγX(x)W (dx)” is non trivial. In
particular, if is assumed a odd-correlation structure between the logarithmically correlated
field X and the white noise W as it is done in (2.8), the statistical laws of the asymptotical
field uint keeps track of the regularization procedure that what used to define it. Let us then
keep in mind that a simple and canonical way to define the random measure “eγX(x)W (dx)”
is to consider the fields X and W as being independent. We now need to propose another
way to introduce a correlated internal structure to the field in order to model asymmetric
probability laws for the velocity increments.

To do so, let us elaborate on the former field uint
ε (2.8) and remark, at a given ε > 0,

that it can be developed in powers the intermittency parameter γ such as to obtain

uint
ε (x) = ug

ε(x) + γ

∫
φ(x− y)X̃ε(y)W (dy) + oε(γ),

where oε(γ) stand for a random field made up of the higher order terms of the development
of uint

ε in powers of γ. We see that the second field entering in the former development
(proportional to γ) coincides exactly with our present field uε (1.3) when its parameter
γ is set to 0. Call it (uε)γ=0. It turns out that this field is a well-defined random object
in the limit ε → 0, with in particular a finite variance (see devoted theoretical material
leading to (3.5)) that does not depend on the regularization procedure, and furthermore
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exhibits a non vanishing third order moment of velocity increments (take γ = 0 in (3.13)
and see (3.16) for the behavior at small scales). Thus, the naive development in powers of
γ that we performed exhibits a field that appears a to be good candidate to obtain a non
vanishing third order moment of increments.

It remains to introduce in (uε)γ=0, as a final layer, the intermittency corrections. This
is done while considering an independent multiplicative chaos, and thus an independent
logarithmically correlated process X̂ε, and replacing the white noise W entering in its

expression by eX̂εW . As it is shown in [12], the multiplicative chaos has to be also intro-
duced in a similar fashion in the field X̃ε that enters the construction, and thus replacing
X̃ε by the field Xε defined in (1.4). This final step is necessary to guaranty the power-law
behaviors announced in Theorem 1.2 and Proposition 1.6. Doing so, we end up with the
field uε (1.3) that we propose to study.

3 Proof of the main results

Now, we address the main results of the introduction by studying the statistical properties
of uε (1.3).

3.1 Study of the average

Because the field is statistically homogeneous, consider only the average of the field at the
position x = 0. Recall that φ is a even function of its argument, since we assumed ϕ to be
even itself. We then have

E[uε(0)|X̂ε] = E
[ ∫

φ(−y)

(∫
kε(y − z)eγX̂ε(z)−γ

2cεW (dz)

)
eγX̂ε(y)−γ2cεW (dy)

∣∣∣X̂ε

]
=

∫∫
φ(y)kε(y − z)eγX̂ε(z)−γ

2cεeγX̂ε(y)−γ2cε E[W (dy)W (dz)]

= kε(0)

∫
φ(y)e2γX̂ε(y)−2γ2cε dy

= 0,

since kε(0) = 0. Thus, the random field is centered, i.e. E[uε(0)] = 0.

3.2 Study of the variance

Consider first the case γ 6= 0. Notice that

E
[
Xε(y)W (dz)

∣∣∣X̂ε

]
= kε(y − z)eγX̂ε(y)−γ2cεdz,

and recall that kε is a odd function of its argument, in particular kε(0) = 0. Therefore, we
have by integration by parts, recall that φ is even,

E
[
uε(0)2

∣∣∣X̂ε

]
=

∫∫
φ(−y)φ(−z)E

[
Xε(y)Xε(z)W (dy)W (dz)

∣∣∣X̂ε

]
eγX̂ε(y)−γ2cεeγX̂ε(z)−γ

2cεdydz

=

∫
φ2(y)E

[
Xε(y)2

∣∣∣X̂ε

]
e2γX̂ε(y)−2γ2cεdy −

∫∫
φ(y)φ(z)k2

ε (y − z) e2γ[X̂ε(y)+X̂ε(z)]−4γ2cεdydz,
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where a computation on the white noise leads to

E
[
Xε(y)2

∣∣∣X̂ε

]
=

∫
k2
ε (y − z)e2γX̂ε(z)−2γ2cεdz.

Using this former expression of the conditional variance, we arrive at

E
[
uε(0)2

∣∣∣X̂ε

]
=

∫∫ [
φ2(y)− φ(y)φ(z)

]
k2
ε (y − z) e2γ[X̂ε(y)+X̂ε(z)]−4γ2cεdydz. (3.1)

Averaging on the field X̂ε, and symmetrizing the expression, we get

E
[
uε(0)2

]
=

1

2

∫∫
[φ(y)− φ(z)]2 k2

ε (y − z) e4γ2E[X̂ε(y)X̂ε(z)]dydz,

that eventually converges towards a finite limit

E
[
u2
]

= lim
ε→0

E
[
uε(0)2

]
=

1

2

∫∫
[φ(y)− φ(z)]2

1

|y − z|1+4γ2
1|y−z| 6 1dydz. (3.2)

We indeed show in Section 3.5 that the double integral entering in (3.2) exists and is finite,
for a certain range of values of H and γ (i.e. γ2 < 1

2H). Thus by dominated convergence,
it shows that the variance of the process uε (1.3) converges towards a finite, non vanishing
and positive value which is independent of the regularization mechanism that we have
chosen.

In order to see more clearly the underlying phenomena (and their cancellations) that
take place behind this convergence, we propose to present a more straightforward way to
show the convergence of the variance. This will also allow us to define key quantities that
will be entering in the computation of the skewness (Section 3.4).

Going back to (3.1), by taking the expectation with respect to X̂ε, making the change
of variable h = y − z and integrating over h and y, this yields

E
[
uε(0)2

]
= (φ ? φ)(0)Aε − 2

∫ ∞
0

(φ ? φ)(h)k2
ε (h)e4γ2E[X̂ε(h)X̂ε(0)] dh,

where

Aε =

∫
k2
ε (u)e4γ2E[X̂ε(u)X̂ε(0)] du,

and where we use the following notation

(φ ? φ)(h) =

∫
φ(x)φ(x+ h)dx.

Note that φ ? φ differs from the standard convolution.

Define Kε(h) = −
∫∞
h k2

ε (x)e4γ2E[X̂ε(x)X̂ε(0)] dx such that K ′ε(h) = k2
ε (h)e4γ2E[X̂ε(h)X̂ε(0)]

and 2Kε(0) = −Aε. Remark that pointwise

lim
ε→0

Kε(h) =
1

4γ2

(
1− |h|−4γ2

)
1|h| 6 1.
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An integration by parts gives

Euε(0)2 = (φ ? φ)(0)Aε − 2

[
−(φ ? φ)(0)Kε(0)−

∫ ∞
0

(φ ? φ)′(h)Kε(h) dh

]
= 2

∫ ∞
0

(φ ? φ)′(h)Kε(h) dh.

Thus the variance converges by dominated convergence towards a finite value with

Eu(0)2 = lim
ε→0

Euε(0)2 =
1

2γ2

∫ 1

0
(φ ? φ)′(h)

(
1− |h|−4γ2

)
dh. (3.3)

In order to make sense of the asymptotical form of the variance (3.3), one has to check
the integrability in the neighborhood of the origin. This is the subject of Lemma 3.1.
We indeed show that the function (φ ? φ)(h) is continuously differentiable over R when
H ∈]1/2, 1[. For H ∈]0, 1/2[, the function (φ ? φ)(h) is not differentiable at the origin.
Consistently, for H ∈]0, 1[, the derivative (φ ? φ)′(h) behaves at the origin as |h|2H−1,
a behavior which is integrable at the origin. This gives a meaning to the asymptotical
variance (3.3) as long as 1− 2H + 4γ2 < 1. (i.e. γ2 < 1

2H).

Lemma 3.1. For H ∈]0, 1[/{1/2} and |h| > 0, the function (φ ? φ)(h) is differentiable
and its derivative is given by

(φ ? φ)′(h) =

∫
ϕ(x)ϕ′(x+ h)

1

|x| 12−H
1

|x+ h| 12−H
dx

+ (H − 1/2) P.V.

∫
ϕ(x)ϕ(x+ h)

1

|x| 12−H
x+ h

|x+ h| 52−H
dx, (3.4)

where we have defined the principal value integral (P.V.) that can be written using a
convergent integral:

P.V.

∫
ϕ(x)ϕ(x+ h)

1

|x| 12−H
x+ h

|x+ h| 52−H
dx =

∫ ∞
0

ϕ(x)

x
3
2
−H

[
ϕ(x− h)

|x− h| 12−H
− ϕ(x+ h)

|x+ h| 12−H

]
dx.

Furthermore, for H > 1/2, (φ ? φ)′(h) is continuous, bounded over R and (φ ? φ)′(0) = 0,
and we have for H ∈]0, 1[/{1/2} the following equivalent at the origin

(φ ? φ)′(h) ∼
h→0+

(H − 1/2)ϕ2(0) sign(h)|h|2H−1 P.V.

∫
1

|x| 12−H
x+ 1

|x+ 1| 52−H
dx.

Proof. To prove the expression for the derivative (3.4), regularize the singularity and pass
to the limit. To get the equivalent, rescale the dummy integration variable by |h| in the
second term of the RHS of (3.4) and take the limit. Remark that this equivalent is also
correct for H > 1/2, since the first term of the RHS of (3.4) behaves as h at the origin
(using the fact that ϕ is even), i.e.∫

ϕ(x)ϕ′(x+ h)
1

|x| 12−H
1

|x+ h| 12−H
dx

∼
h→0

h

[∫
ϕ(x)ϕ′′(x)

1

|x|1−2H
dx+ (H − 1/2) P.V.

∫
ϕ(x)ϕ′(x)

x

|x|3−2H
dx

]
,

and so tends to 0 when h→ 0 faster than the second term.
�
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Remark 3.2. In the case γ = 0, one gets the following formula by similar computations

Eu(0)2 = lim
ε→0

Euε(0)2 = 2

∫ 1

0
(φ ? φ)′(h) lnh dh. (3.5)

Notice that (3.5) can also be obtained by taking the limit γ → 0 in (3.3).

3.3 Study of the variance of increments

Once again, consider first the case γ 6= 0, we will treat the case γ = 0 as a remark at the
end of this Section. Define the increments as

δ`uε(x) = uε(x+ `/2)− uε(x− `/2) =

∫
R

Φ`(x− y)Xε(y)eγX̂ε(y)−γ2cεW (dy),

with

Φ`(x) =
ϕ(x+ `/2)

|x+ `/2| 12−H
− ϕ(x− `/2)

|x− `/2| 12−H
.

Similarly to the computation of the variance, conditionally on the field X̂ε, we can use
Wick’s formula with respect to the white noise to get

E
[
δ`uε(x)2|X̂ε

]
=

∫
Φ`(x− y)2E[Xε(y)2|X̂ε]M

ε
2γ(dy)

+

∫∫
Φ`(x− z)Φ`(x− y)kε(y − z)kε(z − y)M ε

2γ(dz)M ε
2γ(dy)

=

∫∫ (
Φ`(x− y)2 − Φ`(x− z)Φ`(x− y)

)
k2
ε (y − z)M ε

2γ(dz)M ε
2γ(dy).

This latter integral can be symmetrized to obtain

E(δ`u)2 = lim
ε→0

E(δ`uε)
2 =

1

2

∫∫ (
Φ`(y)− Φ`(z)

)2 1

|y − z|1+4γ2
1|y−z| 6 1dzdy. (3.6)

This leads to
E(δ`u)2 ∼

`→0
C2`

2H−4γ2 , (3.7)

with C2 a strictly positive constant, independent of the regularization procedure, and given
by

C2 =
ϕ(0)2

2

∫∫ ( 1

|y + 1/2|1/2−H −
1

|y − 1/2|1/2−H −
1

|z + 1/2|1/2−H +
1

|z − 1/2|1/2−H
)2

× 1

|y − z|1+4γ2
dzdy. (3.8)

We invite the reader to Section 4 devoted to the proofs of existence of the limiting value
of the increment variance (3.6) and of its equivalent at small scales (3.7). Similarly to the
variance, the equivalent of the increment variance (3.7) will eventually makes sense for
γ2 < 1

2H. As we did for the variance, we would like to present now a more straightforward
way to derive the equivalent at small scales. This will also prepare for the computations
of Section 3.4 below.
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We have in a similar fashion the following limit of the increment variance for ε→ 0

E(δ`u)2 = lim
ε→0

E(δ`uε)
2 =

1

2γ2

∫ 1

0
(Φ` ? Φ`)

′(h)
(
1− |h|−4γ2

)
dh, (3.9)

where, for H ∈]0, 1[/{1/2}, the derivative of the bounded function (Φ` ?Φ`)(h) is given by
the following principal value integral

(Φ` ? Φ`)
′(h) = P.V.

∫
Φ`(x)Φ′`(x+ h)dx.

As encountered in the calculation of the variance, one has to check the integrability in the
neighboorhood of zero. To do so, remark that

(Φ` ? Φ`)(h) = 2(φ ? φ)(h)− (φ ? φ)(h+ `)− (φ ? φ)(h− `),

which leads to

(Φ` ? Φ`)
′(h) = 2(φ ? φ)′(h)− (φ ? φ)′(h+ `)− (φ ? φ)′(h− `).

As we have seen (Lemma 3.1), the function (φ ? φ)′(h) diverges at the origin as fast as
1

|h|1−2H when H < 1/2 (it remains bounded when H > 1/2), which is itself integrable in

the neighboorhood of the origin. Thus the asymptotical variance of increments (3.9) makes
sense as soon as 1− 2H + 4γ2 < 1.

Let us now compute the asymptotical behavior of the variance of increments (3.9) at
vanishing scale `→ 0. We can always write for γ 6= 0

E(δ`u)2 =
1

2γ2

∫ 1/`

0
(Φ` ? Φ`)

′(`h)
(
1− |`h|−4γ2

)
`dh.

Remark that

(Φ` ? Φ`)(`h) = 2(φ ? φ)(`h)− (φ ? φ)(`(h+ 1))− (φ ? φ)(`(h− 1)),

so that, using Lemma 3.1, we have the following equivalent,

(Φ` ? Φ`)
′(`h) ∼

`→0+
(H − 1/2)ϕ2(0)`2H−1

×
[
2 sign(h)|h|2H−1 − sign(h+ 1)|h+ 1|2H−1 − sign(h− 1)|h− 1|2H−1

]
× P.V.

∫
1

|x| 12−H
x+ 1

|x+ 1| 52−H
dx.

Thus, at small scales (`→ 0+), for H ∈]0, 1[/{1/2}, the variance of the increments behaves
as

E(δ`u)2 ∼
`→0
−aγ,H

2γ2
ϕ2(0)`2H−4γ2(H − 1/2)× P.V.

∫
1

|x| 12−H
x+ 1

|x+ 1| 52−H
dx, (3.10)

where

aγ,H =

∫ ∞
0

1

h4γ2

[
2h2H−1 − (h+ 1)2H−1 − sign(h− 1)|h− 1|2H−1

]
dh.
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Remark that

P.V.

∫
1

|x| 12−H
x+ 1

|x+ 1| 52−H
dx =

∫ ∞
0

1

x
3
2
−H

[
1

|x− 1| 12−H
− 1

|x+ 1| 12−H

]
dx

is negative for H > 1/2, and positive for H < 1/2, which makes the former equivalent of
E(δ`u)2 (Eq. (3.10)) of the same sign as aγ,H .

This approach bears a difficulty though, i.e. it is non obvious to show that aγ,H > 0.
Fortunately, the derivation of the equivalent than we obtained with the first method (3.7)
ensures that the multiplicative constant entering in the equivalent at small scales (3.8) is
indeed positive.

Remark 3.3. In the case γ = 0, by similar computations we get the analogue of (3.9)

E(δ`u)2 = 2

∫ 1

0
(Φ` ? Φ`)

′(h) lnh dh. (3.11)

One can also obtain (3.11) as limit of (3.9) when γ goes to 0. This leads to the following
equivalent

E(δ`u)2 ∼
`→0

aH(H − 1/2)ϕ2(0)`2H ln `× P.V.

∫
1

|x| 12−H
x+ 1

|x+ 1| 52−H
dx (3.12)

where the remaining constant can be made explicit, i.e.

aH =

∫ ∞
0

[
2h2H−1 − (h+ 1)2H−1 − sign(h− 1)|h− 1|2H−1

]
dh =

1

H
.

Remark that contrary to the γ 6= 0 case, in which the second order structure function
E(δ`u)2 (3.10) behaves at small scales as a power-law `2H−4γ2, an additional logarithmic
correction appears in front of the power-law `2H in the γ = 0 case (3.12).

3.4 Skewness of increments

For the case γ > 0, using the fact that Φ` is a odd function of its argument, we have by
statistical homogeneity

E[(δ`uε)
3|X̂ε] = −

∫∫∫
Φ`(x)Φ`(y)Φ`(z)E[Xε(x)Xε(y)Xε(z)W (dx)W (dy)W (dz)|X̂ε]

× eγ(X̂ε(x)+X̂ε(y)+X̂ε(z))−3γ2cε dxdydz.

By standard integration by parts and exploiting symmetry x↔ y ↔ z, we get (recall that

E[Xε(z)W (dx)|X̂ε] = eγX̂ε(x)−γ2cεkε(z − x)dx),

E[(δ`uε)
3|X̂ε]

= −6

∫∫
Φ`(x)Φ`(y)2E[Xε(x)Xε(y)|X̂ε]kε(y − x)e2γ(X̂ε(x)+X̂ε(y))−4γ2cε dxdy

− 2

∫∫∫
Φ`(x)Φ`(y)Φ`(z)kε(x− y)kε(y − z)kε(z − x)e2γ(X̂ε(x)+X̂ε(y)+X̂ε(z))−6γ2cε dxdydz

= −6

∫∫
Φ`(x)Φ`(y)2E[Xε(x)Xε(y)|X̂ε]kε(y − x)e2γ(X̂ε(x)+X̂ε(y))−4γ2cε dxdy

= −6

∫∫∫
Φ`(x)Φ`(y)2kε(x− t)kε(y − t)kε(y − x)e2γ(X̂ε(x)+X̂ε(y)+X̂ε(t))−6γ2cε dxdydt,
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where we have used the fact that the triple integral
∫
· · · dxdydz in the above compu-

tation is equal to 0 by symmetry. Recall that we have noted the even function Ĉε(x) =
E[X̂ε(x)X̂ε(0)] (see (1.1)). Now, by averaging with respect to X̂ε, we get

E[(δ`uε)
3]

= −6

∫∫∫
Φ`(x)Φ`(y)2kε(x− t)kε(y − t)kε(y − x)e4γ2[Ĉε(x−t)+Ĉε(y−t)+Ĉε(y−x)] dxdydt

= −6

∫∫
Φ`(x)Φ`(y)2kε(y − x)e4γ2Ĉε(y−x)Cε,γ(y − x) dxdy

= −6

∫∫
Φ`(x)Φ`(x+ h)2kε(h)e4γ2Ĉε(h)Cε,γ(h) dxdh

= −6

∫
(Φ` ? Φ2

` )(h)kε(h)e4γ2Ĉε(h)Cε,γ(h) dh,

where we defined analogously the even function Cε,γ(h) explicitly given by

Cε,γ(h) =

∫
kε(x)kε(x+ h)e4γ2[Ĉε(x)+Ĉε(x+h)]dx.

We have pointwise for h 6= 0

Cγ(h) := lim
ε→0

Cε,γ(h) =

 2 ln+

(
1
|h|

)
+ g0(h), if γ = 0

rγ

|h|8γ2
+ gγ(h), if γ2 ∈]0, 1/8[

with gγ a bounded function of its argument for any γ ≥ 0, and we have set for γ2 ∈]0, 1/8[

rγ = 2

∫ ∞
0

1√
x|x|4γ2

( x+ 1

|x+ 1| 32+4γ2
+

x− 1

|x− 1| 32+4γ2

)
dx.

Hence, we get the identity

E[(δ`u)3] := lim
ε→0

E[(δ`uε)
3] = −12

∫ 1

0
(Φ` ? Φ2

` )(h)
1

h
1
2

+4γ2
Cγ(h) dh. (3.13)

To make sense of the of the asymptotical form of the third moment of increments (3.13),
we have to check the integrability of the integrand in the neighborhood of the origin. To
do so, we have to study the behavior of the function (Φ`?Φ2

` ): this is the subject of Lemma
3.4. We show there that the function is singular at h = ` only in the case H ∈]0, 1/6], a
singular behavior that is itself integrable. For H ∈]1/6, 1[/{1/2}, (Φ` ?Φ2

` ) is a continuous
and bounded function of its argument. At the origin, ∀H, (Φ` ?Φ2

` )(h) goes to zero as fast
as h. Thus, the equivalent (3.13) makes sense for H ∈]0, 1[/{1/2} and γ2 < 1/8.

Lemma 3.4. For H ∈]1/6, 1[ and ∀h, (Φ` ?Φ2
` )(h) is a continuous and bounded function

of its argument. For H ∈]0, 1/6], (Φ` ?Φ2
` ) has an additional singularity at h = ` given by

(Φ` ? Φ2
` )(h) ∼

h→`

{
dHϕ

3(0)|h− `|3H− 1
2 , if H < 1/6

2ϕ3(0) ln 1
|h−`| , if H = 1/6,
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where dH is a constant independent of ϕ(0) that we can compute. Furthermore, for any
H ∈]0, 1[/{1/2} we have the following equivalent at small arguments

(Φ` ? Φ2
` )(h) ∼

h→0
h

∫ [
(1/2−H)ϕ(x)− xϕ′(x)

] x

|x|5/2−H
[

ϕ(x− `)
|x− `|1/2−H −

ϕ(x+ `)

|x+ `|1/2−H
]

×
[

ϕ(x− `)
|x− `|1/2−H +

ϕ(x+ `)

|x+ `|1/2−H −
2ϕ(x)

|x|1/2−H
]
dx.

Proof. We have

(Φ` ? Φ2
` )(h) =

∫ [
ϕ(x+ `/2)

|x+ `/2|1/2−H −
ϕ(x− `/2)

|x− `/2|1/2−H
]

×
[

ϕ(x+ h+ `/2)

|x+ h+ `/2|1/2−H −
ϕ(x+ h− `/2)

|x+ h− `/2|1/2−H
]2

dx.

Notice that (Φ` ? Φ2
` )(h) can be written with the following convenient form

(Φ` ? Φ2
` )(h) =

∫
ϕ(x− h)

|x− h|1/2−H
[

ϕ(x− `)
|x− `|1/2−H −

ϕ(x+ `)

|x+ `|1/2−H
]

×
[

ϕ(x− `)
|x− `|1/2−H +

ϕ(x+ `)

|x+ `|1/2−H −
2ϕ(x)

|x|1/2−H
]
dx,

which shows that (Φ` ? Φ2
` ) is continuous and bounded for H ∈]1/6, 1[ and ∀h. For H ∈

]0, 1/6], (Φ` ? Φ2
` ) has an additional singularity at h = `. The proposed equivalent for

h → 0 follows from the Taylor Series of the first ratio entering in the integral (the first
contribution to this development vanishes by symmetry).

Let us now take a look at the additional singularity when H ≤ 1/6. From this former
expression, we see that (Φ` ? Φ2

` )(h) as the same singularity when h goes to ` as∫
|x| 6 1

ϕ(x+ `− h)

|x+ `− h|1/2−H
ϕ2(x)

|x|1−2H
dx.

If H < 1
6 then it is equal to, take for instance h < `,

|h− `|3H−1/2

∫
|y| 6 1

|h−`|

ϕ[|h− `|(y + 1)]

|y + 1|1/2−H
ϕ2[|h− `|y]

|y|1−2H
dy

∼
|h−`|→0

dHϕ
3(0)|h− `|3H− 1

2 ,

where

dH =

∫
R

1

|y + 1| 12−H |y|1−2H
dy.

If H = 1
6 then it is equal to∫

|y| 6 1
|h−`|

ϕ[|h− `|(y + 1)]

|y + 1|1/3
ϕ2[|h− `|y]

|y|2/3 dy ∼
|h−`|→0

2ϕ3(0) ln
1

|h− `| .
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�
This shows that the asymptotical form (3.13) makes sense for H ∈]0, 1[/{1/2} and

γ2 < 1/8. Let us now compute its behavior in the limit of vanishing scales `→ 0. We can
always write

E(δ`u)3 = −12

∫ 1/`

0
(Φ` ? Φ2

` )(`h)

(
rγ

|`h|8γ2 + gγ(`h)

)
1

(`h)
1
2

+4γ2
`dh,

so if the following integral makes sense, we obtain the equivalent at small scales

E(δ`u)3 ∼
`→0
−12rγϕ

3(0)`3H−12γ2
∫ ∞

0
fH(h)

1

h
1
2

+12γ2
dh, (3.14)

where

fH(h) =

∫ [
1

|x+ 1/2| 12−H
− 1

|x− 1/2| 12−H

][
1

|x+ h+ 1/2| 12−H
− 1

|x+ h− 1/2| 12−H

]2

dx.

(3.15)

To make sense of the equivalent we wrote in (3.14), in a similar manner as we did for
the asymptotical form of the third moment of increments (3.13), we have to check the
integrability of the proposed integrand. This is the subject of Lemma 3.5. We show
there that similarly the function is singular at h = 1 only in the case H ∈]0, 1/6]. For
H ∈]1/6, 1[/{1/2}, fH is a continuous and bounded function of its argument. As far as
integrability at large h is concerned (we lost in this limit the cut-off function ϕ), we show
that for H ∈]0, 1[/{1/2}, fH(h) decreases as fast as 1/h3/2−H which is integrable when
weighted by the factor 1/h1/2+12γ2 , for any γ ≥ 0. At the origin, once again, ∀H, fH(h)
goes to zero as fast as h. Thus, the equivalent (3.14) makes sense also for H ∈]0, 1[/{1/2}
and γ2 < 1/8.

Lemma 3.5. For H ∈]1/6, 1[/{1/2} and ∀h, fH is a continuous and bounded function of
its argument. For H ∈]0, 1/6], fH has an additional singularity at h = 1 given by

fH(h) ∼
h→1

{
dH |h− 1|3H− 1

2 , if H < 1/6

2 ln 1
|h−1| , if H = 1/6,

where dH is the same constant entering in Lemma 3.4. Furthermore, for H ∈]0, 1[/{1/2}
we have the following equivalent at small arguments

fH(h) ∼
h→0
−(H − 1/2)h

∫
x

|x|5/2−H
[

1

|x− 1|1/2−H −
1

|x+ 1|1/2−H
]

×
[

1

|x− 1|1/2−H +
1

|x+ 1|1/2−H −
2

|x|1/2−H
]
dx,

and the following equivalent at large arguments

fH(h) ∼
h→∞

−(H − 1/2)hH−3/2

∫
x

[
1

|x− 1|1/2−H −
1

|x+ 1|1/2−H
]

×
[

1

|x− 1|1/2−H +
1

|x+ 1|1/2−H −
2

|x|1/2−H
]
dx.
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Proof. Noticing once again that fH can be written with the following convenient form

fH(h) =

∫
1

|x− h|1/2−H
[

1

|x− 1|1/2−H −
1

|x+ 1|1/2−H
]

×
[

1

|x− 1|1/2−H +
1

|x+ 1|1/2−H −
2

|x|1/2−H
]
dx,

proofs are then similar to those of Lemma 3.4. The proposed equivalent h → ∞ follows
from the factorization of h in the first ratio and then doing a Taylor Series. �

Remark 3.6. It remains to show that indeed the integral entering in the equivalent (3.14)
does not vanish: this is a direct consequence of the assumption (1.12). Indeed, as illustrated
by a numerical estimation (see Annex A.1), the function fH(h) seems to be, ∀h > 0, strictly
positive for H < 1/2, and strictly negative for H > 1/2, which makes the equivalent (3.14)
non vanishing.

Remark 3.7. Concerning the modeling of fluid turbulence, let us take a look at the predic-
tions of the present stochastic model. We recall that empirical estimations give 4γ2 = 0.025
[15, 7] and that a statistical property of stationary solutions of forced Navier-Stokes equa-
tions, namely the 4/5th-law of turbulence [15] (see also Section 2.1) gives

E(δ`u)3 ∼
`→0
−4

5
ε`,

where ε is the average viscous dissipation per unit of mass (see [15] for a precise defini-
tion). Taking H = 1/3 + 4γ2, we see here that the present model indeed predicts that ε
becomes independent of the viscosity, as required by the second axiom of Kolmogorov’ phe-
nomenology depicted in Section 2.1. To see this analogy, assume that the scale ε entering
in the regularization of the field uε plays the role of the dissipative length scale, that is
expected to go to zero as viscosity goes to 0. Furthermore, the model, as it is defined, gives
the correct sign for the third order structure function (3.14), if we assume that for this H,
fH(h) > 0 for h > 0, as it is assumed in (1.12), and confirmed in Annex A.1.

Remark 3.8. In the case γ = 0, the identity (3.13) is valid by simply setting γ = 0. This
leads to the following equivalent by similar computations to the γ > 0 case

E(δ`uε)
3 ∼
`→0
−24ϕ3(0)`3H ln

(
1

`

)∫ ∞
0

fH(h)
1√
h
dh. (3.16)

3.5 High order moments

Notice that for ε > 0, and conditionally on the field X̂, the field uε is in the second
Wiener chaos generated by the white noise W . Hence by hyper-contractivity in the second
Wiener chaos (see Theorem 2.7.2 and Corollary 2.8.14 in [22]), we get the existence of
some constant Cq > 0 such that, for q > 0,

C−1
q E

[
uε(x)2|X̂ε

]q/2
6 E

[
|uε(x)|q|X̂ε

]
6 CqE

[
uε(x)2|X̂ε

]q/2
.

Therefore

C−1
q E

[
E
[
uε(x)2|X̂ε

]q/2]
6 E[|uε(x)|q] 6 CqE

[
E
[
uε(x)2|X̂ε

]q/2]
.
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Recall that we have

E
[
uε(x)2|X̂ε

]
=

1

2

∫∫ (
φ(x− y)− φ(x− u)

)2
k2
ε (y − u)M ε

2γ(du)M ε
2γ(dy).

Now use the Gaussian multiplicative chaos technology to check the integrability properties
of this integral. By statistical homogeneity, it suffices to consider the case x = 0 and, as a
result of the above discussion, it is enough to show that

sup
ε∈]0,1]

E
[( ∫∫ (

φ(y)− φ(u)
)2
k2
ε (y − u)M ε

2γ(du)M ε
2γ(dy)

)q/2]
< +∞.

From now on we assume q > 2 and we will not treat the case q < 2 as it is quite similar:
we will only mention below how to adapt the proof. The latter quantity is finite provided
that we can show that supε∈]0,1]Aε([0, 1]2) < +∞ with

Aε(D) := E
[( ∫∫

D

( 1

|y|
1
2−H

− 1

|u|
1
2−H

)2 1

|u− y| ∨ εM
ε
2γ(du)M ε

2γ(dy)
)q/2]2/q

.

By Kahane’s convexity inequality [16] (see also [27]) we may and will assume that X̂ε is
the exact scale invariant kernel studied in [3]. Hence, for all λ, ε ∈]0, 1[, it satisfies the
following equality in law

(X̂λε(λu))u∈[−1,1] = (X̂ε(u) + Ωλ)u∈[−1,1] (3.17)

where Ωλ is a centered Gaussian random variable with variance − lnλ independent of the
process X̂ε. We have

Aε/2([0, 1]2) 6 Aε/2([0, 1/2]2)

+Aε/2([0, 1/2]× [1/2, 1]) +Aε/2([1/2, 1]× [0, 1/2]) +Aε/2([1/2, 1]2).

Here we mention that we have used the triangular inequality for Lp norms with p = q/2 > 1
(in the case q < 2, just use the subadditivity of the mapping x 7→ xq/2). Thanks to
Corollary 3.10 below, we deduce that, for some irrelevant constant C > 0 and all ε ∈]0, 1]

Aε/2([0, 1]2) 6 Aε/2([0, 1/2]2) + C. (3.18)

Let us make the changes of variables u′ = 2u and y′ = 2y, we get

Aε/2([0, 1/2]2) = 2−2HE
[
Iq/2ε

]2/q
,

where

Iε =

∫∫
[0,1]2

( 1

|y′|
1
2−H

− 1

|u′|
1
2−H

)2 1

|u′ − y′| ∧ εe
2γX̂ε/2(u′/2)+2γX̂ε/2(y′/2)−4γ2E[X̂2

ε/2
]
du′dy′.

Now we can use the relation in law (3.17) to get

Aε/2([0, 1/2]2) = 2−2HE
[
e2γqΩ1/2

]2/q
e−4γ2 ln 2×

E
[( ∫∫

[0,1]2

( 1

|y′|
1
2−H

− 1

|u′|
1
2−H

)2 1

|u′ − y′| ∧ εM
ε
2γ(du′)M ε

2γ(dy′)
)q/2]2/q

=2−2H−4γ2+4γ2qAε([0, 1]2).
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Under the assumption q < 1 + H
2γ2

, the exponent of 2 in the above expression is strictly

negative. From (3.18), we deduce

Aε/2([0, 1]2) 6 rAε([0, 1]2) + C

for some constant r ∈]0, 1[, ensuring finiteness of the supremum of the family (Aε([0, 1]2))ε
as claimed. �

Before proving Corollary 3.10, we recall the following lemma which is a 1d version of
lemma A.1 in [11] (the proof follows the same argument as lemma A.1 in [11]):

Lemma 3.9. For α ∈ [0, 1 + 2γ2[ and q ∈ [0, 1+2γ2−α
2γ2

∧ 1
2γ2

[, we have

sup
ε∈]0,1]

E
[( ∫

[0,1]

1

(|y| ∨ ε)αM
ε
2γ(dy)

)q]
< +∞

With this lemma we can now prove the following Corollary:

Corollary 3.10. For H ∈]0, 1/2[ and q ∈ [0, (1 + H
γ2

) ∧ 1
2γ2

[, we have

1) sup
ε∈]0,1]

E
[( ∫∫

[0,1/2]×[1/2,1]

( 1

|y|
1
2−H

− 1

|u|
1
2−H

)2 1

|y − u| ∨ εM
ε
2γ(dy)M ε

2γ(du)
)q/2]2/q

< +∞,

2) sup
ε∈]0,1]

E
[( ∫∫

[1/2,1]2

( 1

|y|
1
2−H

− 1

|u|
1
2−H

)2 1

|y − u| ∨ εM
ε
2γ(dy)M ε

2γ(du)
)q/2]2/q

< +∞.

Proof. (fix q > 2 otherwise use sub-additivity) We can divide the square [0, 1/2]× [1/2, 1]
into two pieces: [0, 1/4]× [1/2, 1] and [1/4, 1/2]× [1/2, 1].

The above supremum when integrating over [0, 1/4]× [1/2, 1] is obviously less than

C sup
ε∈]0,1]

E
[( ∫∫

[0,1/4]×[1/2,1]

(
1 +

1

|u|1−2H

)
M ε

2γ(dy)M ε
2γ(du)

)q/2]2/q

for some irrelevant constant C > 0. This quantity is again less than (up to irrelevant
multiplicative constant)

sup
ε∈]0,1]

E
[
M ε

2γ([1/2, 1])q
]2/q

+ sup
ε∈]0,1]

E
[( ∫

[0,1/4]

(
1 +

1

|u|1−2H

)
M ε

2γ(du)
)q]2/q

.

Indeed, this can be shown for q > 2 by making use of the elementary inequality ab 6 a2/2+
b2/2 and then Minkowski inequality and for q 6 2, by sub-additivity of the mapping
x ∈ R+ 7→ xq/2 and then convexity of the mapping x ∈ R+ 7→ x2/q. The first supremum is
finite if q < 1/(2γ2) by standard results on GMC theory. The second one is finite provided
that q ∈ [0, 1 + H

γ2
[.

On the area [1/4, 1/2]× [1/2, 1], we have the inequality( 1

|y|
1
2−H

− 1

|u|
1
2−H

)2 1

|y − u| ∨ ε 6 C|y − u| 6 C

so that the corresponding supremum can be shown to be finite for q < 1/(2γ2) by standard
results on GMC theory again. The latter argument also holds for our second claim. �
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3.6 Multifractal spectrum

Recall that we have set

δ`uε(x) = uε(x+ `/2)− uε(x− `/2) =

∫
R

Φ`(x− y)Xε(y)eγX̂ε(y)−γ2E[X̂2
ε ]W (dy),

with

Φ`(x) =
ϕ(x+ `/2)

|x+ `/2| 12−H
− ϕ(x− `/2)

|x− `/2| 12−H
.

For H ∈]0, 1/2[ and 0 6 q < 1
2γ2
∧ (1 + H

2γ2
), one has

E[|δ`uε(x)|q] := lim
ε→0

E[|δ`uε(x)|q] < +∞.

Furthermore

E[|δ`u(x)|q] ∼q E
[( ∫∫ (

Φ`(x− y)− Φ`(x− u)
)2
k2(y − u)M2γ(du)M2γ(dy)

)q/2]
where A ∼q B means here that there exists cq > 0 (constant only depending on q) such
that c−1

q A 6 B 6 cqA.

Proposition 3.11. For H ∈]0, 1/2[ and 0 6 q < 1
2γ2
∧ (1 + H

2γ2
), we have for ` ∈]0, 1]

E[|δ`u(x)|q] ∼q `(H+2γ2)q−2γ2q2 .

3.7 Continuity of the limiting process u

Proof of continuity of u in Theorem 1.2.
For H ∈]0, 1[ and γ2 < 1/2, we have shown tightness of the finite dimensional marginals
via moment estimates. The limiting process u satisfies for 0 6 q < 1

2γ2
∧ (1 + H

2γ2
)

∀x, y ∈ R, E[(u(x)− u(y))q] 6 Cq|x− y|(H+2γ2)q−2γ2q2

Furthermore, because γ2 < 1/2, setting q0 := 1√
2γ

, we have q0 <
1

2γ2
∧(1+ H

2γ2
). Notice that(

H + 2γ2
)
q0 − 2γ2q2

0 > 1 because H + (
√

2γ − 1)2 > 1. Hence Kolmogorov’s continuity
criterion ensures that u admits a continuous modification such that, almost surely, its

sample paths on any compact interval are α-Holder for any α <
(H+2γ2)q0−2γ2q20−1

q0
=

H + (
√

2γ − 1)2 − 1. �

4 Analysis of the qth moments of increments

This section is devoted to the rigorous derivation of the equivalents of the increments at
small scales `→ 0. In Section 3.6 (see Proposition 3.11), we have been able to show that
the qth-order structure function, namely E[|δ`u(x)|q], is bounded from above and below by
a power-law. We would like here to go further and compute the precise equivalent.

For the sake of generality, we will perform all the calculations with an additional
parameter, say H̃, that will enter in the deterministic kernel kε, that we will call k

ε,H̃
.
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The present model uε (1.3) would eventually be obtained while taking H̃ = 0, and more
generally, we will take it to be small, i.e. H̃ < qγ2 where the q is the order of the increments
moment, to ensure the intermittent corrections that are proposed in Theorem 1.2.

Let us then recall the model that we will be studying here: we consider the 1d velocity
field

uε(x) :=

∫
φ(x− y)Xε(y)eγX̂ε(y)−γ2cεW (dy)

where 

Xε(x) :=
∫
k
ε,H̃

(x− y)eγX̂ε(y)−γ2cεW (dy)

Ĉε(x) := E[X̂ε(x)X̂ε(0)] ∼ ln+
1
|x|+ε

cε := E[X̂ε(x)2]

k
ε,H̃

(u) := x

|x|3/2−H̃ε

1|x|≤1

φ(x) := ϕ(x) 1

|x|
1
2−H

with ϕ a C∞ cut-off function of characteristic size 1, compactly supported for instance,
we choose is to be even ϕ(x) = ϕ(−x) and typically one can choose for example ϕ(x) =
e−x

2/(1−x2)1|x|≤1. We have introduced a new parameter H̃ > 0, which has to be thought

of as being small (see assumptions on H̃ below).

Summary of results with H̃. This section is divided into two subsections:

• The first one, Subsection 4.1, which as to be seen as a warm-up, handles the case
q = 2. It has two motivations: a) introducing some spatial decomposition useful for
q > 2 and b) it allows to double check the proof for q > 2.

The conclusion of Subsection 4.1 is that under the following set of constraints:

1. Assumption 1: (q =)2 < H+H̃
γ2
∧1+H̃

γ2
(≡ 2H+2H̃−4γ2 > 0 and 2γ2 < 1+H̃)

2. Assumption 2: H̃ < 2γ2 ( implies in particular 2H + 2H̃ − 4γ2 < 2)

we have as `→ 0

E
[
(δ`u)2

]
� `2(H+H̃)−4γ2 .

• The second one, subsection 4.2 deals with q > 2. The results of this subsection now
read as follows. Under the following set of constraints:

1. Assumption 1: q < (1 + H+H̃
2γ2

) ∧ 1
2γ2

2. Assumption 2: 2H + 2H̃ − 4γ2 < 2

3. Assumption 3: H̃ < qγ2

we have as `→ 0,

E
[
|δ`u|q

]
� `q(H+H̃+2γ2)−2q2γ2 .
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Recall now the expression for the velocity increments. As we have seen in Section 3.3,
we have

δ`uε(x) = uε(x+ `/2)− uε(x− `/2) =

∫
R

Φ`(x− y)Xε(y)eγX̂ε(y)−γ2cεW (dy) ,

with

Φ`(x) =
ϕ(x+ `/2)

|x+ `/2| 12−H
− ϕ(x− `/2)

|x− `/2| 12−H
.

Following the same approach as in Sections 3.3 and 3.5, we are lead to estimate:

E
[
(δ`uε(x))2|X̂ε

]
=

1

2

∫∫ (
Φ`(x− y)− Φ`(x− u)

)2
k2
ε (y − u)M ε

2γ(du)M ε
2γ(dy).

From the definition of Φ`, it is straightforward to check that if q > 2,

E
[
|δ`uε(x = 0)|q

]
= E

[
E
[
|δ`uε|q

∣∣ X̂ε

]]
6 CqE

[
E
[
(δ`uε)

2
∣∣ X̂ε

]q/2]
(because conditioned on X̂ε, we are still in the second Wiener chaos)

6 C̃qE
[
Jq/2ε

]
,

where

Jε =

∫∫
[−1,1]2

( 1

|y + `
2 |

1
2−H
− 1

|y − `
2 |

1
2−H
− 1

|u+ `
2 |

1
2−H

+
1

|u− `
2 |

1
2−H

)2 1

|u− y|1−2H̃
ε

M ε
2γ(du)M ε

2γ(dy).

4.1 Variance of increments δ`uε

As a warm-up, let us analyse the easier case of q = 2: this gives

E
[
(δ`uε)

2
]
6 O(1)E

[
Jε
]

6 O(1)

∫∫
[−1,1]2

( 1

|y + `
2 |

1
2−H

− 1

|y − `
2 |

1
2−H

− 1

|u+ `
2 |

1
2−H

+
1

|u− `
2 |

1
2−H

)2 1

|u− y|1−2H̃+4γ2
ε

dudy .

We used here the fact that E[M ε
2γ(du)M ε

2γ(dy)] = e4γ2Ĉε(u−y)dudy 6 O(1)|u− y|−4γ2
ε dudy.

Then we change of scales as follows,

E
[
(δ`uε)

2
]
6 O(1)`2(H+H̃)−4γ2×∫∫

[−2/`,2/`]2

( 1

|y + 1|
1
2−H

− 1

|y − 1|
1
2−H

− 1

|u+ 1|
1
2−H

+
1

|u− 1|
1
2−H

)2 1

|u− y|1−2H̃+4γ2

2ε/`

dudy.

We are thus left with studying the above integral. We shall focus on [0, 2/`]2 and rely on
the decomposition of that square into dyadic squares defined as follows (See Figure 2):

[0, 2/`]2 =
⋃
k > 1

Ck ∪Hk ∪ Vk ,

where
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• C1 := [0, 4]2

• More generally, for all k > 1, let

Ck := [2k − 2, 2k − 2 + 2k+1]2 .

• For all k > 1, let Hk be the “corridor” on the right of Ck as in Figure 2, i.e.

Hk := [2k − 2 + 2k+1,
2

`
]× [2k − 2, 2k − 2 + 2k]

And let Vk the “corridor” on the top of Ck, i.e.

Vk := [2k − 2, 2k − 2 + 2k]× [2k − 2 + 2k+1,
2

`
]

• We shall also split each corridor Hk (and equivalently Vk but by symmetry we will
never analyze this case) into dydic squares {Qkm}m=1,...,log2

2−k
`

of width 2k as in

figure 2.

• Finally, let us point out that this division is well adapted to the bottom/left corner
of [0, 2

` ]
2 (which as we will see will give the main contributions to E

[
|δ`u|q

]
) but will

not match nicely with the right and top boundaries of [0, 2
` ]

2. As the contributions
of the squares Ck and Qkm will be shown to be negligible at that distance, we will
not bother with adapting the shape of these limiting squares.

4.1.1 Analyzing the contribution of the square C1

There are singularities in this special square that need some care: {y = 1}, {u = 1} and
{u = y}.

∫∫
[0,4]2

( 1

|y + 1|
1
2−H

− 1

|y − 1|
1
2−H

− 1

|u+ 1|
1
2−H

+
1

|u− 1|
1
2−H

)2 1

|u− y|1−2H̃+4γ2

2ε/`

dudy

6 C
∫

[0,4]2

( 1

|y − 1|
1
2−H

− 1

|u− 1|
1
2−H

)2 1

|u− y|1−2H̃+4γ2

2ε/`

dudy

To analyze this integral, we will use a certain partition of [0, 4]2 and use scaling argu-
ments around the triple singularity x0 = (1, 1). Introduce for any D ⊂ C1 = [0, 4]2,

Aε(D) :=

∫
D

( 1

|y − 1|
1
2−H

− 1

|u− 1|
1
2−H

)2 1

|u− y|1−2H̃+4γ2

2ε/`

dudy

Clearly, one has
Aε([0, 4]2) = Aε([0, 2]2) +Aε([0, 4]2 \ [0, 2]2)
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{y = 1}

{u = 1}

C1

C2

C3

Q2
1 Q2

2

(1, 1)

(4, 4)
Q2

3

Q1
1 Q

1
2 Q1

3

Hk=2

Figure 2: We shall use the above decomposition into dyadic squares of [0, 2
` ]

2.

The second term is easier to analyse and we shall focus on the first one which we decompose
as follows:

Aε([0, 2]2) =Aε([1/2, 3/2]2) +Aε([1/2, 3/2]× [0, 2] \ [1/2, 3/2])

+Aε([0, 2] \ [1/2, 3/2]× [1/2, 3/2]) + corners.

A straightforward scaling shows that Aε/2([1/2, 3/2]2) = 24γ2−2(H+H̃)Aε([0, 2]2). Further-
more, it is easy to see that the other terms listed above are uniformly bounded as ε → 0
and for the corners, the function to be integrated near the diagonal behaves like( 1

|y − 1|
1
2−H

− 1

|u− 1|
1
2−H

)2 1

|u− y|1−2H̃+4γ2

2ε/`

� (|u− y|)2 1

|u− y|1−2H̃+4γ2

2ε/`

which gives the additional constraint 1+2H̃−4γ2 > −1, i.e 2γ2 < 1+H̃, which is satisfied
because H̃ > 0 and 2γ2 < 1.

4.1.2 Analyzing the contribution of the squares {Ck}k > 2

Let us introduce the following function
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K(x) :=

∣∣∣∣ 1

x+ 1

∣∣∣∣ 12−H − ∣∣∣∣ 1

x− 1

∣∣∣∣ 12−H ∼x→∞ c

∣∣∣∣1x
∣∣∣∣3/2−H

It is straighforward to check that as x, y ∈ Ck, k > 2, one has

|K(x)−K(y)| 6 ‖K ′‖∞,[2k,2k+1]|x− y| 6 C(2−k)
5
2
−H |x− y|

This implies that if we define

h(y, u) :=
( 1

|y + 1|
1
2−H

− 1

|y − 1|
1
2−H

− 1

|u+ 1|
1
2−H

+
1

|u− 1|
1
2−H

)2 1

|u− y|1−2H̃+4γ2

2ε/`

then one has ∫
Ck

h(y, u) dydu 6 C(2−k)5−2H

∫
Ck

|u− y|1+2H̃−4γ2dydu

6 C(2−k)2−2H−2H̃+4γ2 .

This handles the contribution given by the squares {Ck}k > 2:

`2(H+H̃)−4γ2
log2

2
`∑

k=2

∫∫
Ck

h(y, u)dydu 6 O(1)`2(H+H̃)−4γ2
∑
k > 1

(2−k)2−2H−2H̃+4γ2

6 O(1)`2(H+H̃)−4γ2

as we 2H + 2H̃ − 4γ2 < 2.

4.1.3 Analyzing the contribution of the corridors {Hk}k > 1 and {Vk}k > 1

By symmetry, we will only focus on the horizontal corridors {Hk}k > 1. Here k ranges from
1 to log2

1
` .

The first corridor k = 1 will need a separate study as it is traversed throughout by the
line-singularity {u = 1}.
Corridors k = 2, . . . , log2

1
` : The horizontal corridor Hk is made of the 2k-squares Qkm with

m = 1, . . . , log2
2−k

2` . (See Figure 2).

log2
2−k
2`∑

m=1

∫∫
Qkm

( 1

|y + 1|
1
2−H

− 1

|y − 1|
1
2−H

− 1

|u+ 1|
1
2−H

+
1

|u− 1|
1
2−H

)2 1

|u− y|1−2H̃+4γ2

2ε/`

dudy

6 O(1)

log2
2−k
2`∑

m=1

Area(Qkm)‖h‖∞,Qkm
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Using the fact that K(x) ∼x→∞ x−3/2+H , it is straightforward to check that

‖h‖∞,Qkm 6 C [(2−k)3/2−H ]2
(

1

m2k

)1−2H̃+4γ2

6 C [2−k]4−2H−2H̃+4γ2m−1+2H̃−4γ2 ,

which gives us:

log2
2−k
2`∑

m=1

Area(Qkm)‖h‖∞,Qkm 6 O(1)22k[2−k]4−2H−2H̃+4γ2
log2

2−k
2`∑

m=1

m−1+2H̃−4γ2

6 O(1)[2−k]2−2H−2H̃+4γ2
log2

2−k
2`∑

m=1

m−1+2H̃−4γ2

By our assumptions above, we see that the exponent of 2−k is negative. Our assumption
H̃ < 2γ2 entails that we obtain an exponent α > 1 in

∑
mm

−α. This shows that the main
contribution will come from the first corridors.
First corridor (k = 1)

In this case the line-singularity {u = 1} traverses all squares {Qk=1
m }m=1,...,log2 1/(4`).

This singularity is easier to deal with than the ”2 lines singularity” for the above square
C1 as the singularity is integrable in

∫ 2
0 du. Therefore it is not hard to obtain the following

upper bound on the first corridor H1:

log2
1
4`∑

m=1

∫∫
Q1
m

( 1

|y + 1|
1
2−H

− 1

|y − 1|
1
2−H

− 1

|u+ 1|
1
2−H

+
1

|u− 1|
1
2−H

)2 1

|u− y|1−2H̃+4γ2

2ε/`

dudy

6 O(1)

log2
1
4`∑

m=1

∫∫
Q1
m

m−1+2H̃−4γ2 6 O(1).

Summarizing the above estimates, we thus obtain the following sharp bound (up to
multiplicative constants)

E
[
(δ`u)2

]
� `2(H+H̃)−4γ2

which shows as expected that

ξ(q = 2) = 2(H + H̃)− 4γ2.

4.2 q > 2 moments and non-linear spectrum

Recall the following estimate

E
[
|δ`uε(x = 0)|q

]
6 C̃qE

[
Jq/2ε

]
,

where

Jε =

∫∫
[−1,1]2

( 1

|y + `
2 |

1
2−H
− 1

|y − `
2 |

1
2−H
− 1

|u+ `
2 |

1
2−H

+
1

|u− `
2 |

1
2−H

)2 1

|u− y|1−2H̃
ε

M ε
2γ(du)M ε

2γ(dy).
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Let us focus on the square [0, 1]2 ([−1, 0]2 is treated the same way and the two other
squares are easier to deal with). By using the triangular inequality for the Lq/2-norm (we
assume here that q > 2), we have the bound:

E
[
|δ`uε(x = 0)|q

]2/q
6 O(1)

log 2∑̀
k=1

∑
A∈{ `

2
Ck,

`
2
Vk,

`
2
Hk}

∥∥∥∥∫∫
A
`−2+2H+2H̃g(

2y

`
,
2u

`
)M ε

2γ(du)M ε
2γ(dy)

∥∥∥∥
q/2

where similarly as for the q = 2 case, we shall use the function

g(y, u) :=
( 1

|y + 1|
1
2−H

− 1

|y − 1|
1
2−H

− 1

|u+ 1|
1
2−H

+
1

|u− 1|
1
2−H

)2 1

|u− y|1−2H̃
2ε/`

.

Now, on R2
+, it is easy to check that

g(y, u) 6 2
[
(

1

|y + 1|
1
2−H

− 1

|u+ 1|
1
2−H

)2 + (
1

|u− 1|
1
2−H

− 1

|y − 1|
1
2−H

)2
] 1

|u− y|1−2H̃
2ε/`

6 4(
1

|u− 1|
1
2−H

− 1

|y − 1|
1
2−H

)2 1

|u− y|1−2H̃
2ε/`

=: fε(y, u)

4.2.1 Analyzing the contribution of the square C1

As in the easier case of q = 2, we have to analyze the quantity∥∥∥∥∥
∫∫

`
2
C1

`−2+2H+2H̃fε(
2y

`
,
2u

`
)M ε

2γ(du)M ε
2γ(dy)

∥∥∥∥∥
q/2

We will proceed here as in Subsection 3.5 by relying on Kesten’s inequality as well as
scaling arguments. The main singularities in the square `

2C1 = [0, 2`]2 arise in the sub-
square [0, `]2 on which we now focus. We will use the scaling properties of the chaos twice:
first to take into account the highly correlated nature of X̂ within [0, `]2 and then a second
time along a similar decomposition as in Subsection 3.5 (except it will be centered here
around the point x0 = ( `2 ,

`
2)) to prove that the limit as ε→ 0 exists.

First rescaling. We need to estimate the quantity

RC1 := `−2+2H+2H̃E
[(∫∫

[0,`]2
fε(

2y

`
,
2u

`
)M ε

2γ(du)M ε
2γ(dy)

)q/2]2/q
= `−2+2H+2H̃E

[(∫∫
[0,`]2

fε(
2y

`
,
2u

`
)e2γX̂ε(u)−2γ2cεe2γX̂ε(y)−2γ2cεdudy

)q/2]2/q
.

Using the change of variables ȳ = y/`, ū = u/` together with the identity (3.17), we
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have

RC1 = `2H+2H̃E
[(∫∫

[0,1]2
fε(2ȳ, 2ū)e2γX̂ε(`ū)−2γ2cεe2γX̂ε(`ȳ)−2γ2cεdudy

)q/2]2/q
= `2H+2H̃E

[
e2γqΩ1/`

]2/q
e−4γ2 ln 1/`E

[(∫∫
[0,1]2

fε(2ȳ, 2ū)M
ε/`
2γ (dū)M

ε/`
2γ (dȳ)

)q/2]2/q
= `2(H+H̃)+4γ2−4γ2qE

[(∫∫
[0,1]2

fε(2ȳ, 2ū)M
ε/`
2γ (dū)M

ε/`
2γ (dȳ)

)q/2]2/q
. (4.1)

Second rescaling. Now using the same notations as in Subsection 3.5, define

Aε,`(D) := E
[(∫∫

D
fε(2ȳ, 2ū)M

ε/`
2γ (du)M

ε/`
2γ (dy)

)q/2]2/q
Again by the triangle inequality for Lp norms with p = q

2 > 1, we have

Aε/2,`([0, 1]2) 6 Aε/2,`([
1

4
,
3

4
]2) +Aε/2,`([

1

4
,
3

4
]× [0, 1] \ [

1

4
,
3

4
])

+Aε/2,`([0, 1] \ [
1

4
,
3

4
]× [

1

4
,
3

4
]) + the 4 corner squares

Let us first deal with the most problematic square : the one centred around the point-
singularity (1/2, 1/2).

Lemma 4.1.

Aε/2,`([
1

4
,
3

4
]2) 6 2−2(H+H̃)−4γ2+4γ2qAε,`([0, 1]2)

Proof. We will use the fact (already used above in (3.17))

(X̂λε(λu+ λ(`/2, `/2)))u∈[0,`] = (X̂ε(u) + Ωλ)u∈[0,`] (4.2)

where Ωλ is a centered Gaussian random variable with variance − lnλ independent of the
process X̂ε. By making the change of variable u′ = 2ū− 1/2 and y′ = 2ȳ − 1/2 we get

Aε/2,`([
1

4
,
3

4
]2) = E

[(∫∫
[ 1
4
, 3
4

]2
fε/2(2ȳ, 2ū)e2γX̂ε/(2`)(ū)−2γ2cε/(2`)e2γX̂ε/(2`)(ȳ)−2γ2cε/(2`)dūdȳ

)q/2]2/q
=

1

4
E
[
e2γqΩ1/2

]2/q
e−4γ2 ln 2

× E
[(∫∫

[0,1]2
fε/2(2(y′/2 + 1/4), 2(u′/2 + 1/4))M

ε/`
2γ (du′)M

ε/`
2γ (dy′)

)q/2]2/q
= 2−2(H+H̃)−4γ2+4γ2q Aε,`([0, 1]2)

�
We thus need to assume that the exponent 4γ2q − 4γ2 − 2(H + H̃) is negative, or

otherwise stated q < 1 + 1
2γ2

(H+ H̃). It thus remains to control the other squares in order
to show the following estimate:
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Lemma 4.2. Assuming q < 1 + 1
2γ2

(H + H̃) and q < 2(1 + H
γ2

) ∧ 1
2γ2

then, there exists
constants r < 1 and C <∞ s.t. uniformly in 0 < ε < `,

Aε/2,`([0, 1]2) 6 r Aε,`([0, 1]2) + C

Proof. Let us focus for example on the rectangle Rtop := [1/4, 3/4]× [3/4, 1]. (The diagonal
squares are less singular and are treated as in Subsection 3.5). The exact same analysis
as the one carried for the square [0, 1/2]× [1/2, 1] in Subsection 3.5 applies here given the
additional constraint that q < 2(1 + H

γ2
) ∧ 1

2γ2
. �

All together, we see that under the conditions of Lemma 4.2, the contribution of the
square `

2C1 to the qth moment of the increment (to the power 2/q) is given by

O(1)`2(H+H̃)+4γ2−4γ2q

which is what we wanted.

4.2.2 Analyzing the contribution of the squares {Ck}k > 2

Easiest case: here no singularities, and standard scaling argument.

4.2.3 Analyzing the contribution of the corridors {Hk}k > 1 and {Vk}k > 1

Let us start with the following slight generalisation of the celebrated Kahane’s convexity
inequality. This small extension is of independent interest.

Proposition 4.3. Let (Xi)1 6 i 6 n+m and (Yi)1 6 i 6 n+m be two centered Gaussian vectors
satisfying for all i, j

E
[
XiXj

]
6 E

[
YiYj

]
.

Then for all sequence of nonnegative weights (pi)1 6 i 6 n+m and all increasing convex
functions F : R+ → R+ and G : R+ → R+, one has

E
[
F (

n∑
i=1

pie
Xi− 1

2
E
[
X2
i

]
)G(

m∑
k=n+1

pke
Xk− 1

2
E
[
X2
k

]
)
]
6 E

[
F (

n∑
i=1

pie
Yi− 1

2
E
[
Y 2
i

]
)G(

m∑
k=n+1

pke
Yk− 1

2
E
[
Y 2
k

]
)
]

Proof. The proof follows exactly the same lines as the original proof by Kahane (see for
example [16, 28]). We shall only sketch briefly how to adapt the proof here. Consider two
independent realizations of the Gaussian vectors (Xi) and (Yi) and interpolate between
the two as follows:

Zi(t) :=
√
tXi +

√
1− tYi.

Consider the function

φ(t) := E
[
F (

n∑
i=1

pie
Zi(t)− 1

2
E
[
Zi(t)

2
]
)G(

m∑
k=n+1

pke
Zk(t)− 1

2
E
[
Zk(t)2

]
)
]
.
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Then, by using the Gaussian integration by parts formula, it is not difficult to obtain
the following identity

φ′(t) =
n∑

i,j=1

pipj

(
(E
[
XiXj

]
− E

[
YiYj

]
)E
[
eZi(t)+Zj(t)−

1
2
E
[
Zi(t)

2
]
− 1

2
E
[
Zj(t)

2
]
F ′′(Vn,t)G(Wm,t)

])

+ 2
∑

i=1,...,n
k=n+1,...,n+m

pipk

(
(E
[
XiXk

]
− E

[
YiYk

]
)E
[
eZi(t)+Zk(t)− 1

2
E
[
Zi(t)

2
]
− 1

2
E
[
Zk(t)2

]
F ′(Vn,t)G

′(Wm,t)
])

+
n+m∑

k,l=n+1

pkpl

(
(E
[
XkXl

]
− E

[
YkYl

]
)E
[
eZk(t)+Zl(t)− 1

2
E
[
Zk(t)2

]
− 1

2
E
[
Zl(t)

2
]
F (Vn,t)G

′′(Wm,t)
])

where Vn,t :=
∑n

i=1 pie
Zi(t)− 1

2
E
[
Zi(t)

2
]

Wm,t :=
∑n+m

k=n+1 pke
Zk(t)− 1

2
E
[
Zk(t)2

]
With our above assumptions, it implies that φ′(t) 6 0 ∀t ∈ [0, 1], which concludes our
proof as this shows that φ(0) > φ(1). �

As in Kahane’s work ([16]), the same inequality for continuous multiplicative chaos
measures immediately follows.

We will need the following decorrelation Lemma.

Lemma 4.4. Let A,B be two disjoint intervals of length |A| = |B| = u on [−2, 2] ⊂ R
s.t. that dist(A,B) > u. Then we have for all q < q∗ = 2 2

(2γ)2
= 1

γ2
,

E
[
M2γ(A)q/2M2γ(B)q/2

]
6 6 C(

1

dist(A,B)
)γ

2q2 |A|(1+2γ2)q−γ2q2

Proof. Recall that our log-correlated stationary centered Gaussian field, X̂, has the fol-
lowing covariance structure for all ε > 0 (where X̂ε := ρε ∗ X̂):

Ĉε(x) = E[X̂ε(x)X̂ε(0)] ∼ ln+
1

|x|+ ε
(4.3)

Let us construct the following centered Gaussian Field Y (x) on R: define

Y (x) := Z(x) + λN (0, 1)

where Z(x) is the centered Gaussian log-correlated field on R with covariance kernel

Cov(Z(x), Z(y)) = log+

dist(A,B)

2|x− y|

and N (0, 1) is a global Gaussian variable independent of Z. See for example [27] for
a discussion on the log+ covariance kernel. Note that by construction, the field Z(x)
is independent of Z(y) as soon as |x − y| > dist(A,B)/2. Therefore Z|A and Z|B are
independent log-correlated fields.
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Let us now fix λ so that

λ2 = log+

1

dist(A,B)
+K

where K is a large constant to be fixed later which will not depend on A nor B. By the
covariance structure (4.3), it readily follows that for all x, y ∈ A ∪B,

E
[
X̂ε(x)Ŷε(y)

]
6 E

[
X̂(x)X̂(y)

]
6 log+

1

|x− y| + C1

6 log+

dist(A,B)

2|x− y| + log+

1

dist(A,B)
+ C2

= Cov(Z(x), Z(y)) + λ2 = Cov(Y (x), Y (y)) .

(We thus choose K to be the constant C2 in the third line).
We are now in position to apply Proposition 4.3 (or rather its straightforward extension

to continuous multiplicative chaos). It gives

lim sup
ε→0

E
[
M ε

2γ(A)q/2M ε
2γ(B)q/2

]
6 E

[
M2γ(A)q/2M2γ(B)q/2

]
6 E

[
e2γqN (0,λ2)− (2γ)2

2
qλ2
]
E
[
MZ

2γ(A)q/2
]
E
[
MZ

2γ(B)q/2
]

6 OK(1)(
1

dist(A,B)
)2γ2q2−2γ2q E

[
MZ

2γ(A)q/2
]
E
[
MZ

2γ(B)q/2
]
,

where MZ
2γ stands for the multiplicative chaos measure of exponent 2γ induced by the

field Z. As this field Z is log+ correlated below scales of width dist(A,B) it enjoys exact
scaling relations. (See [27]). Now standard scaling arguments for these measures (recall
we assumed u = |A| 6 dist(A,B)) give us the bound below at least if q is not too large,
namely q/2 < 2

(2γ)2
i.e. q < q∗ as stated in the Lemma.

E
[
MZ

2γ(A)q/2
]
� E

[
e

2γ q
2
N (0,log

dist(A,B)
|A| )− (2γ)2

2
q
2

log
dist(A,B)
|A|

]
|A|q/2

�
(

dist(A,B)

|A|

) γ2

2
q2−γ2q

|A|q/2.

Combining the above two estimates, we find as expected

E
[
M2γ(A)q/2M2γ(B)q/2

]
6 OK(1)(

1

dist(A,B)
)2γ2q2−2γ2q

(
dist(A,B)

|A|

)γ2q2−2γ2q

|A|q

6 OK(1)(
1

dist(A,B)
)γ

2q2 |A|(1+2γ2)q−γ2q2

�
Corridors k = 2, . . . , log2

1
`
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The horizontal corridor `Hk (we do not zoom here by a factor of 1
` ) is made of the

2k-squares `Qkm with m = 1, . . . , log2
2−k

2` .

∥∥∥∥∫∫
`Hk

`−2+2H+2H̃g(
y

`
,
u

`
)M ε

2γ(du)M ε
2γ(dy)

∥∥∥∥
q/2

6 `−2+2H+2H̃

log2
2−k
2`∑

m=1

∥∥∥∥∥
∫∫

`Qkm

g(
y

`
,
u

`
)M ε

2γ(du)M ε
2γ(dy)

∥∥∥∥∥
q/2

6 O(1)`−2+2H+2H̃

log2
2−k
2`∑

m=1

‖g‖∞,QkmE
[
M2γ(Ik0 )q/2M2γ(Ikm)q/2

]2/q
,

where the intervals Ik0 and {Ikm}m > 1 are such that each dyadic square `Qkm = Ikm × Ik0 .
These intervals are of length |Ik0 | = |Ikm| = `2k and are at distance dist(Ik0 , I

k
m) = m`2k

from each other. Therefore we obtain from Lemma 4.4 that∥∥∥∥∫∫
`Hk

`−2+2H+2H̃g(
y

`
,
u

`
)M ε

2γ(du)M ε
2γ(dy)

∥∥∥∥
q/2

6 O(1)`−2+2H+2H̃

log2
2−k
2`∑

m=1

‖g‖∞,QkmE
[
M2γ(Ik0 )q/2M2γ(Ikm)q/2

]2/q

6 O(1)`−2+2H+2H̃

log2
2−k
2`∑

m=1

‖g‖∞,Qkm
[
(

1

dist(Ik0 , I
k
m)

)γ
2q2 |Ik0 |(1+2γ2)q−γ2q2

]2/q

6 O(1)`−2+2H+2H̃

log2
2−k
2`∑

m=1

‖g‖∞,Qkm
1

m2γ2q

[
(`2k)−γ

2q2(`2k)(1+2γ2)q−γ2q2
]2/q

6 `−2+2H+2H̃

log2
2−k
2`∑

m=1

‖g‖∞,Qkm
1

m2γ2q
(`2k)(1+2γ2)2−4γ2q

Now, as in the case of q = 2 (where we relied on the function h rather than g) and
using the fact that φ(x) ∼x→∞ x−3/2+H , it is straightforward to check that

‖g‖∞,Qkm 6 C [(2−k)3/2−H ]2
(

1

m2k

)1−2H̃

6 C [2−k]4−2H−2H̃m−1+2H̃ ,
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which gives us:∥∥∥∥∫∫
`Hk

`−2+2H+2H̃g(
y

`
,
u

`
)M ε

2γ(du)M ε
2γ(dy)

∥∥∥∥
q/2

6 O(1)`−2+2H+2H̃(`2k)(1+2γ2)2−4γ2q[2−k]4−2H−2H̃

log2
2−k
2`∑

m=1

1

m1−2H̃+2γ2q

6 O(1)`2H+2H̃+4γ2−4γ2q[2−k]2−2H−2H̃−4γ2+4γ2q ,

where by our assumption 3 above (H̃ < qγ2), this is indeed summable in m for all exponent
q > 2. Also, by our assumption 2 above (2H + 2H̃ − 4γ2 < 2), we see that the exponent
of 2−k is indeed positive for all exponents q > 2. This shows that the main contribution
to the ‖ · ‖q/2 norm will come from the first corridors and is given by

O(1)`2H+2H̃+4γ2−4γ2q.

As such the contribution of the corridors `Hk, k > 2 to E
[
‖δ`u‖q

]
will be of of order

(after taking to the exponent q/2 above)

O(1)`qH+qH̃+2qγ2−2q2γ2

which is indeed our expected structure function ξ(q) = q(H + H̃) + 2qγ2 − 2q2γ2.

First corridor (k = 1) Finally, it can be shown that under the same set of constraints,

this corridor contributes also O(1)`2H+2H̃+4γ2−4γ2q to E
[
‖δ`u‖q

]2/q
. We leave the details

to the reader as this case in some sense interpolates between the square C1 (three-lines
singularities) and the corridors {Hk}k > 2 (no line singularities but large width): indeed
H1 has one line-singularity throughout (see Figure 2) and large width. �

A Numerics

A.1 Estimation of the function fH(h) and its sign

We represent in figure 3 the results of the numerical integration of a approximation fε,H
of the function fH (Eq. 3.15) entering in the third moment of the increments, namely

fε,H(h) =

∫  1

|x+ 1/2|
1
2
−H

ε

− 1

|x− 1/2|
1
2
−H

ε


×

 1

|x+ h+ 1/2|
1
2
−H

ε

− 1

|x+ h− 1/2|
1
2
−H

ε

2

dx, (A.1)

where enters the regularized norm |x|2ε = |x|2+ε2. The numerical integration is made using
adaptively a Newton-Cotes 5/9 point rule, as described in Ref. [5]. For this estimation, we
use ε = 10−5, and we checked (data not shown) that it is representative of the limit value
ε→ 0. We study a large set of values for H, and check that indeed fε,1/2(h) = 0 for h > 0.
This numerical study confirms the assumption on the sign of fH made in Eq. 1.12, that is
positive for H < 1/2, and negative for H > 1/2.
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Figure 3: Numerical estimation of the function fε,H(h), at a given approximation ε = 10−5

(see text). (a) From top to bottom, H = 0.3, 0.35, 0.38, 0.4, 0.5. (b) From top to bottom,
H = 0.5, 0.6, 0.7, 0.8, 0.9.

A.2 Simulation of the random process, and estimation of its statistical
properties

We here present a method to simulate the proposed random field uε defined in (1.3) in
a periodic fashion, such that we can work with the discrete Fourier transform. To do so,
discretize the interval [0, 1] over N collocation points. For full benefit of the fast Fourier
transform (FFT) algorithm, choose N to be a power of 2. This defines the numerical
resolution of the simulation, i.e. dx = 1/N . Choose for example as a cut-off function ϕL

a Gaussian shape, i.e. ϕL(x) = e−
x2

2L2 . The precise shape of this function only matters at
large scales, statistics at small scales are independent on it, besides its value at the origin.
Choose as a regularized norm |x|2ε = |x|2 + ε2. Once again, the precise definition of the
regularized norm does not matter since Theorem 1.2 ensures that the statistical properties
of uε are independent of the regularization procedure when ε→ 0.

Consider then two independent white fields W and Ŵ , each of them made of N in-
dependent realizations of a zero-average Gaussian variable of variance dx. Define the de-
terministic kernels φε (1.5) (replace the norm |.| entering in φ by its regularized form |.|ε)
and kε (1.6) in a periodic fashion. Take X̂ = kε ∗ Ŵ , and use W as the remaining white
field entering in the construction of uε (1.3). Convolutions are then efficiently performed
in the Fourier space.

We represent in Fig. 1 an instance of the process uε (1.3), as obtained by the aforemen-
tioned numerical method. We have used for the simulation the following set of parameters:
N = 220, L = 1/3, ε = 2dx, and the values γ =

√
0.025/2 and H = 1/3 + 4γ2. These

chosen values for the parameters γ and H correspond to what is observed in turbulence
(see Remark 1.7).

To go further in the characterization of the statistical properties of the field uε, we
perform an additional simulation at a higher resolution N = 231 in order to estimate in
a reliable way the behaviors at small scales, and represent in Fig. 4 the results of our
estimations. We have chosen as a cut-off length scale L = 2−6, and as a regularizing scale
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Figure 4: Numerical estimation of the statistical properties of uε (1.3) (using continuous
lines), numerical details are provided in the text. (a) Estimation of S2(`) = E (δ`uε)

2 as a
function of the scale `, in a logarithmic fashion. (b) Estimation of the skewness S(`) (Eq.
A.2). (c) Estimation of the Flatness F(`) (Eq. A.3). In (a), (b) and (c), we superimpose the
estimations of these statistical quantities using ug

ε defined in (2.5) (dotted line) instead of uε
(represented with a continuous line). In (a) and (c), we furthermore represent the expected
power-law behaviors using dashed lines. (d) Logarithmic representations of the probability
density functions (PDFs) of the increments δ`uε (renormalized by their respective standard
deviation). Curves are arbitrary shifted vertically for clarity. From top to bottom, we have
used log10(`/L) = −7.2,−6,−4.8,−3.5,−2.3,−1, 0.2.

ε = 2dx. Once again, values of the parameters are those which are realistic of turbulence,
i.e. γ =

√
0.025/2 and H = 1/3 + 4γ2 (see Remark 1.7). For the sake of comparison,

we have furthermore made our estimations on the underlying fractional Gaussian field ug
ε

defined in (2.5).
We begin in Fig. 4(a) with the estimation of the second-order structure function S2(`) =

E (δ`uε)
2 as a function of the scale. We observe for uε a power-law behavior at small scales,

i.e. S2(`) ∼ `ξ(2), where the function ξ(q) is defined in (1.10), consistently with Theorem
1.2. As for ug

ε, we also observe a power-law behavior at small scales, that we know to be
S2(`) ∼ `2H . Let us remark that since ξ(2) is very close to 2H, it is difficult to see a
difference in between these power-laws.

We represent in Fig. 4(b) the result of our estimation for the Skewness factor S(`) of
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the increments given by

S(`) =
E (δ`uε)

3[
E (δ`uε)

2
]3/2

. (A.2)

We see that the present process is indeed skewed at small scales, being close to zero close to
the large scale L, and growing towards values close to -2 at small scales. Remark that the
quantity S(`)is expected to behave as a power-law of exponent ξ(3)− 3

2ξ(2) at small scales.
Remark also that it is indeed negative, as required by the phenomenology of turbulence
(Section 2.1). In comparison, we see that the Skewness factor for the Gaussian process ug

ε

is close to zero at any scales, as expected from symmetric statistical laws.
We represent in Fig. 4(c) the result of our estimation for the Flatness factor F(`) of

the increments given by

F(`) =
E (δ`uε)

4[
E (δ`uε)

2
]2 . (A.3)

Whereas F(`) is independent on the scale for the Gaussian process ug
ε (and equal to 3),

we see that it behaves as a power-law of exponent ξ(4)− 2ξ(2) at small scales.
Finally, we represent in Fig. 4(d) the histograms of the values of the increments δ`uε for

several scales given in the caption. We see that whereas the histogram of the increments of
the process uε are close to a Gaussian function at large scales ` ∼ L, they develop heavier
and heavier tails at smaller scales, with a noticeable asymmetry.
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