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ABSTRACT 

 

Multi-omics studies can highlight the interrelationships among data across different layers of 

biological information. However, methods for the unsupervised analysis of multi-block data do 

not take the individual variability across batches into account and cannot deal with omics 

datasets when they present different numbers of replicates. We have explored three different 

data arrangement strategies to tackle these limitations. Several multi-block methods can be used 

to decipher the common variations across blocks and to determine the contribution of each 

block to each common component. In this study the ComDim method was used to compare 

these rearrangement strategies for three multi-omics datasets. We found that arranging the data 

using the ‘replicate by blocks’ strategy, where each block comprises data from only one 

replicate independently of its data type, provided the most insightful results. ComDim allowed 

the evaluation of the variability across the replicate blocks, confirming the existence of batch 

effects in some of the studies. Moreover, since the contributions of these batch effects were 

separated from the other contributions, the coordinated biological responses common across the 

different blocks was characterized for each data type. 
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1 INTRODUCTION 

The advances in high-throughput molecular technologies have enabled the simultaneous 

analysis of multiple biological layers such as the metabolome [1] the transcriptome (mRNA 

expression [2] and microRNA [miRNA] expression [3]), the genome [4], and the 

metataxonome [5]. These layers represent, respectively, the set of metabolites, transcripts, 

genes, and organisms contained in the investigated biological samples. 

Multi-omics analyses promise to reveal how intricate these layers are and to deliver a more 

comprehensive insight than that to be had by the separate analysis of each layer [6]. As a 

consequence, multi-omics studies have proliferated over recent years with the aim of 

deciphering the biological processes related to human diseases [7], cell differentiation [8], 

ecotoxicology [9], and host-microbiome interactions [10], among others. Analogously, different 

analytical platforms are sometimes used to increase the coverage of the detected molecules 

within a specific omics. Multi-platform analyses are particularly popular in metabolomics 

[11,12]. Since each type of data constitutes a block, both multi-omics and multi-platform 

studies are in fact multi-block studies. 

Several strategies have been developed to integrate different types of data [13]. These 

strategies are usually based on (1) the exploratory analysis after row-wise (individual-wise) 

concatenation of the data [14,15], on (2) the search of the interrelationships among data by 

application of partial least squares (PLS) regression [16] or canonical correlation analyses 

(CCA) [17], or on (3) the use of transformation-based methods such as kernels [18] or 

similarity networks [19]. In all these cases, the analyzed datasets must be complete (in other 

words, all the biological samples must be measured on all of the platforms). However, having 

complete datasets is not always possible [20–22]. In some cases, for a given platform, the 

number of sample replicates must be high to compensate for the material heterogeneity or 
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biological variability; in other cases, the number of sample replicates is limited due to 

economic constraints or so as to increase sensitivity (e.g. replicates being pooled together to 

improve the detection of the molecules). 

With the existing data integration methods, incomplete multi-block datasets must be analyzed 

separately, which means that the underlying interrelationships between the different blocks 

cannot be fully elucidated. Alternatively, complete datasets can be constructed either by 

reducing the number of replicates in the larger blocks (e.g. by averaging replicates, step 1 in 

Fig1B), or by increasing the number of individuals in the smaller blocks by imputing the 

missing rows from the existing data (Fig1C) [23]. Therefore, in the second method, each data 

repetition would be considered a replicate sample. However, as a setback, these artificially 

completed datasets cannot be used to evaluate replicate variability within each block (in the 

first approach, due to the averaging) or across blocks (in the second approach, since the 

replicate samples in the block with repeated lines do not show variability while they do in the 

other blocks of the multi-block structure, Fig1C). To overcome this limitation, we propose a 

different data arrangement consisting of splitting the dataset into smaller blocks, each block 

comprising data from only one replicate, independently of its data type (Fig1D). With this 

approach, datasets with different numbers of replicates can be made compatible, while retaining 

all the variability due to the biological replicates in each original dataset. 

The three strategies presented above for dealing with incomplete datasets were tested with the 

chemometrics method ComDim [24,25], a multi-block exploratory method able to extract 

components related to the maximum variances common to the greatest number of blocks. 

Although other methods could have been used [26], the objective of this study was to compare 

the rearrangement methods, not the exploratory multi-block methods. 
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In this article, we explored three data arrangements strategies, in combination with ComDim, 

to deal with multi-block datasets where the number of replicates was not consistent across 

platforms. It must be noted that the scope of this paper is not to study the case of an almost 

complete multi-block dataset (e.g. a few samples missing in a given platform), since in that 

situation the amount of missing data is low, and can be imputed using well-known methods 

which are considered as having negligible impact [23].  

 

2 MATERIAL AND METHODS 

2.1. Tested datasets. 

In this work, three multi-omics datasets were used. 

The first two datasets (Dataset 1 and Dataset 2, respectively) comprise omics data collected 

for the study of the temporal dynamics during the process of anaerobic digestion, which is the 

degradation of organic waste mediated by a microbial community and generating biogas in the 

process. The microbial community in the digesters is composed of Bacteria and Archaea. The 

Bacteria convert waste biomass into simpler molecules, while some Archaea produce methane 

from the simpler molecules [27]. 

The system in Dataset 1 was set up to evaluate the effect on the anaerobic digestion of adding 

a substrate rich in organic matter (either fish waste-FW, or garden grass-GG) to sewage sludge 

(SS), in different proportions (100%, 75%, 50%, 25% and 0% of sewage sludge). For each 

mixture, 3 biological replicates were sampled. Samples were collected on the 21st and 28th days 

after the start of the digestion for the FW-containing digesters, and on the 14th and the 21st days 

for the GG-containing digesters. Finally, the digester containing only SS was screened at all 3 

time-points. Each waste sample was centrifuged and pellets and supernatants were kept 
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separately. The sample supernatants were analyzed by liquid chromatography coupled to mass 

spectrometry (LC-MS) metabolomics to identify the temporal dynamics in the degradation of 

the metabolites contained in the waste, while the sample pellets were investigated by 16S rRNA 

sequencing to infer the temporal changes in the composition of the microbial communities. LC-

MS metabolomics was performed for all the biological replicates, while only one of each 

triplicate was investigated with 16S rRNA metataxonomics. The LC-MS metabolomics analysis 

resulted in 476 features (peak areas relative to putative metabolites), while 1,145 different 

Operational Taxonomic Units (OTUs, counts representative of microorganisms) were detected 

in the 16S rRNA metataxonomics analysis. More details about the experimental part can be 

found in Cardona et al. (2020) [28]. 

Dataset 2 reflects the influence of total ammonia-nitrogen (TAN) on the anaerobic digestion 

of sewage sludge. The degradation was carried out in nine 1 L digester bottles, where each 

bottle contained a specific TAN concentration (0, 0.5, 1.0, 1.5, 2.5, 5.0, 7.5, 10.0, and 25.0 

mg/L). Aliquots from these digesters were collected on days 9, 29, 42, and 57. As in Dataset 1, 

supernatants were used for metabolomics and pellets for metataxonomics. However, in this 

case, metabolomics was performed by gas chromatography coupled to mass spectrometry (GC-

MS) while metataxonomics was based on the 16S rDNA. GC-MS measurements were done in 

triplicate (analytical replicates), while the metataxonomics data was only measured once. Two 

sample-points (7.5 mg/L TAN at day 29, and 25 mg/L TAN at day 42) were not included in the 

analysis since their GC-MS data was not available. More technical information about the 

experimental setup can be found in Poirier et al. (2016) [29]. The metabolomics data were 

downloaded from Metabolights [30] (accession number MTBLS2602), while the 

metataxonomics data was obtained from Poirier et al. (2018) [31]. Regarding the number of 

variables, Dataset 2 contains data for 351 GC-MS features and 1,435 OTUs. 
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Before the chemometric analysis of these two datasets, the metataxonomics data were filtered 

to remove OTUs with spurious behavior [32]. Specifically, OTUs that occurred in less than 

20% of the samples were excluded from further analysis. This step reduced the OTU number to 

734 for Dataset 1 and to 654 for Dataset 2. 

The third dataset (Dataset 3) describes the time-course differentiation of the mouse B3 cell 

line to the pre-BII stage [33]. This cell line can differentiate after nuclear translocation of the 

Ikaros transcription factor. To control the nuclear levels of the Ikaros protein, the B3 cell line 

was previously retrovirally transduced with a vector encoding an Ikaros-Ret2 fusion protein 

inducible upon exposure to the drug Tamoxifen. The control group consisted of a non-inducible 

B3 cell line carrying an empty vector. Samples were collected at 6 different time-points (0h, 2h, 

6h, 12h, 18h, and 24h). More details about the experimental design can be found in Gomez-

Cabrero et al. (2019) [8]. This experiment was repeated several times, resulting in the 

generation of several biological batches (biological replicates) that were used for different 

omics experiments. For metabolomics, the three biological batches were measured by both LC-

MS and GC-MS. Analogously, the 3 samples used in mRNA-seq analyses were also employed 

in the miRNA-seq analyses. The metabolomics data were downloaded from Metabolights [30] 

(accession number MTBLS283), while the RNA-seq data were obtained from the GEO 

database [34] (accession numbers GSE75417 and GSE75394 for the mRNA-seq and miRNA-

seq data, respectively). The number of variables for the omics blocks are 15 (GC-MS), 44 (LC-

MS), 12,762 (mRNA-seq), and 469 (miRNA-seq). 

2.2. Data pre-processing and multi-block arrangements 

The metabolomics datasets were PQN-normalized [35] and auto-scaled. The metataxonomics 

datasets were normalized by the total sample counts and pareto-scaled. The RNA-seq datasets 

were already pre-processed. Then each of the datasets was reorganized using the three different 



8 

 

data arrangements (Figure 1): reducing the number of rows in the blocks containing the 

replicates by averaging (‘Replicate Reduced’ or RR, Figure 1B); increasing the number of rows 

in those blocks without replicates by simply repeating the existing data (i.e., if there is only 1 

replicate and 3 are required, then each replicate is repeated 3 times [36]), resulting in having the 

same lines repeated several times within the block (‘Replicate Augmented’ or RA, Figure 1C); 

and considering each set of replicate data as a data block (i.e. a block containing triplicate data 

were split into 3 blocks) (‘Replicate-Wise’ or RW, Figure 1D). 

For Datasets 1 and 2, RA and RR data arrangements resulted in multi-block structures with 2 

blocks. However, in the RW data arrangement, each omics dataset was split into blocks 

comprised of data for one replicate of each sample. We will refer to the blocks corresponding to 

the different replicates of the same data type as the replicate blocks. Finally, the blocks (from 

all the omics data types) were associated row-wise. According to the RW strategy, Datasets 1 

and 2 were arranged into multi-block data structures composed of 3 replicate blocks of 

metabolomics data (LC-MS or GC-MS data, respectively) and 1 block of 16S metataxonomics 

data. 

On the other hand, since Dataset 3 is already a complete dataset (composed of 12 blocks: 3 

replicate blocks of LC-MS data, 3 replicate blocks of GC-MS data, 3 replicate-blocks of 

miRNA-seq data, and 3 replicate blocks of mRNA-seq data), we have investigated it using the 

RW data arrangement method. In addition, we also tested the ‘traditional’ implementation of 

ComDim on this dataset, where each different data type is regarded as a single block; and also 

examined the effect of averaging the replicates. Thereby, the multi-block structure of the RW 

arrangement is composed of 12 blocks with 12 rows each, the ‘traditional’ arrangement has 4 

blocks with 36 rows each, and the averaged dataset has 4 blocks with 12 rows each. 
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Figure 1. Data arrangements used for Datasets 1 and 2. Three replicate sets of metabolomics data 

(colored in different shades of red) and one set of 16S metataxonomics data (colored in yellow) 

were arranged using approaches B-D for multi-block analysis. 

2.3. ComDim 

ComDim is an unsupervised multi-block method [24,25] that aims to simultaneously consider 

multiple data tables to find the latent components that are common to all the tables and those 

that are specific to each data table, along with the contribution of each of the tables to each of 

these components [37]. ComDim determines a common space describing the dispersion of the 

samples in all the blocks, each block having a specific weight (salience) associated with each 

dimension in this common space. Significant differences in the saliences for a given dimension 

reflect the fact that the dimension contains different amounts of information coming from each 

block [37]. In addition to the saliences, Local loadings for each analyzed block and two 

different sets of scores are obtained. The first set corresponds to the Local scores for each 

analyzed block while the second set is composed of the Global scores, common to all the 

blocks. 

(D) RW: Replicate-

Wise

(B) RR: Replicate

Reduced

average

Averaged

metabolomics

data

1)

2)

(C) RA: Replicate

Augmented

(A) Initial 4 blocks of data

Metabolomics

(Rep 1)

16S dataMetabolomics

(Rep 2)

Metabolomics

(Rep 3)

MULTI-BLOCK DATA ARRANGEMENTS



10 

 

The ComDim algorithm works as follows. First, for a multi-block dataset composed of I blocks 

(Xi, where i=1,…,I), each of the blocks is centered and norm-scaled (Xi,norm). Then, all the 

blocks are weighted by the square root of their salience and concatenated row-wise [38,39]. 

The result of this concatenation is the matrix W. The salience of each block is optimized by 

iterative recalculation until convergence (for the first iteration, all saliences are equal to 1), and 

then the first normed Principal Component scores vector (q in Figure 2) is extracted. The 

saliences are recalculated for each block by pre- and post-multiplying the cross-product of Xi, 

Xi × Xi
T, by the vector q, and W can be calculated again using these new saliences. The first 

Common Component is the q obtained after convergence is attained. The matrices Xi are then 

all deflated and the process is repeated until the required number of CC are extracted. The 

matrix Q contains the successive Global Scores, q. Local Loadings, P_Li, are calculated for 

each block using the q scores and the successive deflated norm-scaled Xi. Local Scores (T) can 

then be calculated by the projection of each deflated Xi block onto the corresponding Local 

Loadings. Thus, only one set of Q scores is obtained, while there will be as many sets of T 

scores as Xi blocks. 
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Figure 2. ComDim decomposition for a dataset composed of 2 blocks, X1 and X2. Notation used: 

X1,norm and X2,norm are the centered and norm-scaled blocks, λ1 and λ2 are the saliences, Q is the 

Global scores matrix, T1 and T2 are the Local scores matrices, and P_L1 and P_L2 are the Local 

loadings matrices. 

To avoid giving too much weight to the data with the higher number of replicates due to its 

the larger presence in the dataset, each of the replicates blocks was divided by the square root 

of the number of replicates (i.e., √3 in the present case) prior to the weighting step (step 2 in 

Figure 2).  

The code for the ComDim method is available at https://github.com/DNRutledge/ComDim 

(Matlab version) and https://github.com/f-puig/R.ComDim (R version). 

2.4. Variable selection 

W =

T1 = X1·P_L1·(P_L1
T ·P_L1)-1

T2 = X2·P_L2·(P_L2
T ·P_L2)-1

P_L1 = X1
T·Q

P_L2 = X2
T·Q

X1,norm X2,norm

Aux = I-q·qT

X1,norm = Aux·X1,norm

X2,norm = Aux·X2,norm

1) Normalization

W = U·SV·V

Convergence criterion:
Dif = [(X1·X1

T -   q·qT ) +(X2·X2
T-    q·qT)]

Convergence achieved if:
Difn

2 – Difn-1
2 < threshold

Uw
q

  
 

·X1,norm   
 

·X2,norm

X1 X2

  
 

·X1,norm   
 

·X2,norm

2) Weighting

3) Concatenation

   = qT· X1,norm·X1,norm
T·q

   = qT· X2,norm·X2,norm
T·q

4) PCA

5) Calculation of  
 
(until covergence)

6) Deflation

7) Calculate P_L and T



12 

 

The interesting variables were selected using S-plots [40]. For each data block and CC, the S-

plots display the covariance and correlation values calculated from each Global scores vector 

and each of the normalized blocks. These covariance and correlation values present as many 

elements as there are variables in these blocks. The variables showing the highest covariance 

and correlation values were selected. Then for the RW-arranged data only the significant 

variables common to all replicate blocks and presenting loadings of the same sign were 

regarded as significant variables. 

2.5. Tentative metabolite assignment. 

LC-MS features from Dataset 1 were assigned to tentative metabolites using the Metlin 

database accepting an error tolerance of 10 ppm [41]. GC-MS features from Dataset 2 were 

assigned by library search in Massbank [42]. 

 

3 RESULTS AND DISCUSSION 

3.1. Dataset 1 

In a first comparative analysis of Dataset 1, we started by evaluating the effect of using the 

three different dataset arrangements depicted in Figure 1 on PCA since it is the simplest of the 

bilinear decomposition methods. Before these analyses, to avoid an unbalanced contribution 

across blocks, each block was norm-scaled and weighted based on the number of replicates. 

Following this pre-processing, the replicate blocks were concatenated row-wise. 

The PC scores distributions for the three analyses are very similar (Figure 3A-C). In all 

cases, PC1 captured the variations derived from altering the FW and GG contents in the 

samples while PC2 separated the samples according to the SS content. The time effect could 

not be appreciated in these two components, suggesting that microbial degradation during the 
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studied period was limited. The percentage of explained variance for the first two components 

was also similar in the three PCAs, albeit slightly higher when the RR arrangement was used. 

The inspection of the loadings from these 3 analyses (Figure S1) revealed that the RR and the 

RA arrangements resulted in equivalent loadings (r > 0.990), despite the different numbers of 

samples processed, while somewhat different (r > 0.898) from those obtained from the RW-

arranged data, indicating that the RW arrangement may influence the matrix decomposition. 

The 3 loadings were also compared with those obtained from the PCA of the metabolomics data 

alone (Figure S2). We observed that the latter showed the highest correlations with the RR 

block (r > 0.981 for the PC1 loadings), followed by the RA block (r > 0.960 for the PC1 

loadings), and finally the RW block (r > 0.873 for the PC1 loadings). The lower correlations 

found between the loadings of the metabolomics data alone and the three sets of loadings of the 

3 replicate blocks suggest that preweighting the 3 metabolomics blocks by 1/√3 in the RW 

arrangement, makes the metataxonomics block more relevant in that PCA model. 

The same comparative analysis of the three dataset arrangements was repeated for ComDim 

(Figure 3D-M). In all cases, the ComDim analyses were able to explain more than 81% of the 

dataset variance with the first component alone. The distributions of the Global scores (Figure 

3D-F) were very similar to the scores obtained in the PCA models (Figure 3A-C). Moreover, 

the comparative analyses of the loadings resulted in interpretations analogous to those from the 

PCA (Figure S3), although the correlation coefficients between the RR- and the RA-arranged 

data were slightly lower than for the PCA. 

In addition to the scores and loadings obtained in both the PCA and ComDim analyses, 

ComDim also gave the salience values (reflecting the contribution of each block) which 

showed that these are mainly influenced by the weighting. 16S saliences were similar for the 3 
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arrangements as they were equally weighted. For the LC-MS blocks, the saliences for the RW-

arrangement were 1/3 of those observed in the other two arrangements, in line with the applied 

weight of 1/√3 in the RW-arrangement. As well, the CC1 and CC2 saliences were similar for 

the 3 replicate blocks, indicating that they contained similar sources of structured variability, 

i.e., not noise. Then, for the RR- and RA-arrangements, CC1 explained in a similar amount the 

two data types while CC2 was slightly more descriptive of the LC-MS block. For the RW-

arrangement, the contribution of the 16S block was stronger than for each of the LC-MS blocks 

in both CC1 and CC2. 

Another information specific to ComDim is the Local scores, which allow to evaluate the 

data variance similarity between the biological replicates and also across platforms when the 

RW arrangement was used (Figure 4). The similar values of the Local scores for the four 

blocks compared with the Global scores confirmed that the blocks have comparable sample 

variance and effects on the dispersion of the samples, even across platforms. 

While both PCA and ComDim showed similar results in terms of their loadings and their 

scores (PCA) / Global scores (ComDim), showing that both methods are equally valid to 

explore dataset variability, ComDim however also provided information about the contribution 

of each block in the global model (by the saliences) and how well represented each sample is in 

the model (by the local scores). For this reason, we consider that the use of ComDim should be 

preferred rather than PCA for the exploration of incomplete datasets. 

In a further step, we also studied the differences in variable selection for the three ComDim 

analyses tested. The significant variables were selected using S-plots, setting the threshold to 

1.5 standard deviations (SD). Next, the results from the three ComDim analyses were compared 



15 

 

employing Venn diagrams depicting the number of selected variables in common (Figure 3J-

M). 

In general, the 16S variables (or OTUs) selected were mostly the same for the three analyses. 

This can be explained because the data variance encoded by the 16S block is the same in the 

three analyses. Conversely, some differences were observed for the variable selection for the 

LC-MS data. 

Firstly, when only the RR- and the RA-arrangements are considered, an important variability 

in the variable selection was noticed, since between ⅔ and ¾ of the selected variables were 

common to these two analyses (Figure 3J-M). 

Secondly, the variable selection applied to the RW-arranged dataset was the most restrictive 

approach, and most of the selected variables were also found to be significant for the other two 

data arrangements. The stringency and consistency in the results of the RW-arranged dataset 

came from the fact that the three LC-MS blocks are investigated separately with the S-plots and 

only the variables in common are considered as truly significant. 

In agreement with the previous paragraph, a biological interpretation of the results of the 

analysis of the RW-arranged data was done. Briefly, the metabolic data from CC1 revealed that 

FW is richer than SS in pyrrolidine, 3-methylbutanamine, and indole-3-carbinol, among others. 

Similarly, the metabolic data from CC2 highlighted that the metabolites characteristic of SS are 

heptanethiol and triethanolamine, among others; while the presence of oxidized organic acids 

was inversely related to the amount of this type of waste. Overall, these data suggest that waste 

degradation was promoted by different microorganisms depending on the amount of FW, GG, 

or SS. Specifically, the metabolic changes described by CC1 were mediated by the reduction of 

the contribution of microorganisms from the Cloacimonetes and Plantomycetes phyla in the 
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microbial community, among others. The same component was also associated with an increase 

of the Bacteroidetes as well as some Firmicutes species. Finally, most of the species selected in 

CC2 (comprising bacterial species from the phyla Bacteroidetes, BRC1, Cloacimonentes, 

Chloroflexi, Firmicutes and Synergistetes, Coprothermobacteraeota, Proteobacteria, and 

Plantomycetes; and 3 archaeal species) were more abundant in the samples containing a higher 

amount of sewage sludge. The full list of selected metabolites and microbial species are given 

in the Appendix 2. 
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Figure 3. Analysis of Dataset 1 using different data arrangements. PCA analyses: PC1 vs PC2 

scores (A-C). ComDim analyses: CC1 vs CC2 scores (D-F) and ComDim saliences (G-I). For (A-

I), plots from the RR-arranged data are on the left, those from the RA-arranged data in the center, 
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and those from the RW-arranged data on the right. G-J) Venn Diagrams showing the similarity in 

variable selection among the three ComDim analyses. The numbers in the scores plots represent the 

time progression in weeks of the anaerobic digestion. 

   

Figure 4. Comparison between the Global ComDim scores and the Local ComDim scores obtained 

from the ComDim analysis of the RW-arranged Dataset 1. Global ComDim scores were drawn with 

filled circles, and Local ComDim scores with empty circles (for LC-MS data) or squares (for 16S 

data). For each replicate block, the grey arrows denote the time progression for each tested 

condition. 
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relate to the TAN concentration used. Interestingly, this component reveals a proportionality 
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mg/L. The existence of a different microbial response depending on the level of TAN 
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Castellví et al. (2020) [43]. Then, it must be noted that the ComDim scores from the RA-

arrangement are significantly different from those of the other two arrangements, indicating 

that replicating the samples may in fact have an impact on the resolution in some cases. 

Regarding the saliences, for the RR-arrangement, CC1 and CC2 were more descriptive of the 

LC-MS block than of the 16S block (Fig5D). For the RW-arrangement, 16S saliences were 

similar to those obtained from the RR-arrangement and LC-MS were 1/3 of the corresponding 

RR-saliences (Fig5F), following the same trend observed for Dataset 1 (Fig3F). The CC1 

saliences for the 3 repetition blocks of GC-MS data are very similar, while the CC2 salience for 

the first repetition block is somewhat lower than for the other two, indicating that it may 

contain some noise. A very different result was obtained for the RA-arrangement. In this case 

CC1 saliences were similar to those obtained from the RR-arrangement, while CC2 saliences 

followed the opposite trend by being more descriptive of the GC-MS data than of the 16S data. 

Hence, the artificial augmentation of the dataset with replicate data was a source of variation 

extracted by CC2. 

CC2 local scores obtained in the RW-arrangement (Fig6) revealed that there is an important 

inter-sample variability in the GC-MS data as the scores are significantly different across the 

three replicate blocks, confirming what was observed for the corresponding saliences. From 

these results, we can deduce that, in the RA-arrangement, the pairing of the 16S block 

containing identical data as replicates with the GC-MS block with replicates with low similarity 

produced an important distortion in the ComDim resolution. This effect was not observed in the 

RR-arranged data since the GC-MS was averaged, thus reducing the effect of noise. For the 

RW-arranged data, the phenomenon was not observed since the RW arrangement allows each 
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set of replicates to be described by the model in a different way, as each replicate block has its 

own saliences and its own loadings. 

We also inspected the loading blocks of the three data arrangements (FigS5). As expected, 

CC1 loadings for RR- and RA-arrangements are very similar (r > 0.997), while for CC2 they 

are weakly correlated (r > 0.650). The same trend was observed between the loadings of the 

RW- and the RA-arranged data. Finally, we observed that the correlations values of each of the 

replicate blocks in the RW-arranged data differed considerably. For example, between the RR- 

and the RW- arranged data the correlation ranged between 0.482 to 0.952 (FigS5E) as a 

consequence of the GC-MS sample variability. 

We can thereby observe that the RW strategy, as opposed to the other two, is able to confirm 

whether the inter-sample variability among replicates is low (as in Dataset 1) or not (as in 

Dataset 2), suggesting in the latter an underlying analytical batch effect. In other words, 

ComDim can extract at the same time common (in the Global scores) and distinct (or block-

specific, in the Local scores) component profiles. This would not be visible from just the 

inspection of the PCA results since PCA lacks the Local scores, replicate block-specific 

loadings and saliences. To minimize the effect of the inter-sample variability, we could average 

the GC-MS replicates. However, we could simply leave out this component from further 

analyses. The removal of a ComDim component descriptive of a chromatographic drift has 

been previously used to correct such batch effects [44]. 

Regarding the variable selection, most of the variables were selected by all the methods 

(specifically,36 GC-MS variables and 36 16S variables) for CC1. This consistency in the results 

may be derived from a low inter-sample variability of the GC-MS data in CC1. This was also 

observed in the comparison of the CC1 loadings (Figure S5), as they look identical across 
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replicates. On the other hand, the analysis of the RW arrangement was again the only one able 

to demonstrate the low repeatability in CC2 for the GC-MS data, as no variable was selected. 

For the 39 selected GC-MS features in CC1 in the analysis of the RW-arranged dataset, 16 

eluted at 19.9 min (m/z of 61, 75, 89, 91, 104, 106, 129, 132, 135, 161, 163, 205, 207, 209, 222, 

and 224 Da), 4 at 16.9 min (m/z of 105, 135, 179 and 181 Da), and 4 at 24.6 min (m/z of 177, 

205, 310, and 312 Da), among others. These three groups of GC-MS features were tentatively 

assigned to phenylpropanoic acid (1TMS), hippuric acid, and 3-(3-hydroxyphenyl)propanoic 

acid, respectively. Phenylpropanoic acid and 3-(3-hydroxyphenyl)propanoic acid were 

consumed over time while hippuric acid was produced. These three metabolites belong to the 

phenylalanine metabolic pathway, suggesting that the temporal component of the microbial 

activity, which is highlighted by CC1, strongly modifies this pathway. The fact that the different 

mass fragments of these compounds can be captured in the same component highlights the 

effectiveness of ComDim for the analysis of this type of data. 

For the 16S metataxonomics data, the 38 OTUs selected in CC1 are one Archaea 

(Methanosarcina mazei) and 35 Bacteria. Among them, it includes 18 Clostridiales, 9 

Bacteroidales, two Anaerolineales, one Petrotogales, one Synergistales, and a bacterial OTU 

from the Armatimonadetes phylum. Most of the selected Bacteroidales diminished over time, 

while the contribution of most of the Clostridiales  accumulated over time. Regarding CC2, as 

can be seen in Figures 6E-6H, only the local scores of the 16S data block are close to the 

global scores, reflecting that it is this block that contributes to CC2. 27 OTUs were selected for 

CC2. including 9 Clostridiales and 3 Bacteroidales that were less abundant at lower TAN 

concentrations and one Spirochaeateles that accumulated at higher TAN levels. 

3.3. Dataset 3 
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To conclude this work, we analyzed Dataset 3 to demonstrate that the RW-arrangement can 

be extended to any multi-block dataset containing replicates.  

The variability in Dataset 3 can be characterized by 4 ComDim components (Figure 7A-H). 

CC1-CC4 components explained 66.68 %, 16.45 %, 10.91 % and 5.96 % of the total variance, 

respectively (Figure 7A-D). 

The saliences showed that the highest contributions in CC1 were from the mRNA-seq and 

miRNA-seq blocks, while the contribution of the metabolomics blocks was between one half 

and one third of that (Figure 7E). Regarding the ComDim Global scores, CC1 showed a stable 

profile for the control samples (blue), while the Global scores of the differentiated cells samples 

(yellow) increased linearly with time (Figure 7A). A similar response, although not as well 

defined for the metabolomics blocks, was observed in the Local scores (Figure S6). 
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Figure 5. ComDim analyses of Dataset 2 using different data arrangements. A-C) CC1 vs CC2 

scores. Scores are colored using the same color code as in Figure 2A-F. The numbers in the scores 

plots represent the time progression in days of the anaerobic digestion. D-F) ComDim saliences. 

For (A-F), the ComDim results from the RR-arranged dataset are on the left, the ones from the RA-

arranged dataset in the center, and those from the RW-arranged dataset on the right. G-J) Venn 

Diagrams showing the similarity in variable selection among the three ComDim analyses. 
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Figure 6. Comparison between the Global ComDim scores and the Local ComDim scores obtained 

from the ComDim analysis of the RW-arranged in Dataset 2. Global ComDim scores were plotted 

with filled circles, and Local ComDim scores with empty circles (for LC-MS data) or squares (for 

16S data). For each replicate block, the grey arrows denote the time progression for each tested 

condition. 

 

The temporal pattern for CC2-CC4 Global scores was more complex than for CC1 (Figure 

7B-D). Interestingly, from the analysis of the saliences it can be deduced that CC2-CC4 

components mainly described the GC-MS and LC-MS data types (Figure 7F-H) and were all 

very batch-dependent. That is to say, CC2 explained the 3rd batch of samples of these two data 

types (Figure 7F), CC3 the 1st batch (Figure 7G), and CC4 the 2nd batch (Figure 7H). In the 

original manuscript, it is indicated that the cell pellets in 2 of the 3 batches were not completely 

dried [8], which could have affected the sample stability and the metabolite extraction, thereby 

explaining the batch-dependent differences. Thus, ComDim detects variations among replicate 

samples, even when comparing different data types. Moreover, since it extracts the aberrant 
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variance in separate components, the multi-block data can still be interpreted by looking at the 

components presenting a similar salience between replicates (in this case, CC1).  

 

Figure 7. Analysis of Dataset 3. A-H) ComDim analysis of Dataset 3 using the RW arrangement. 

Global ComDim scores plotted over time for CC1-CC4 are given in (A-D), while the corresponding 
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block saliences are presented in (E-H). I-P) for the ComDim analysis of Dataset 3 using the 

‘traditional’ arrangement. Global ComDim scores plotted over time for CC1-CC4 are given in (I-L), 

while the corresponding block saliences are presented in (M-P). 

We also investigated Dataset 3 arranged with one data type per block (in the ‘traditional’ 

implementation, see methods) using ComDim (Figure 7I-P). It must be noted that, when using 

the ‘traditional’ data arrangement, it is assumed that each sample has a paired sample in the 

other data blocks. However, this correspondence across blocks might not in fact exist. For 

example, for this experiment, the three biological batches used to obtain the metabolomics data 

(e.g., M1, M2 and M3) are not the same ones used for the RNA-seq data (e.g., T1, T2 and T3) 

(see methods). Since the 6 batches are independent, M1 can be indistinctly paired to either T1, 

T2, or T3, and so can M2 and M3. This would lead to different ComDim results depending on 

the chosen pairings. However, this is not a problem for the RW data arrangement since all the 

samples from the same biological condition are aligned in the same row (each block is 

composed of one replicate and data type, therefore 12 blocks). Within each block there is only 

one sample from each studied condition, and so the pairing across blocks is unique. Due to this 

particular arrangement, the Global scores are only descriptive of the process studied and the 

variation between replicates must be inferred from inspecting the saliences or by looking at the 

Local scores. 

CC1 explained the cell differentiation for the ‘traditional’ data arrangement , accounting for 

48.16 % of the explained variance. This is much lower than the 66.68 % of explained variance 

for CC1 with the RW arrangement. 

Moreover, since the ‘traditional’ arrangement does not allow examining the replicate 

variability from the saliences (Figure 7M-P), other ComDim results must be examined instead. 
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The Global ComDim scores and the Local ComDim scores are given in Figure 7I-L and 

Figure S7, respectively. The batch effect cannot be observed in the Global scores as this effect 

only exists for the LC-MS and GC-MS data (therefore, it is not a ‘global’ effect). On the other 

hand, the CC2 Local scores showed strong correspondences between replicates across the LC-

MS and GC-MS data, thus indicating that the two data sets are related. This is also indicated by 

the similar saliences in Figure 7N. Having said that, this observation is much more easily 

pinpointed from the CC2-CC4 ComDim saliences obtained in the analysis of the proposed RW 

arrangement (Figure 7E-H). 

Lastly, we repeated the ComDim strategy in Dataset 3 after averaging the replicates (Figure 

S8 and Figure S9). Saliences and Global scores from CC1 and CC2 are similar to those 

obtained from the analysis of the ‘traditional’ arrangement, as well as the Local scores (if 

compared to the corresponding averages). The greater resemblance of the results of the 

averaged dataset to those from the ‘traditional’ analysis than that from the ‘RW’ arrangement 

points out that rearranging from 4 to 12 blocks has a greater influence on the resolution than 

averaging. 

Since the RW-arranged data seems to be more meaningful than when the data is arranged in 

the ‘traditional’ way, as it allowed isolating the batch effect of the metabolomics data in 

separate components, the step of biomarker discovery was performed for the former data 

arrangement only. Therefore, the biological signatures (the LC-MS metabolites, the GC-MS 

metabolites, the mRNA transcripts, and the miRNA transcripts) of cell differentiation, 

represented by CC1, were searched for. To do so, the variables from each block were inspected 

using S-plots and those exceeding one SD were selected. Then, only the variables found to be 

significant for the three blocks of replicate data were retained. 
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This resulted in selecting 6 LC-MS variables (L-cysteine, homoserine, 5-hydroxy-L-

tryptophan, putrescine, spermidine, and taurine), 1 GC-MS variables (malic acid), 79 miRNA-

seq variables, and 3760 mRNA-seq variables. 

The selected metabolites and transcripts were further investigated using bioinformatics tools 

to assess their role in the biological processes. This analysis can be consulted in the Appendix 

2. 

4 CONCLUSION 

In the present study, we examined three different data arrangement strategies designed to 

cope with inconsistent replicate sample numbers across blocks in multi-block studies, and it 

was shown that considering each set of single-type replicates as a standalone data block is the 

most powerful strategy. 

The ability of ComDim to deal with multi-omics data sets was validated with three datasets, 

allowing the identification of the changes in the omics profiles during two anaerobic waste 

digestions processes and during cell differentiation. 

By combining the best data arrangement strategy and ComDim, we were able to assess the 

variability across platforms and among replicates. Specifically, we detected (1) that CC2 was 

uninformative in regards to the GC-MS data for Dataset 2, and (2) that there was a batch effect 

impacting only the (LC-MS and GC-MS) metabolomics blocks in Dataset 3. Despite this, since 

ComDim components are orthogonal, the sample variances due to the studied factor and to the 

batch effects were allocated to separate components, thereby allowing a successful analysis and 

interpretation of the multi-omics data. 
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Finally, with the proposed RW data arrangement, variable selection methods must be applied 

to each replicate block and only the compromise biomarkers for all the replicates are retained. 

This results in a shorter (but more reliable) list of biomarkers, compared to the analyses using 

the other data arrangement methods. 

APPENDICES 

Appendix A. Supplementary results: comparative analysis of the loadings from Datasets 1 and 2, 

Local scores from Dataset 3, analysis of the averaged Dataset 3, most significant changes in Dataset 

3 (PDF). 
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