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ARTICLE

Global warming-induced Asian hydrological climate
transition across the Miocene–Pliocene boundary
Hong Ao 1,2✉, Eelco J. Rohling 3,4, Ran Zhang 5✉, Andrew P. Roberts 3, Ann E. Holbourn 6,

Jean-Baptiste Ladant 7,8, Guillaume Dupont-Nivet9,10, Wolfgang Kuhnt6, Peng Zhang 1,2, Feng Wu1,

Mark J. Dekkers 11, Qingsong Liu12, Zhonghui Liu 13, Yong Xu14, Christopher J. Poulsen 7, Alexis Licht 15,

Qiang Sun 16, John C. H. Chiang17, Xiaodong Liu 1, Guoxiong Wu5, Chao Ma18, Weijian Zhou 1,2,

Zhangdong Jin 1,2, Xinxia Li19, Xinzhou Li1, Xianzhe Peng20, Xiaoke Qiang 1 & Zhisheng An 1,2

Across the Miocene–Pliocene boundary (MPB; 5.3 million years ago, Ma), late Miocene

cooling gave way to the early-to-middle Pliocene Warm Period. This transition, across which

atmospheric CO2 concentrations increased to levels similar to present, holds potential for

deciphering regional climate responses in Asia—currently home to more than half of the

world’s population— to global climate change. Here we find that CO2-induced MPB warming

both increased summer monsoon moisture transport over East Asia, and enhanced aridifi-

cation over large parts of Central Asia by increasing evaporation, based on integration of our

~1–2-thousand-year (kyr) resolution summer monsoon records from the Chinese Loess

Plateau aeolian red clay with existing terrestrial records, land-sea correlations, and climate

model simulations. Our results offer palaeoclimate-based support for ‘wet-gets-wetter and

dry-gets-drier’ projections of future regional hydroclimate responses to sustained anthro-

pogenic forcing. Moreover, our high-resolution monsoon records reveal a dynamic response

to eccentricity modulation of solar insolation, with predominant 405-kyr and ~100-kyr per-

iodicities between 8.1 and 3.4Ma.
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The Miocene–Pliocene boundary (MPB), which is defined
formally at the base of the deep marine Mediterranean
Trubi marls, occurred at ~5.3 Ma, five orbital preces-

sion (19-kyr and 23-kyr) cycles below the C3n.4n palaeomagnetic
normal polarity chron1–4. In the Mediterranean, the Messinian
salinity crisis ended across the MPB2,3,5. In a global context, the
MPB marks a transition from a late Miocene cooling trend to the
early-to-middle Pliocene Warm Period6,7. It coincided with an
atmospheric CO2 concentration rise of ~100–250 ppm8–10, an
increase with similar amplitude (albeit not the rate) to the current
rise due to anthropogenic emissions. The early-to-middle Plio-
cene Warm Period was the most recent period of persistently
warmer-than-present conditions. During this warm interval, the
Northern Hemisphere was largely ice-free and atmospheric CO2

concentrations were comparable to present-day levels8–11.
Detailed analysis of the MPB, therefore, enables investigation of
the large-scale climate response to a natural atmospheric CO2

increase and global warming over equilibrium timescales for
comparison with rapid out-of-equilibrium present-day responses.
Compared to relatively extensive Quaternary and modern climate
studies, however, little is known about the detailed terrestrial
climate changes related to this global warming event because
high-resolution records that offer continuous coverage of distinct
orbital variability from the late Miocene to the Pliocene are rare.

Today, Asia has wet monsoonal regions to the south and east
of the Tibetan Plateau (~200–2000 mm annual precipitation) and
arid continental regions to the north and west of the Tibetan
Plateau (<50 to ~100 mm annual precipitation) (Fig. 1a). Arid
Central Asia (>35°N) is dominated by upper-tropospheric Wes-
terlies and is essentially beyond the reach of summer monsoon
rain (Fig. 1a). Both the Asian monsoon and the Westerlies are
critical components of the global atmospheric circulation; they
play a key role in the global climate system, impacting surface
ocean circulation and driving air-sea heat, moisture, momentum
fluxes, and carbon exchange12–14. Our present understanding of
Asian climate variability and dynamics relies primarily on Qua-
ternary results, when a bipolar icehouse climate state was fully
established and global climate was colder than today, with waxing
and waning Northern Hemisphere ice sheets on orbital
timescales11. To better appreciate aspects of Asian climate
dynamics and future climate change, it is pertinent to reconstruct
sufficiently highly resolved palaeoclimate records to identify
orbital timescale variability and to understand the forcing
mechanisms of Asian climate change during the warmer-than-
present late Miocene–Pliocene.

The Chinese Loess Plateau (CLP, ~640,000 km2) is located at
the transition between humid and arid regions in Central China
and is sensitive to seasonally alternating southeasterly summer
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Fig. 1 Site location map and field photograph. a Topographic map of Asia with important geographic landmarks mentioned herein. Dominant winds and
mean annual precipitation (mm, 1979 to 2007 average) are shown as arrows and dashed contour lines, respectively. Red and blue stars mark locations that
shifted to drier and wetter conditions across the Miocene–Pliocene boundary (MPB), respectively. South and East Asia receive high Asian summer
monsoon precipitation. Central Asia is a low precipitation region that is influenced mostly by the Westerlies. b Field photograph (taken by H. Ao) of the
Shilou red clay sequence (with horizontal bedding) from the eastern Chinese Loess Plateau (CLP, monsoonal region). The upper sequence (Pliocene) has a
more saturated red colour than the lower part (late Miocene), which is consistent with enhanced pedogenesis and increased summer monsoon
precipitation across the MPB.
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monsoon and northwesterly winter monsoon circulations4,15–20

(Fig. 1a). With thicknesses of up to ~600 m, CLP aeolian loess/red
clay sequences, which reflect primarily near-surface winter
monsoon dust transport from the Central Asian arid regions (i.e.,
inland Gobi-sandy deserts and wind eroded lands), provide a
unique high-resolution archive of terrestrial climate variations
that spans continuously from the latest Oligocene to the
Quaternary15–18,21. At present, orbital climate variability is well
constrained in Quaternary loess sequences22–25, but is poorly
resolved in the underlying red clay sequence18,26 because rapidly
measurable magnetic susceptibility (χ), which is used routinely to
reveal orbital climate variability of Quaternary loess, does not
capture distinct orbital signals in the red clay19.

Here, we investigate Asian monsoon responses to the MPB global
warming event and orbital forcing during the late Miocene–middle
Pliocene in a global context by providing ~1–2-kyr resolution ~4.7-
Myr-long proxy records (Al/Na, Rb/Sr, and lightness) spanning
continuously from ~8.1 to ~3.4Ma from the Shilou aeolian red clay
succession on the eastern CLP (Fig. 1a). This section has an excep-
tional and distinct cyclostratigraphy that is visible to the naked eye in
the field (Fig. 1b) and is, thus, well suited to reveal orbital-scale
terrestrial climate signals recorded in the CLP red clay. We integrate
our high-resolution records with existing palaeoclimate records from
the wider Asian region and land-sea correlations. We also present
Earth System model simulation results with late Neogene boundary
conditions, to assess the influence of CO2-induced MPB warming on
spatial Asian hydroclimate changes. Our comprehensive study can
aid assessment of future Asian climate changes as global climate
continues to warm.

Results
The Shilou red clay section (36°55′N, 110°56′E, 1150m elevation) is
located on the northwestern Asian summer monsoon margin, an
area sensitive to summer monsoon variability (Fig. 1). It (Figs. 1b and
2a; Supplementary Fig. 1) comprises alternating brownish and light
red (carbonate-nodule-rich) late Miocene palaeosols, with dom-
inantly darker red Pliocene palaeosols (see Supplementary Note 1 for
lithological details). Al/Na, Rb/Sr, and lightness of Neogene red clay
and Quaternary loess-palaeosol sequences across the CLP are used
routinely as proxies of regional summer monsoon
precipitation17,26–29 (for a more detailed discussion of proxy vali-
dation, see Supplementary Note 1 and Supplementary Fig. 2). We
measured these proxies from the Shilou red clay at 2-cm intervals
(~1–2-kyr time spacing), which provide the highest-resolution late
Miocene–Pliocene CLP red clay palaeoclimate records presently
available, to infer prominent monsoon events and variability over
orbital time scales and long-term trends. Using the latest magneto-
chronology for the Shilou red clay section19, the robustness of which
has been addressed in recent studies4,19,30 (Supplementary Note 2),
we developed a combined magneto- and astro-chronology spanning
continuously from ca 8.1 to 3.4Ma by tuning Rb/Sr to Earth’s
computed orbital eccentricity31 (see “Methods” and Supplementary
Figs. 3–4 for details). In the Shilou red clay section, brownish and
dark red palaeosols, which formed under higher precipitation and
stronger chemical weathering conditions, have higher Al/Na and Rb/
Sr values and lower lightness values than the light red carbonate-
nodule-rich palaeosols that formed under lower precipitation and
weaker weathering conditions (Fig. 2a–d). These proxies of the CLP
red clay are, therefore, sensitive to summer monsoon precipitation
variability.

In the late Miocene strata, alternations between brownish and light
red palaeosols (Fig. 1b; Supplementary Fig. 1a) are associated with
large-amplitude Al/Na, Rb/Sr, and lightness oscillations, which reflect
orbital-scale summer monsoon intensity variations (Figs. 2–3).
Spectral analyses of these alternations suggest the presence of strong

eccentricity (~100-kyr and 405-kyr) cycles (Fig. 3). Obliquity (41-kyr)
cycles are relatively weaker in the Al/Na, Rb/Sr, and lightness records
(Fig. 3). Notably, large-amplitude late Miocene-style ~100-kyr orbital
variability becomes weaker in the early-to-middle Pliocene Al/Na,
Rb/Sr, and lightness records, while eccentricity cycles remain domi-
nant (Figs. 2–3). Furthermore, mean Al/Na and Rb/Sr increase
markedly across the MPB, while lightness decreases substantially
(Fig. 2b–d). These lithological and proxy changes provide strong
evidence for increased summer monsoon precipitation and soil
moisture availability across the MPB. Greater Pliocene soil moisture
would have intensified chemical weathering and carbonate nodule
leaching (which would have preferentially removed soluble carbo-
nates), leading to a disappearance of late Miocene-style thick
carbonate-nodule-rich light red palaeosols and instead to cumulative
formation of dark red palaeosols, with only a few thin (0.2–0.4m)
carbonate nodule layers (Supplementary Fig. 1). Higher precipitation
in association with increased summer monsoon moisture transport is
a requirement for such enhanced pedogenesis and carbonate nodule
leaching in particular, while increased temperature is not necessary. If
a temperature increase is associated with a decrease in synchronous
summer monsoon precipitation, the regional net moisture (pre-
cipitation minus evaporation) would decrease, which would weaken
pedogenesis and carbonate nodule leaching on the CLP across the
MPB, which contrasts markedly with observations from the Shilou
and other red clay sections17,19,26,30,32–38. It appears that the CLP red
clay Al/Na, Rb/Sr, and lightness records are more sensitive to changes
in summer monsoon precipitation than temperature. We find that
the summer monsoon precipitation increase on the CLP suggested by
these red clay proxies coincided with a worldwide temperature
increase across the MPB6,7,39–41.

The Al/Na, Rb/Sr, and lightness records have similar orbital
variability in the untuned magnetochronology as in our refined
astronomical time scale, with prominent ~100-kyr and 405-kyr
eccentricity cycles and relatively weaker obliquity cycles (Sup-
plementary Fig. 5). In spectral analyses, we note that calculated
eccentricity and obliquity bands are displaced slightly in the
untuned magnetochronology, or that the obliquity expression is
subdued in a few intervals where non-orbital signals appear to be
more distinct. Orbital expression is enhanced, and non-orbital
signals are subdued in the refined astronomical time scale relative
to the untuned magnetochronology. These minor differences are
consistent with the increased precision of the astronomical time
scale, and do not influence our inference of monsoon variability,
particularly summer monsoon intensification across the MPB,
which is constrained by the palaeomagnetic polarity reversal
boundary between the C3n.4n normal polarity chron and the
C3n.4r reversed polarity chron.

Overall, the Shilou red clay lithological and proxy records
suggest prominent orbital-scale monsoon variability throughout
the late Miocene–middle Pliocene and a distinct transition to
higher summer monsoon precipitation across the MPB. Some
inevitable differences among the three Shilou red clay proxy
records may be related to their diverse sensitivity to summer
monsoon variability under different global climate conditions.
For example, the Al/Na record has a larger amplitude increase in
mean values across the MPB and lower amplitude orbital varia-
bility during the early-to-middle Pliocene than the Rb/Sr record,
which may relate to enhanced Na leaching associated with
intensified summer monsoon precipitation and chemical
weathering.

Discussion
In addition to the Al/Na, Rb/Sr, and lightness records from the
Shilou section, the Jiaxian red clay Rb/Sr record (~120 km north
of the Shilou section) also contains prominent 100-kyr and 405-
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kyr cycles26 (Fig. 3d). The combined Shilou and Jiaxian records
suggest that the Asian summer monsoon system varied dyna-
mically over eccentricity timescales during the late
Miocene–middle Pliocene. Eccentricity modulates the amplitude
of summer insolation (Fig. 2e). Summer insolation is an impor-
tant driver of Asian monsoon variability42, so we infer that
eccentricity modulation of summer insolation could have influ-
enced the Asian monsoon during the late Miocene–middle
Pliocene when the Northern Hemisphere was almost ice-free and
global climate was warmer than today. It is likely that eccentricity
modulation of summer insolation drove the observed distinct
405-kyr and 100-kyr Asian monsoon variability through non-
linear interactions with the global carbon cycle. Similar transfer of
insolation signals into global climate has been demonstrated in
marine benthic δ18O and δ13C records43,44. In addition to pro-
nounced eccentricity cycles, a moderate obliquity response is
apparent in the Shilou records, which is expressed dis-
continuously in the lower-resolution Jiaxian red clay Rb/Sr record
(Fig. 3). Such a response might be related to obliquity-induced

variations in Antarctic ice volume, sea level, and/or the thermal
gradient between continental Asia and its surrounding oceans,
which influence atmospheric heat and moisture transfer from the
tropics to higher latitudes45. The moderate obliquity response is
possibly due to the absence of large Northern Hemisphere ice
sheets that could have amplified the climate response to obliquity
forcing11.

Speleothem δ18O records suggest that precession periodicity
dominates summer monsoon variability in South China over the
last 640 kyr42,46. The precession expression is significantly weaker
than that of eccentricity and obliquity in the Shilou red clay Al/
Na, Rb/Sr, and lightness records (Fig. 3), despite the fact that their
~1–2-kyr mean resolution is sufficient to robustly identify pre-
cession cycles. However, precession is expressed clearly in spectral
analyses of these records after removal of the large-amplitude
longer periodicities (>40-kyr, i.e. obliquity and eccentricity) that
tend to overprint the precession signal (Supplementary Fig. 6).
We only tuned the 100-kyr cycles; to avoid over tuning, we did
not tune obliquity and precession cycles because they are weaker

Fig. 2 Lithology and palaeoclimate proxy data for red clay from the Chinese Loess Plateau. a Lithology, b Al/Na, c Rb/Sr, and d lightness from the Shilou
red clay sequence (this study). e 40° N summer insolation (green) and eccentricity (red) variations31. f Dust accumulation rates (DAR) for the Xihe red
clay section32. g Fe flux for the Xifeng red clay section32. Summer and winter monsoon intensified and weakened, respectively, across the MPB (shaded).
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and less continuous than the 100-kyr variability (Supplementary
Fig. 4). The weak precession expression possibly relates to strong
smoothing under the warmer-than-present conditions with high
atmospheric CO2 concentrations, a mostly ice-free Northern
Hemisphere, and low CLP red clay sedimentation rates. Under
these conditions, thin originally less-weathered layers with low
sedimentation rates deposited during precession/insolation
minima may have been overprinted rapidly by intensified sum-
mer monsoon action and concomitant chemical weathering
during the subsequent transition from insolation minima to
maxima, with a downward-increased chemical weathering depth.
This downward smoothing likely resulted in an attenuated
expression of insolation minima (dry portions) and a preferential
expression of maxima (wet portions) in the red clay summer
monsoon proxy records, leading to a markedly subdued preces-
sion expression. This weak expression of (expected) precession
cycles does not mean that the summer monsoon responded
weakly to precession during the late Miocene–early Pliocene, but

that it is difficult to use these proxies to explore intricacies of
monsoon responses to insolation over precession time scales due
to recoding bias. Also, decreased 100-kyr amplitude variability
across the MPB in the Shilou red clay Al/Na, Rb/Sr, and lightness
records (Fig. 2), with concomitant weakening of short eccentricity
(100-kyr) expression in spectral analysis (Fig. 3), is possibly
linked to enhanced downward smoothing influence on the early-
to-middle Pliocene red clay with increased temperature and
summer monsoon precipitation, and decreased sedimentation
rate, which might have weakened or blurred these orbital signals.

In addition to distinct orbital variability throughout the late
Miocene–middle Pliocene, our red clay records suggest that the
CLP climate changed prominently across the MPB, whereas
orbital forcing did not change substantially (Fig. 2). We inte-
grated our high-resolution records with existing palaeoclimate
records from the wider Asian region to assess spatial climate
changes across the MPB (Figs. 4–5; Supplementary Figs. 7–9). In
contrast to our inference of a shift to a wetter CLP from the
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Shilou red clay, many Central Asian arid regions beyond the
reach of summer monsoon precipitation (Fig. 1a) experienced
increased aridification across the MPB47–50. In the Tarim Basin,
late Miocene lacustrine deposits with large-amplitude total
organic carbon (TOC) and CaCO3 content fluctuations that
capture orbitally forced alternations between moist and dry
conditions gave way to Pliocene fluvial-aeolian deposits with
persistently low TOC and CaCO3 contents48,49 (Fig. 4a; Supple-
mentary Fig. 7a). The associated decline in authigenic lacustrine
carbonate formation led to decreased carbonate δ18O (Fig. 4b)
and increased δ13C values48,49 (Supplementary Fig. 7b). A shift to
a less intense red colour (Supplementary Fig. 7c) and increased
lightness (Fig. 4c) in the western Tarim Basin also indicates
development of drier conditions across the MPB49, in marked
contrast to the shift to darker red colour (Fig. 1b) and decreased
lightness (Fig. 2d) in the Shilou red clay, which indicate wetter
climate as discussed above. A large free Fe (iron extractable by
citrate-bicarbonate-dithionite) decrease in the northern Tarim
Basin margin across the MPB (Supplementary Fig. 7d) points to
less intense chemical weathering and enhanced aridification49,
which is supported by substantial increases in the dry-adapted
herb taxa Artemisia and Chenopodiaceae in the neighbouring
Junggar Basin50.

We find corroborating evidence for increasing summer mon-
soon precipitation in the wider East Asian monsoon region across
the MPB. For example, Jiaxian Rb/Sr values26 increase and Xifeng
and Xihe red clay (CaO + Na2O+MgO)/TiO2 and Na/K ratios32

decrease across the MPB, which all suggest enhanced summer
monsoon precipitation and stronger chemical weathering (Sup-
plementary Fig. 8a–e). Many red clay χ records over the CLP are
also characterised by a clear increase across the MPB19,30,33–37

(Supplementary Fig. 8f–k), which is consistent with increasing
precipitation. A sharp shift to redder colouration across the MPB
is observed not only in the Shilou section (Fig. 1b), but also in
numerous other sections across the CLP, such as at Xifeng38,
Jiaxian35, Baode34, Pianguan33, and Linxian (Supplementary
Fig. 9). The colour shift again indicates summer monsoon
intensification across the MPB. In central Japan, increasing
moist-adapted Cathaya (pine family) and warm-temperate pollen
types across the MPB imply a shift to warmer and wetter
conditions51. In the South China Sea and the Andaman Sea,
negative shifts of seawater and planktic δ18O (Fig. 4d) at Ocean
Drilling Program (ODP) Site 1146 and International Ocean
Discovery Program (IODP) Site U1448 across the MPB indicate
increasing summer monsoon precipitation7,40. Parallel planktic
Mg/Ca records at these two locations indicate that the hydro-
climate changes were associated with a > 3 °C sea surface tem-
perature (SST) increase7,40. Such a large temperature increase is
expected to have driven substantial precipitation increases in East
Asia, which is consistent with our observed prominent Al/Na and
Rb/Sr increases and decreased lightness in the early-to-middle
Pliocene Shilou red clay (Figs. 2 and 4e). In addition, the South
China Sea χ and anhysteretic remanent magnetisation (ARM)
records also suggest that higher summer monsoon precipitation
increased terrigenous input across the MPB52. A few other proxy
records from the southern CLP margin (Weihe Basin) and the
South China Sea do not suggest summer monsoon intensification
across the MPB14,53–55, which seems to differ from our Shilou
and the numerous discussed records from the wider East Asian
monsoon regions. These differences, however, might be a result of
the different proxies and locations. Red clay sections close to the
northern or western summer monsoon boundary could be more
sensitive to capturing monsoon changes across the MPB than
records from the southern CLP and South China Sea, which are
located well within the summer monsoon region. Some chemical
weathering records from the South China Sea may not only

express summer monsoon variations, but also changes in oceanic
conditions and post-depositional diagenesis14, which may have
overprinted the summer monsoon intensification across the
MPB. Future development of high-resolution records of the same
proxies from different red clay sections, and simultaneous gen-
eration of different sensitive summer monsoon proxy records
without non-monsoonal interferences from the same section, are
pertinent to investigate such spatial variations in greater depth.

The observed summer monsoon intensification across the MPB
is likely associated with a synchronous winter monsoon weak-
ening because the average sedimentation rate in the Shilou red
clay drops from ~2 cm/kyr in the late Miocene interval to ~1 cm/
kyr in the early-to-middle Pliocene interval. Likewise, dust
accumulation rates and Fe and Al fluxes of aeolian red clay
decreased across the MPB17,32,35 (Figs. 2f–g and 5a). These
changes suggest a decline in Pliocene winter monsoon dust
transport from arid northwestern China to the CLP compared to
the late Miocene. Si/Al and Zr/Rb correlate positively with red
clay grain size variations that relate to winter monsoon dust
transport20,26. A transition to finer red clay particles across the
MPB indicated by decreased Si/Al and Zr/Rb is supported by
direct grain size measurements, which suggest smaller median
grain sizes, increased fine (5–16 μm) particle concentrations, and
decreased coarse (>20 μm) particle concentrations during the
Pliocene relative to the late Miocene20,26,56 (Fig. 5b–f). Grain size
is routinely used as a winter monsoon proxy for both Quaternary
loess and underlying late Miocene–Pliocene red clay17,20,35,56, so
its shift across the MPB stems dominantly from winter monsoon
weakening, which drives decreased coarse dust transport to the
CLP. Summer monsoon strengthening, which facilitates pedo-
genic fine particle formation, may also decrease red clay grain
size. However, its influence is deemed to be smaller than the
impact of dust accumulation variations because pedogenic clay
represents a substantially lower portion of the strata compared to
wind-blown red clay accumulation15. Another interpretation that
relates the decreased dust grain size and accumulation rate of the
Pliocene red clay to wetting in Central Asia (the most prominent
dust source region) is unlikely because this region experienced
drier climates according to numerous aforementioned robust
records (Fig. 5a–c; Supplementary Fig. 7). In addition, the late
Miocene and early Pliocene Dongwan red clay sequence (western
CLP) is dominated by cold/dry-adapted and warm/humid-
adapted terrestrial mollusks, respectively, which again indicate
winter monsoon weakening and summer monsoon strengthening
across the MPB57 (Fig. 5g–h).

Synthesising these observations, we infer that Asian hydroclimate
changes across the MPB coincided with global changes but with
distinctly asymmetric spatial expression (Figs. 4–5; Supplementary
Figs. 7–9). Reconstructed CO2 records indicate that atmospheric
CO2 levels increased by ~100–250 ppm from the late Miocene
(~250 ppm) to the early Pliocene (~320 to ~470 ppm)8–10 (Fig. 4f).
Increased atmospheric CO2 concentration is supported by a pro-
minently decreased δ13C gradient between South China Sea
planktic and benthic foraminifera7 (Fig. 4g). At the same time,
widespread ocean warming occurred: SST increased in the South
Pacific Ocean, South Atlantic Ocean, Norwegian Sea, equatorial
Pacific Ocean, subtropical eastern Indian Ocean, and South China
Sea;6,7,39 benthic δ18O decreased in the Pacific and Atlantic
Oceans;7,41 and sea level rose by ~20m in response to a major
Antarctic ice-sheet decay5 (Fig. 4h–n). It appears that global climate
shifted prominently across the MPB, while orbital forcing did not
change markedly. Thus, we suggest that our observed synchronous
rapid continental-scale Asian hydrological gradient intensification
across the MPB was not driven by orbital forcing, but was related
primarily to coeval global warming, as further supported by our
model simulations presented below.
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Fig. 4 Compiled records of Asian and global climate change across the MPB. a–c Total organic carbon (TOC), carbonate δ18O, and lightness records from
the Tarim Basin48,49. d ODP Site 1146 planktic δ18O record7. e Al/Na from the Shilou red clay section (this study). f Compiled proxy record of atmospheric
CO2 concentrations from different methods, with error bars representing one-sigma uncertainties8–10. g Gradient between planktic and benthic
foraminiferal δ13C at ODP Site 1146, South China Sea7. h–l Sea surface temperature (SST) reconstructions6,39 from DSDP Site 594 (South Pacific Ocean)
and ODP Sites 1088 (South Atlantic Ocean), 907 (Norwegian Sea), 846 (tropical eastern Pacific Ocean), and 763 A (subtropical southeastern Indian
Ocean). m ODP Site 849 benthic foraminiferal δ18O record, tropical eastern Pacific Ocean41. The red smoothed curve is fitted using the locally weighted
least squares error (LOWESS) method with Matlab. n Modelled global eustatic sea level changes5. The compiled data indicate increased moisture in Asian
monsoon areas and aridification in arid Central Asia, as CO2 and temperature increased across the MPB (shaded).
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To investigate Asian hydroclimate responses to CO2-induced
global warming across the MPB, we used the Community Earth
System Model (CESM 1.0.4)58 to perform two simulations for late
Miocene and Pliocene conditions, respectively (see “Methods” for
details). The Pliocene simulation was conducted with Pliocene
boundary conditions from the PRISM4 (Pliocene Research,
Interpretation and Synoptic Mapping version 4) dataset59,
including Pliocene orography, vegetation, ice sheets, lakes, and
400 ppm CO2 concentration, along with modern orbital para-
meters, modern solar constant, and preindustrial CH4, N2O, and
aerosol conditions. The late Miocene simulation was also con-
ducted with the same PRISM4 boundary conditions but with a
lower CO2 level of 280 ppm. Similar to the present day (Fig. 1a;
Supplementary Fig. 10), the late Miocene and Pliocene simula-
tions both produce pronounced monsoonal winds and summer
rains over South and East Asia, with arid conditions in Central
Asia (Fig. 6a–b). Summer temperature is higher in the higher-
CO2 Pliocene simulation and increases more over higher latitudes
than over East Asian monsoon regions (Fig. 6c). From the late
Miocene experiment to the Pliocene experiment, summer pre-
cipitation increases over most of Asia, while it decreases over the
northern Tibetan Plateau (Fig. 6d). Net summer (Fig. 6e) and
annual (Supplementary Fig. 11a) surface moisture (precipitation
minus evaporation) changes have a similar spatial pattern with a
wetter East Asian monsoon region and a drier Central Asia. These
moisture changes are consistent with strengthening of summer
monsoon circulation and atmospheric ascent in East Asia

(Fig. 6f–g) and increased lower-tropospheric water vapour load-
ing in the Western Pacific and Indian Oceans due to warmer
conditions in the Pliocene experiment (Fig. 6c). Also, associated
enhanced cyclonic deviation circulation around the Tibetan Pla-
teau “pumps” surrounding flows (including the summer stream
field at 850 hPa) to converge into the Tibetan Plateau60. These
changes together result in increased warm/moist southerly flow
from the Western Pacific and Indian Oceans and subsequently
more rainfall in East Asian monsoon regions (Fig. 6d), in a
pattern that is consistent with modern projections and
observation-based analysis61–63. In addition, our simulations
indicate that the summer westerly jet (Fig. 6h) and winter
monsoon winds (Supplementary Fig. 11b) become weaker in
response to a warmer high-latitude Northern Hemisphere, which
facilitates inland penetration and prolongs summer monsoon
duration, resulting in a wetter East Asia64. Based on those
simulation results, we suggest that CO2-induced MPB warming
could have driven the coeval shift to wetter conditions in mon-
soonal East Asia.

In both late Miocene and Pliocene simulations, Central Asia is
largely beyond the reach of summer monsoon precipitation
(Fig. 6a, b). Thus, warming-induced increased summer moisture
supply and transport cannot penetrate effectively to this remote
inland region, which is bounded by high-altitude mountain
ranges. In this region, low precipitation (generally <100 mm/yr) is
associated with strong evaporation. Our simulations suggest that
summer precipitation does not decrease to the same extent

Fig. 5 Chinese Loess Plateau red clay records of climate variability. a Al flux at the Bajiazui section17. b SiO2/Al2O3 from the Xifeng section20. c Zr/Rb
from the Jiaxian red clay section26. dMedian grain size from the Xifeng section20. e, f Fine (5–16 μm) and coarse (>20 μm) particle concentration from the
Shilou section56. Red smooth curves are fitted using the MatLab LOWESS function. g, h Cold-aridiphilous (CA) and thermo-humidiphilous (TH) terrestrial
mollusk changes in the Dongwan red clay57.
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everywhere across Central Asia from the late Miocene experiment
to the Pliocene experiment (Fig. 6d–e). Particularly, Central Asia
has higher summer precipitation across the ~40–55°N latitudinal
band (Fig. 6d), but still becomes drier (Fig. 6e) due to the large
temperature increase and strong evaporation. In addition,
warming-induced intensification of spiral air pumping tends to
enhance anticyclonic deviation circulation gyres at high latitudes
and facilitate high-latitude cold/dry air advection across Central

Asia60. Thus, the MPB warming could have enhanced soil water
evaporation to exacerbate the net moisture deficit (precipitation
minus evaporation) over Central Asia, leading to intensified ari-
dification in much of Central Asia as observed from aforemen-
tioned palaeoclimate reconstructions.

Synchronous summer monsoon strengthening, winter mon-
soon weakening, and decreased dust transport to the CLP7,17,20,57

(Figs. 2 and 5) seem to be incompatible with a response to

Fig. 6 Simulated Asian climate and atmospheric circulation responses to CO2 increase across the MPB. Simulated summer precipitation (shading) and
850 hPa winds (black vectors) for a late Miocene (280 ppm CO2) and b Pliocene (400 ppm CO2) experiments. Simulated changes (Pliocene minus late
Miocene) of summer c surface air temperature, d precipitation, e net moisture (precipitation minus evaporation), f 850 hPa winds (summer monsoon), g
500 hPa vertical velocity, and h 500 hPa winds (westerly jet), due to CO2 increase from the late Miocene level of 280 ppm to the Pliocene level of 400
ppm. Solid and dashed red inland contours in (a–h) denote 1500 and 3000m topographic contours, respectively. Negative (green) and positive (yellow)
shades in g represent increasing atmospheric ascending and descending flows, respectively. Note that stronger atmospheric ascending and descending
flows generally result in more and less precipitation, respectively. The red dot indicates the location of the Shilou section. Black dots in c–e and g denote
regions statistically significantly above the 95% confidence level (Student’s t-test). Summer is represented by May to September.
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regional uplift of the northern Tibetan Plateau across the MPB,
given that such uplift would instead intensify the winter
monsoon17 and increase cold/dry equatorward flow from high- to
low-latitude Asia, resulting in colder and drier winters60 and
increased CLP aeolian mass accumulation rates. Moreover, tec-
tonic processes associated with uplift are anticipated to have
occurred diachronously across various regions, in a protracted
process over millions of years. In contrast, our synthesis
demonstrates that East and Central Asian climate conditions
shifted across the MPB synchronously and rapidly within a few
short-eccentricity cycles. Finally, evidence increasingly suggests
that the Tibetan Plateau was already at high altitudes in the late
Miocene or in the early to middle Miocene65–69. Only small-scale
regions of the Tibetan Plateau and adjacent mountain ranges
were uplifted during the late Miocene or Pliocene, as inferred
from northern and eastern Tibetan Plateau sedimentary
records70–73, minor tectonic deformation in the Pamir and Tian
Shan mountains74–78, and low-temperature thermochronology of
the Shanxi Rift (North China), northern Tibetan Plateau, and
Mongolian mountains79–86. Therefore, we consider regional uplift
to have played a secondary role in Asian climate change across
the MPB.

To summarise, multiple high-resolution proxy records from
red clay on the CLP suggest that the Asian summer monsoon
responded dynamically to 405-kyr and 100-kyr eccentricity and
moderately to 41-kyr obliquity between 8.1 and 3.4 Ma when
atmospheric CO2 concentrations were high and the Northern
Hemisphere was largely ice-free. Furthermore, parallel lithological
and proxy records suggest distinct summer monsoon intensifi-
cation across the MPB. Combining existing records, we find a
hydrological gradient intensification over Asia across the MPB:
East Asia became wetter, while many arid Central Asian regions
became drier, with accompanying biogeographic and evolu-
tionary implications. Our model simulations demonstrate that
this large-scale Asian hydroclimate change was linked to global
warming across the MPB that was driven by higher Pliocene CO2

concentrations. Following this transition, Asian hydroclimate did
not recover back to its late Miocene configuration, even though
temperatures decreased from the early to middle Pliocene
onward. Based on our observed global and regional changes
across the MPB from palaeoclimate reconstructions and simula-
tions, we posit that continued hydrological gradient intensifica-
tion may be expected over Asia under anthropogenic global
warming. Our findings provide palaeoclimatic support for pro-
jections of future regional hydrological trends under long-term
sustained anthropogenic emissions: Central Asia will likely
become even drier than it is currently, with more persistent
droughts and enhanced desertification61,87. Meanwhile, most East
Asian monsoon regions will likely become even wetter, with
increased flooding risks61,62. Such Asian climate changes will
have substantial impacts on regional irrigation systems, ecosys-
tems, and society.

Methods
After removal of the weathered outcrop surface, 3,527 fresh samples were collected
from the late Miocene to middle Pliocene red clay at 2-cm intervals (corresponding
to a ~1–2 kyr time spacing) from the Shilou red clay section, eastern Chinese Loess
Plateau (CLP). All collected samples were used for the following palaeoclimate
proxy measurements. About 5 g of sediment was dried at 40 °C for 24 h and ground
to <38 μm with an agate mortar and pestle. Powders were compacted into oblate
discs (32-mm diameter) enclosed by a polyethylene ring with a tablet machine.
Disc samples were used to determine bulk element concentrations using an Axios
advanced wavelength dispersive X-ray fluorescence (XRF) instrument (WD-XRF;
PANalytical, Almelo, The Netherlands). The relative standard deviation, based on
repeated analyses of National Standards GSS-8 and GSD-12, was <2% for all major
elements (Al and Na) and ~10% for all trace elements (Rb and Sr). After XRF
analysis, samples were used for colour reflectance measurements with a Minolta
CM-508i Spectrophotometer. Results are expressed as the spherical L*a*b* colour

space and reflectance intensity between 400 and 700 nm. L* describes the lightness
between black (0) and white (100), while a* and b* denote red–green and
yellow–blue chromaticity, respectively. All proxy measurements were carried out at
the Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China.

We used an automatic orbital tuning approach88 and the Acycle software89 to
generate an astronomical time scale and to evaluate orbital signatures, respectively.
Based on the most recent magnetostratigraphic data for the Shilou red clay
section4,19,30, we first established an untuned magnetochronology through linear
interpolation using geomagnetic polarity reversals for age control, assuming con-
stant long-term sedimentation rates between reversals (Supplementary Fig. 3). We
then conducted spectral analyses of the Rb/Sr record in the untuned magneto-
chronology, which suggest a continuous 100-kyr eccentricity band throughout the
late Miocene–Middle Pliocene, with weaker and less continuous obliquity and
precession cycles (Supplementary Fig. 4a). Accordingly, we tuned large-amplitude
100-kyr Rb/Sr variations to the astronomical solution31 to achieve cycle-to-cycle
correlation within magnetochronological constraints. We filtered the 100-kyr
component from the Rb/Sr record using a 90–125 kyr Gaussian bandpass filter
with the Acycle software89, with 0.009 cycle/kyr centre and 0.001 cycle/kyr
bandwidth. Ages for palaeomagnetic reversals were not kept fixed to optimise
tuning results given uncertainties in palaeomagnetic boundaries (10–60 cm; Sup-
plementary Table 1), post-depositional natural remanent magnetisation (NRM)
lock-in depth in aeolian sediments90,91, and GPTS ages92. Generally, high Rb/Sr
and filtered 100-kyr Rb/Sr peaks were associated with wet climates and are cor-
related to eccentricity maxima when insolation was high. After checking >30 dif-
ferent correlations between the filtered 100-kyr Rb/Sr component and 100-kyr
eccentricity31, we found that three options (youngest, intermediate, and oldest
tuned age models) resulted in synchronous cycle-to-cycle correlations of the fil-
tered 100-kyr Rb/Sr component with orbital 100-kyr eccentricity in both coherency
and amplitude modulation patterns, with reasonable sedimentation rate changes
and broadly consistent palaeomagnetic reversal ages, within uncertainty of their
GPTS ages (Supplementary Fig. 3; Supplementary Table 1). The three options were
established using 50 age correlation points where Rb/Sr minima facilitated con-
sistent correlation point selection throughout the entire interval (Supplementary
Fig. 3; Supplementary Table 2). Orbitally tuned age models should vary between
the youngest and oldest tuned age models, so the 50 selected tie points were moved
largest backward (younger limit) and forward (older limit) to produce the youngest
and oldest tuned age models. Along with the same tuning strategy, which inte-
grated eccentricity correlations, sedimentation rates, and magnetochronology, the
intermediate age model levelled out between the youngest and oldest tuned age
models (Supplementary Fig. 3; Supplementary Table 2). In the intermediate age
model, the filtered 100-kyr Rb/Sr component correlates cycle-to-cycle with orbital
eccentricity in both coherency and amplitude modulation patterns, and sedi-
mentation rates vary gradually (without sharp changes that are unlikely for an
aeolian lithology), but palaeomagnetic reversal ages are more consistent with their
GPTS ages than in the youngest and oldest tuning age models (Supplementary
Table 1). Thus, the intermediate age model is the most consistent option, and was
selected as the final astronomical age model for the Shilou red clay sequence. Ages
of the 50 tie points in the intermediate tuning option minus their ages in the
youngest and oldest options were used to estimate potential negative and positive
age uncertainties, respectively (Supplementary Fig. 3; Supplementary Table 2).
Despite uncertainties in tuning (Supplementary Table 2), palaeomagnetic reversal
depths (Supplementary Table 1), post-depositional NRM lock-in, and GPTS ages,
all three orbitally tuned age models and the untuned magnetochronology produce
similar major spectral evolutionary Rb/Sr features, with predominant 405-kyr and
~100-kyr periodicities throughout the ~8.1–3.4 Ma interval (Supplementary Fig. 4).
This suggests that the prominent eccentricity expression in the Shilou red clay
sequence is a robust feature rather than an orbital tuning artefact. Our minimal
100-kyr eccentricity tuning strategy without further tuning with 41-kyr and ~20-
kyr cycles (because of their weak and less continuous expression) decreases the risk
of over-tuning.

The Community Earth System Model (CESM 1.0.4)58 was used to elucidate
underlying dynamics of the observed contrasting hydroclimate change in the East
Asian monsoon region and arid Central Asia across the MPB (Fig. 6; Supple-
mentary Figs. 10–11), and particularly to test its sensitivity to coeval CO2-induced
global warming under late Neogene boundary conditions. CESM is a widely used
global model with coupled dynamic atmosphere, ocean, land, and sea-ice com-
ponents. The atmosphere has a spatial resolution of ~1.9° (latitude) × 2.5° (long-
itude) in the horizontal direction, and 26 layers in the vertical direction. Land has
the same horizontal resolution as the atmosphere. Ocean and sea-ice components
have a ~1° horizontal resolution. The ocean component contains 60 vertical layers.
First, following guidelines of the Pliocene Model Intercomparison Project phase 2
(PlioMIP2)93, we conducted a simulation with preindustrial boundary conditions,
including modern orography, vegetation, ice sheets, lakes, and 280 ppm atmo-
spheric CO2 concentration. The simulated preindustrial Asian summer precipita-
tion and circulation pattern is similar to the observed present-day pattern, with
higher precipitation and stronger summer monsoon in South and East Asia than in
northwestern Asia (Supplementary Fig. 10). This indicates that CESM 1.0.4 can
reproduce present-day climate features58 and is useful for simulating late Neogene
Asian palaeoclimate94,95.

Based on recent modelling of the global monsoon responses to Pliocene
boundary conditions95, two other numerical experiments were performed in detail
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to evaluate climatic responses of monsoonal Southeastern Asia and arid Central
Asia to CO2-induced global warming across the MPB. One scenario represents
Pliocene conditions and was conducted with reconstructed Pliocene orography, ice
sheets, vegetation, lakes, and a 400 ppm atmospheric CO2 level from the PRISM4
(Pliocene Research, Interpretation and Synoptic Mapping version 4) dataset59, with
modern orbital parameters (year 1950), modern solar constant (1365W/m2), and
preindustrial CH4, N2O, and aerosol conditions. The other scenario represents late
Miocene conditions and was conducted with the same boundary conditions, except
for a lower CO2 level of 280 ppm. The Pliocene simulation was initiated from the
default preindustrial simulation (including deep ocean temperature) and was run
for 2,050 model years. The late Miocene simulation was initiated from model year
1501 of the Pliocene experiment and was run for a further 550 model years. The
atmosphere and upper ocean in both experiments reached quasi-equilibrium. In
the Pliocene Model Intercomparison Project, most Pliocene simulations were run
for 500 or >500 model years and the last 30, 50, or 100 model years were generally
used to calculate climatological means93,96. We, therefore, analysed the climato-
logical means of the last 100 model years from each experiment. Application of
Pliocene surface boundary conditions is an improvement from previous simula-
tions of Asian climate responses to CO2-induced global warming, which typically
used preindustrial/modern boundary conditions61,62,87,97–99. Compared to the pre-
industrial, the late Neogene was warmer and wetter with smaller ice and snow
cover (largely ice-free Northern Hemisphere), larger vegetation cover, and lower
meridional and zonal temperature gradients59,100,101. Asian climate might respond
more significantly to simulated CO2 increases with present-day boundary condi-
tions than to late Neogene boundary conditions because of enhanced feedbacks
under pre-industrial conditions (e.g., larger snow/ice and smaller vegetation cover).
Consistent with previous preindustrial/modern boundary condition
simulations61,62,87,97–99, however, our simulations with late Neogene boundary
conditions also suggest that CO2-induced global warming can induce wetter con-
ditions in the East Asian summer monsoon region and drier conditions in
Westerly-dominated arid Central Asia, which support the ‘wet-gets-wetter and dry-
gets-drier’ projections for Earth’s climate system under sustained anthropogenic
forcing61. Asian climate responses to CO2-induced global warming appear to fol-
low a broadly similar pattern under different late Neogene and present-day
boundary conditions. Thus, uncertain late Neogene boundary conditions (e.g.,
topography, greenhouse gas concentrations, oceanic thermal and circulation con-
ditions, and atmospheric circulation) could result in subtly different simulations,
but the general Asian climate response pattern to CO2 increase under adjusted late
Neogene boundary conditions seems robust: it does not change substantially.

Data availability
All of our measured proxy data presented here are attached in the Supplementary
Dataset 1 and are also available in the East Asian Paleoenvironmental Science Database
(http://paleodata.ieecas.cn/index.aspx, Data https://doi.org/10.12262/
IEECAS.EAPSD2021004). The model simulation data used to support our dynamic
interpretations are available at: https://zenodo.org/record/4964420.
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