
HAL Id: hal-03469091
https://hal.science/hal-03469091v1

Submitted on 7 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decidability of a Sound Set of Inference Rules for
Computational Indistinguishability

Adrien Koutsos

To cite this version:
Adrien Koutsos. Decidability of a Sound Set of Inference Rules for Computational Indistinguishability.
ACM Transactions on Computational Logic, 2021, 22 (1), pp.1 - 44. �10.1145/3423169�. �hal-03469091�

https://hal.science/hal-03469091v1
https://hal.archives-ouvertes.fr

3

Decidability of a Sound Set of Inference Rules for

Computational Indistinguishability

ADRIEN KOUTSOS, INRIA Paris, France

Computational indistinguishability is a key property in cryptography and verification of security protocols.
Current tools for proving it rely on cryptographic game transformations.

We follow Bana and Comon’s approach [7, 8], axiomatizing what an adversary cannot distinguish. We
prove the decidability of a set of first-order axioms which are computationally sound, though incomplete, for
protocols with a bounded number of sessions whose security is based on an ind-cca2 encryption scheme.
Alternatively, our result can be viewed as the decidability of a family of cryptographic game transformations.
Our proof relies on term rewriting and automated deduction techniques.
CCS Concepts: • Security and privacy→ Logic and verification; • Theory of computation→ Auto-
mated reasoning.

Additional Key Words and Phrases: Security Protocols, Automated Deduction, Decision Procedure, Computa-
tional Indistinguishability
ACM Reference Format:
Adrien Koutsos. 2021. Decidability of a Sound Set of Inference Rules for Computational Indistinguishability.
ACM Trans. Comput. Logic 22, 1, Article 3 (December 2021), 113 pages. https://doi.org/10.1145/3423169

1 INTRODUCTION

Designing security protocols is notoriously hard. For example, the TLS protocol used to secure most
of the Internet connections was successfully attacked several times at the protocol level, e.g. the
LogJam attack [2] or the TripleHandshake attack [15]. This shows that, even for high visibility
protocols, and years after their design, attacks are still found.
Using formal methods to prove a security property is the best way to get a strong confidence.

However, there is a difficulty, which is not present in standard program verification: we need
not only to specify formally the program and the security property, but also the attacker. Several
attacker models have been considered in the literature.

A popular attacker model, the Dolev-Yao attacker, grants the attacker the complete control of the
network: he can intercept and re-route all messages. Besides, the adversary is allowed to modify
messages using a fixed set of rules (e.g. given a cipher-text and its decryption key, he can retrieve the
plain-text message). Formally, messages are terms in a term algebra and the rules are given through
a set of rewrite rules. This model is very amenable to automatic verification of security properties.
There are several automated tools, such as, e.g., ProVerif [16], Tamarin [33] and Deepsec [21].

Another attacker model, closer to a real world attacker, is the computational attacker model. This
adversary also controls the network, but this model does not restrict the attacker to a fixed set of
operations: he can perform any probabilistic polynomial time computation. More formally, messages
are bit-strings, random numbers are sampled uniformly among bit-strings in {0, 1}η (where η is the
security parameter) and the attacker is any probabilistic polynomial-time Turing machine (PPTM).
This model offers stronger guarantees than the Dolev-Yao model (DY model), but formal proofs
are harder to complete and more error-prone. There exist several formal verification tools in this
model: for example, EasyCrypt [11] which relies on pRHL, and CryptoVerif [17] which performs
game transformations. As expected, such tools are less automatic than the verification tools in
Author’s address: Adrien Koutsos, adrien.koutsos@inria.fr, INRIA Paris, Paris, France.

2021. 1529-3785/2021/12-ART3 $15.00
https://doi.org/10.1145/3423169

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

https://doi.org/10.1145/3423169
https://doi.org/10.1145/3423169

3:2 Adrien Koutsos

the DY model. Moreover, the failure to find a proof in such tools, either because the proof search
failed or did not terminate, or because the user could not manually find a proof, does not give any
indication on the actual security of the protocol.
There is an alternative approach, the Bana-Comon model (BC model), introduced in [7, 8]. In

this model, we express the security of a protocol as the unsatisfiability of a set of formulas in first-
order logic. The formulas contain the negation of the security property and axioms, which reflect
implementation assumptions, such as functional correctness and cryptographic hypotheses on the
security primitives. This method has several advantages over pRHL and game transformations.
First, it is simpler, as there is no security game and no probabilities, only a first-order formula.
Then, carrying out a proof of unsatisfiability in this logic entails the security of the protocol in
the computational model. Finally, the absence of such a proof implies the existence of a model
of the formula, i.e. an attack, albeit not necessarily a computational one; nonetheless, we know
that the security of the protocol cannot be obtained without extra assumptions. Note that the
Bana-Comon approach is only valid for protocols with a finite number of sessions (there is no
unbounded replication). Since this is the model we use, we inherit this restriction.

There is another input to security proofs that we did not discuss yet: the class of security properties
considered. Roughly, there are two categories. Reachability properties state that some bad state
is unreachable. This includes, for example, authentication or (weak) secrecy. Indistinguishability
properties state that an adversary cannot distinguish between the executions of two protocols. This
allows for more complex properties, such as strong secrecy and unlinkability.

Deciding Security. When trying to prove a protocol, there are three possible outcomes: either
we find a proof, which gives security guarantees corresponding to the attacker model used; or
we find an attack, meaning that the protocol is insecure; or the tool or the user (for interactive
provers) could not carry out the proof and failed to find an attack. The latter case may happen for
two different reasons. First, we could neither find a proof nor an attack because the proof method
used is incomplete. In that case, we need either to make new assumptions and try again, or to use
another proof technique. Second, the tool may not terminate on the protocol considered. This is
problematic, as we do not know if we should continue waiting, and consume more resources and
memory, or try another method.
This can be avoided for decidable classes of protocols and properties. Of course, such classes

depend on both the attacker model and the security properties considered. We give here a non-
exhaustive survey of such results. In the symbolic model, [25] shows decidability of secrecy (a
reachability property) for a bounded number of sessions. In [27], the authors show the decidability of
a secrecy property for depth-bounded protocols, with an unbounded number of sessions, using Well-
Structured Transition Systems [28]. Chrétien et al [22] show the decidability of indistinguishability
properties for a restricted class of protocols. E.g., they consider processes communicating on
distinct channels and without else branches. The authors of [20] show the decidability of symbolic
equivalence for a bounded number of sessions, but with conditional branching.

In the computational model, we are aware of only one direct result. In [24], the authors show the
decidability of the security of a formula in the BC model, for reachability properties, for a bounded
number of sessions. But there is an indirect way of getting decidability in the computational model,
through a computational soundness theorem (e.g. [1]). A computational soundness theorem states
that, for some given classes of protocols and properties, symbolic security implies computational
security. These results usually make strong implementation assumptions (e.g. parsing assumptions,
or the absence of dishonest keys), and require that the security primitives satisfy strong crypto-
graphic hypothesis. By combining a decidability result in the symbolic model with a computational
soundness theorem, which applies to the considered classes of protocols and properties (e.g. [3] for

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:3

reachability properties, or [4] for indistinguishability properties), we obtain a decidability result in
the computational model.

Contributions. In this paper, we consider the Bana-Comon model for indistinguishability proper-
ties [8]. This is a first-order logic in which we design a set of axioms Axwhich includes, in particular,
axioms for the ind-cca2 cryptographic assumption [13]. Given a protocol and a security property,
we can build, using a folding technique described in [8], a ground atomic formulaψ expressing the
security of the protocol. Showing the unsatisfiability of the conjunction of the axioms Ax and the
negation ofψ entails the security of the protocol in the computational model, assuming that the
encryption scheme is ind-cca2 secure.

Formally, our main result is the decidability of the problem:
Input: A ground formulaψ of the form ®u ∼ ®v .
Question: Is Ax ∧ ¬ψ unsatisfiable?

That is, we show the decidability of a sound, though incomplete, axiomatization Ax of computational
indistinguishability.

All the formulas in Ax are Horn clauses, therefore to show the unsatisfiability of Ax∧¬ψ we use
resolution with a negative strategy: we see axioms in Ax as inference rules and look for a derivation
of the goalψ . We prove the decidability of the corresponding satisfiability problem.
The main difficulty lies in dealing with equalities (defined through a term rewriting system R).

First we show the completeness of an ordered strategy1 by commuting rule applications. This allows
us to have only one rewriting modulo R at the beginning of the proof. We then bound the size of
the terms after this rewriting as follows: we identify a class of proof cuts introducing arbitrary
subterms; we give proof cut eliminations to remove them; and finally, we show that cut-free proofs
are of bounded size w.r.t. the size of the conclusion.

Game Transformations. Our result can be reinterpreted as the decidability of the problem of
determining whether there exits a sequence of game transformations [14, 35] that allows to prove
the security of a protocol with a bounded number of sessions. Indeed, one can associate to every
axiom in Ax either a cryptographic assumption or a game transformation.
Each atomic axiom in Ax corresponds to an instantiation of the ind-cca2 game. For instance,

in the simpler case of ind-cpa security of an encryption {_}n
pk
, no polynomial-time adversary

can distinguish between two cipher-texts, even if it chooses the two corresponding plain-texts.
Initially, the public key pk is given to the adversary, who computes a pair of plain-texts д(pk): д
is interpreted as the adversary’s computation. Then the two cipher-texts, corresponding to the
encryptions of the first and second components of д(pk), should be indistinguishable. This yields
the atomic axiom:

{π1(д(pk))}
n

pk
∼ {π2(д(pk))}

n

pk

Similarly, non-atomic axioms correspond to cryptographic game transformations. E.g., the FA

axiom:
®u ∼ ®v

f (®u) ∼ f (®v)
FA

states that if no adversary can distinguish between the arguments of a function call, then no
adversary can distinguish between the images. As for a cryptographic game transformation, the
soundness of this axiom is shown by reduction. Given a winning adversaryA against the conclusion
f (®u) ∼ f (®v), we build a winning adversary B against ®u ∼ ®v: the adversary B, on input ®w (which
was sampled from ®u or ®v), computes f (®w) and then gives the result to the distinguisher A. The
1Meaning that any ground formula derivable using the Ax is derivable using the ordered strategy.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:4 Adrien Koutsos

advantage of B against ®u ∼ ®v is then the advantage of A against f (®u) ∼ f (®v), which is (by
hypothesis) non negligible.

By interpreting every axiom in Ax as a cryptographic assumption or a game transformation, and
the goal formulaψ (which is of the form ®u ∼ ®v) as the initial game, our result can be reformulated
as showing the decidability of the following problem:
Input: An initial bounded game ®u ∼ ®v .
Question: Is there a sequence of game transformations in Ax showing that ®u ∼ ®v is secure?

From this point of view, our result guarantees a kind of sub-formula property for the intermediate
games appearing in the game transformation proof. We may only consider intermediate games that
are in a finite set computable from the original protocol: the other games are provably unnecessary
detours. To our knowledge, our result is the first showing the decidability of a class of game
transformations.

Scope and Limitations. To achieve decidability, we had to remove or restrict some axioms. The
most important restriction is arguably that we do not include the transitivity axiom. The transitivity
axiom states that to show that ®u ∼ ®v , it is sufficient to find a ®w such that ®u ∼ ®w and ®w ∼ ®v .
Obviously, this axiom is problematic for decidability, as the vector of term ®w must be guessed, and
may be arbitrarily large. Therefore, instead of directly including transitivity, we push it inside the
cca2 axiom schema, by allowing instances of the cca2 axiom to deal simultaneously with multiple
keys and interleaved encryptions. Of course, this is at the cost of a more complex axiom. We do not
know if our problem remains decidable when we include the transitivity axiom.

Applications. The Bana-Comon indistinguishability model has been used to analyse RFID pro-
tocols in [23], a variant of the AKA protocol in [31], a key-wrapping API [34] and an e-voting
protocol [5]. Ideally, we would like future case studies to be carried out automatically and machine
checked. Because our procedure has a high complexity, it is unclear whether it can be used directly
for this. Still, our procedure could be a building block in a tool doing an incomplete but faster
heuristic exploration of the proof space.
CryptoVerif and EasyCrypt are based on game transformations, directly in the former and

through the pRHL logic in the latter. Therefore, our result could be used to bring automation
to these tools. Of course, both tools allow for more rules. Still, we could identify which game
transformations or rules correspond to our axioms, and apply our result to obtain decidability for
this subset of game transformations.

Related Works. In [9], the authors design a set of inference rules to prove CPA and CCA security
of asymmetric encryption schemes in the Random Oracle Model. The paper also presents an attack
finding algorithm. The authors of [9] do not provide a decision algorithm for the designed inference
rules. However, they designed proof search heuristics and implemented an automated tool, called
ZooCrypt, to synthesize new CCA encryption schemes. For small schemes, this procedure can
show CCA security or find an attack in more than 80% of the cases. In 20% of the cases, security
remains undecided. Additionally, ZooCrypt automatically generates concrete security bounds.
In [30], the authors study proof automation in the UC framework [18]. They design a com-

plete procedure for deciding the existence of a simulator, for ideal and real functionalities using
if-then-else, equality, random samplings and xor. Therefore their algorithm cannot be used to
analyse functionalities relying on more complex functions (e.g., public key encryption), or stateful
functionalities. This restricts the protocols that can be checked. Still, their method is semantically

complete (while we are complete w.r.t. a fixed set of inference rules): if there exists a simulator,
they will find it.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:5

In [10], the authors show the decidability of the problem of the equality of two distributions,
for a specific equational theory (concatenation, projection and xor). Then, for arbitrary equational
theories, they design a proof system for proving the equality of two distributions. This second
contribution has similarities with our work, but differ in two ways.
First, even though the proof system of [10] shares some rules with ours, e.g. the R, Dup and

FA rules, it does not allow for reasoning on terms using if_then_else_. E.g., they do not have a
counterpart to the CS rule. This is a major difference, as most of the difficulties encountered in
the design of our decision procedure stem from the if_then_else_. Moreover, there are no rules
corresponding to cryptographic assumptions, like our cca2 rules. Because of this and the lack of
support for reasoning on branching terms, the analysis of security protocols is out of the scope
of [10].
Second, the authors do not provide a decision procedure for their inference rules, but instead

rely on heuristics.

Outline. We recall the Bana-Comon logic in Section 2. In Section 3, we introduce the axioms
we use, which include, in particular, the equality axioms R and the cryptographic axioms cca2.
In Section 4, we prove that the set of equality axioms R can be defined using a convergent term
rewriting system→R . We state the main result in Section 5, and depict the difficulties of the proof.
We prove several rule commutations in Section 6, which allow use to obtain complete ordered
strategy for our fragment. We study the shape of the terms appearing in derivations following this
ordered strategy in Section 7, and prove some key properties of these terms. In Section 8, we give
some proof cut eliminations, and describe the decision procedure. Finally, we conclude in Section 9.
For space reasons, the majority of the technical definitions and proofs are omitted in the body of
this paper, and given in an Electronic Appendix.

2 THE LOGIC

We recall here the logic introduced in [8]. In this logic, terms represent messages of the protocol sent
over the network, including the adversary’s inputs, which are specified using additional function
symbols. Formulas are built using the usual Boolean connectives and FO quantifiers, and predicates
{∼n | n ∈ N}, which stand for the indistinguishability of two vectors of n terms. The semantics
of the logic is the usual first-order semantics, though we are particularly interested in computa-
tional models, in which terms are interpreted as PPTMs, and ∼ is interpreted as computational
indistinguishability.
This logic is then used as follows: given a protocol and a security property, we can build

(automatically) a single formula ®u ∼ ®v expressing the security of the protocol. We specify, through
a (recursive) set of axioms, what the adversary cannot violate. This yields a set of axioms Ax. We
show that Ax ∧ ®u ≁ ®v is unsatisfiable, and that the axioms Ax are valid in the computational model.
We deduce from this the security of the protocol in the computational model.

2.1 Syntax

Terms. Terms are built upon a set of function symbols F , a countable set of names N 2 and a
countable set of variablesX. This is a sorted logic with two sorts term and bool, where bool ⊆ term.

The set F of function symbols is composed of a countable set of adversarial function symbols G
(representing the adversary computations), and the following function symbols: the pair ⟨_ , _⟩,
projections π1,π2, public and private key generation pk(_), sk(_), encryption with random seed
{_}__ , decryption dec(_, _), if_then_else_, true, false, zero 0(_) and equality check eq(_, _). We give

2A name is a constant function symbols used to model random samplings.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:6 Adrien Koutsos

their types below:

⟨_ , _⟩ , dec(_, _) : term2 → term eq(_, _) : term2 → bool

π1,π2, 0, pk, sk : term→ term {_}__ : term3 → term

if_then_else_ : bool × term2 → term true, false : → bool

Moreover all the names in N have sort term, and each variable in X comes with a sort. For any
subset S of the union of F , N and X, we let T(S) be the set of terms built upon S.

Formulas. For every integer n, we have one predicate symbol ∼n of arity 2n, which represents
equivalence between two vectors of terms of length n. Formulas are then obtained using the usual
Boolean connectives and first-order quantifiers.

Semantics. We use the classical first-order logic semantics: every sort is interpreted by some
domain, and function symbols and predicates are interpreted as, resp., functions of the appropriate
domains and relations on these domains.

We focus on a particular class of such models, the computational models. We informally describe
the properties of a computational modelMc (a full description is given in [8]):
• the domain term is interpreted as the set of probabilistic polynomial time Turing machines
equipped with a working tape and two random tapes ρ1, ρ2: ρ1 is for the protocol random
values, while ρ2 is for the adversary random samplings. Moreover its input is of length η,
where η is the security parameter. bool is the restriction of term to machines that return 0
or 1.
• A name n ∈ N is interpreted as a machine that, on input of length η, extracts a word of
length η from the first random tape ρ1. Furthermore we require that different names extract
disjoint parts of ρ1. This ensures that distinct names are interpreted as independent random
variables.
• true, false, 0(_), eq(_, _), and if_then_else_ are interpreted as expected. For instance, eq(_, _)
takes two machines M1, M2, and returns M such that on input w and random tapes ρ1, ρ2,
M returns 1 if M1(w, ρ1, ρ2) = M2(w, ρ1, ρ2) and 0 otherwise. The function symbol 0 is
interpreted as the function that, on input of length l , returns the bit-string 0l .
• A function symbol д ∈ G with n arguments is interpreted as a function [[д]] such that
there is a polynomial-time Turing machineMд such that for every machines (mi)i≤n in the
interpretation domains, and for every inputsw, ρ1, ρ2:

[[д]]
(
(mi)i≤n)(w, ρ1, ρ2

)
= Mд

(
(mi (w, ρ1, ρ2))i≤n , ρ2)

Observe thatMд cannot access directly the tape ρ1.
• Protocol function symbols (i.e. F\G) are interpreted as deterministic polynomial-time Turing
machines. Their interpretations will be restricted using implementation axioms later.
• The interpretation of function symbols is lifted to terms: given an assignmentσ of the variables
of a term t to elements of the appropriate domains, we write [[t]]ση,ρ1,ρ2 the interpretation of
the term with respect to η, ρ1, ρ2. σ is omitted when empty. We also omit the other parameters
when they are irrelevant.
• The predicate∼n is interpreted as computational indistinguishability ≈, defined bym1, . . . ,mn ≈

m′1, . . . ,m
′
n iff for every PPTM A with random tape ρ2:�� Pr(ρ1, ρ2 : A((mi (1η , ρ1, ρ2))1≤i≤n , ρ2) = 1) −

Pr(ρ1, ρ2 : A((m′i (1η , ρ1, ρ2))1≤i≤n , ρ2) = 1)
��

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:7

is negligible in η (a function is negligible if it is asymptotically smaller than the inverse of
any polynomial).
Moreover, for all ground terms u,v , we writeMc |= u ∼ v when [[u]] ≈ [[v]] inMc.

Example 1. Let n0, n1, n ∈ N and д ∈ F of arity zero. For every computational modelMc:
Mc |= if д() then n0 else n1 ∼ n

Indeed, the term on the left represents the message obtained by letting the adversary choose a
branch, and then sampling from n0 or n1 accordingly. This is semantically equivalent to directly
performing a random sampling, as done on the right. ⋄

3 AXIOMS

We present the axioms Ax, which are of two kinds:
• structural axioms represent properties that hold in every computational model. This includes
axioms such as the symmetry of ∼, or properties of the if_then_else_.
• implementation axioms reflect implementation assumptions, such as the functional correctness
of the pair and projections (e.g. π1(⟨u , v⟩) = u), or cryptographic assumptions on the security
primitives (e.g. ind-cca2).

All our axioms Ax are universally quantified Horn clauses. To show the unsatisfiability of
Ax ∧ ®u ≁ ®v , we use resolution with a negative strategy (which is complete, see [19]). As all axioms
are Horn clauses, a proof by resolution with a negative strategy can be seen as a proof tree where
each node is indexed by the axiom of Ax used at this resolution step. Hence, axioms will be given
as inference rules (where variables are implicitly universally quantified).

3.1 Equality and Structural Axioms

Some notation conventions: we use ®u to denote a vector of terms; and we use an infix notation for
∼, writing ®u ∼ ®v when ®u and ®v are of the same length. Before presenting the axioms, we define
some subsets of the set of function symbols F :

Definition 1. We let F\0, F\if and F\if,0 be the subsets of F defined by:
F\0 = F\{0(_)} F\if = F\{if_then_else_} F\if,0 = F\{0(_), if_then_else_}

The equality and structural axioms we present below already appeared in the literature [6, 8, 23],
sometimes with slightly different formulations.

Equality. Computational indistinguishability is an equivalence relation (i.e. reflexive, symmetric
and transitive). But we can observe that it is not a congruence. E.g. take a computational modelMc,
we know that two names n and n

′ are indistinguishable (since they are interpreted as independent
uniform random sampling in {0, 1}η), and n is indistinguishable from itself. Therefore:

Mc |= n ∼ n
′ and Mc |= n ∼ n

But there is a simple PPTM that can distinguish between ⟨n , n⟩ and ⟨n , n′⟩: simply test whether
the two arguments are equal, if so return 1 and otherwise return 0. Then, with overwhelming
probability, this machine will guess from which distribution its input was sampled from.
Even though ∼ is not a congruence, we can get a congruence from it: if eq(s, t) ∼ true holds in

all models then, using the semantics of eq(_, _), in every computational modelMc, [[s]] and [[t]] are
identical except for a negligible number of samplings. Hence we can replace any occurrence of s by
t in a formula without changing its semantics with respect to computational indistinguishability.

We use this in our logic as follows: we let s = t be a shorthand for eq(s, t) ∼ true, and we
introduce a set of equalities R (given in Figure 1) and its congruence closure =R . We split R in four

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:8 Adrien Koutsos

R1

πi (⟨x1,x2⟩) = xi

dec({x}z
pk(y), sk(y)) = x

eq(x ,x) = true

R2

{
f (®u, if b then x else y, ®v) = if b then f (®u,x , ®v) else f (®u,y, ®v) (f ∈ F\if)

if (if b then a else c) then x else y = if b then (if a then x else y) else (if c then x else y)

R3

if b then x else x = x

if true then x else y = x

if false then x else y = y

if b then (if b then x else y) else z = if b then x else z

if b then x else (if b then y else z) = if b then x else z

R4

{
if b then (if a then x else y) else z = if a then (if b then x else z) else (if b then y else z)

if b then x else (if a then y else z) = if a then (if b then x else y) else (if b then x else z)

Fig. 1. R = R1 ∪ R2 ∪ R3 ∪ R4

sub-parts: R1 contains the functional correctness assumptions on the pair and encryption; R2 and R3
contain, respectively, the homomorphism properties and simplification rules of the if_then_else_;
and R4 allows to change the order in which condition tests are performed.

We then introduce a recursive set of rules:
®u, t ∼ ®v

®u, s ∼ ®v
R (s, t ground terms with s =R t)

It turns out that there exists a convergent orientation →R of =R .3 We describe how we orient
equalities of R, and prove that the resulting term rewriting system is convergent, later, in Section 4.
Still, we anticipate and give the outlines of the orientation now.
We let R≤3 be R1 ∪ R2 ∪ R3. By orienting R≤3 from left to right, and carefully choosing an

orientation for the ground instances of R4, we can build a recursive term rewriting system→R
convergent on ground terms:
• First, we choose the orientation of the rules in R4. This is done by using a Lexicographic
Path Ordering [26] on the conditions, modified using a user-chosen total order ≻u on ground
R≤3-irreducible conditions that do not use the if_then_else_ function symbol.
• Then, we show that the resulting term rewriting system is locally confluent and terminating
on ground terms. We deduce that it is convergent using Newman’s lemma.

Theorem 1. There exists an orientation→R4 of R4 on ground terms such that the resulting term

rewriting system→R =→R≤3 ∪ →R4 is convergent on ground terms.

Proof. The proof is given in Section 4. □

Structural Axioms. We now describe the set of structural axioms Struct-Ax, which is given in
Figure 2. We focus on the case study axiom CS, which is the most complicated one. It states that in
order to show that:

if b then u else v ∼ if b ′ then u ′ else v ′

3Actually, there are many such orientations, as we will see later.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:9

uπ (1), . . . ,uπ (n) ∼ vπ (1), . . . ,vπ (n)
u1, . . . ,un ∼ v1, . . . ,vn Perm

®u, t ∼ ®v, t ′

®u ∼ ®v
Restr for any s =R t ,

®u, t ∼ ®v

®u, s ∼ ®v
R

®u1, ®v1 ∼ ®u2, ®v2
f (®u1), ®v1 ∼ f (®u2), ®v2

FA where f ∈ F\0
®u, t ∼ ®v, t ′

®u, t , t ∼ ®v, t ′, t ′
Dup

®v ∼ ®u
®u ∼ ®v

Sym

for any b,b ′ ∈ T (F\if,N),
®w,b, (ui)i ∼ ®w

′,b ′, (u ′i)i ®w,b, (vi)i ∼ ®w
′,b ′, (v ′i)i

®w, (if b then ui else vi)i ∼ ®w
′, (if b ′ then u ′i else v

′
i)i

CS

Conventions: π is a permutation of {1, . . . ,n}.

Fig. 2. The Axioms Struct-Ax.

it is sufficient to show that the then branches and the else branches are indistinguishable, when
giving to the adversary the value of the condition (i.e. b on the left and b ′ on the right). We can do
better, by considering simultaneously several terms starting with the same condition. We also allow
some terms ®w and ®w ′ on the left and right to stay untouched. This yield the axiom:

®w,b, (ui)i ∼ ®w
′,b ′, (u ′i)i ®w,b, (vi)i ∼ ®w

′,b ′, (v ′i)i

®w, (if b then ui else vi)i ∼ ®w
′, (if b ′ then u ′i else v

′
i)i

This is the only axiom with more than one premise. To get decidability, we had to restrict this rule,
by only considering instances where the conditions b and b ′ are if-free (i.e. in T(F\if,N)). This
restriction is used in the decidability proof, but might be unnecessary: decidability or undecidability
with the unrestricted rule is open.

Definition 2. A term t is if-free if it does not use the if_then_else_, i.e. t ∈ T (F\if,N).

We let CS be the rule:

®w,b, (ui)i ∼ ®w
′,b ′, (u ′i)i ®w,b, (vi)i ∼ ®w

′,b ′, (v ′i)i

®w, (if b then ui else vi)i ∼ ®w
′, (if b ′ then u ′i else v

′
i)i

CS when b,b ′ ∈ T (F\if,N),

We quickly describe the other structural axioms: Perm allows to change the terms order, using
the same permutation on both sides of ∼; Restr is a strengthening axiom, stating that to prove
that ®u ∼ ®v , it is sufficient to show the stronger formula ®u, t ∼ ®v, t ′; R allows to replace a term s by
any R-equal term t ; the function application axiom FA states that to prove that two images are
indistinguishable, it is sufficient to show that the arguments are indistinguishable (we restrict this
axiom to the case where f is in F\0); Sym states that indistinguishability is symmetrical; and Dup

states that giving twice the same value to an adversary is equivalent to giving it only once. All the
above axioms are computationally valid.

Proposition 1. The axioms given in Figure 2 are valid in any computational model in which the

functional correctness assumptions R1 on pairs and encryptions hold.

Proof. The proof is straightforward, and can be found in [8]. □

Note that the validity of the axioms in Figure 1 follows from the validity of the R rule of Figure 2
(except for the R1 axioms, which do not hold in any computational model).

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:10 Adrien Koutsos

Restrictions. As mentioned earlier, we restricted some axioms to achieve decidability. For example,
the CS and FA axioms presented above are weaker than the corresponding axioms in [8]: in the CS
axiom, we forbid the terms b and b ′ from containing conditions; and we do not allow FA applications
on the 0 function symbols. These are technical restrictions which are used in the proof, but might
be unnecessary.

3.2 Cryptographic Assumptions

We now show how cryptographic assumptions are translated into atomic axioms. In the compu-
tational model, the security of a cryptographic primitive is expressed through a game between a
challenger and an attacker (which is a PPTM) that tries to break the primitive.
We present the ind-cca2 game (Indistinguishability against Chosen Ciphertexts Attacks [13]).

First, the challenger computes a public/private key pair (pk(n), sk(n)) (using a uniformly sampled
nonce n of length η), and sends pk(n) to the attacker. The adversary then has access to two oracles:
• A left-right oracle Ob

LR
(n) that takes two messagesm0,m1 as input and returns {mb }

nr
pk(n)

,
where b is an internal bit uniformly sampled at the beginning by the challenger and nr is a
fresh nonce.
• A decryption oracle Odec(n) that, givenm, returns dec(m, sk(n)) ifm was not the result of a
previous OLR oracle query, and length ofm zeros otherwise.

Remark that the two oracles have a shared memory. For simplicity, we omit the length constraints
of these oracles (we give them in Appendix B). In this game, the adversary A tries to guess the bit
b, and the advantage Advcca2

A
(η) of A against this game is the quantity:�� Pr(n : AO1

LR
(n),Odec(n) (1η) = 1

)
− Pr

(
n : AO0

LR
(n),Odec(n) (1η) = 1

) ��
An encryption scheme is ind-cca2 if the advantage Advcca2A

(η) of any adversaryA is negligible in η.
The ind-cca1 game is the restriction of this game where the adversary cannot call Odec after having
called OLR. An encryption scheme is ind-cca1 if Advcca1A

(η) is negligible for any adversary A.

cca1 Axiom. Before introducing the cca2 axioms, we recall informally the cca1 axioms from [8].
First, we define a syntactic property on secret keys used as a side-condition of the cca1 axioms:

Definition 3. For every ground term t , we say that a secret key sk(n) appears only in decryption

position in t if it appears only in subterms of t of the form dec(_, sk(n)).

We now define the cca1 axioms:

Definition 4. cca1 is the recursive set of atomic axioms:
®w, t[{u}nr

pk(n)
] ∼ ®w, t[{v}nr

pk(n)
]

where t ,u,v, ®w are ground, and:
• nr does not appear in t ,u,v, ®w .
• n appears only in pk(n) or sk(n) in t ,u,v, ®w .
• sk(n) does not appear in t , ®w , and sk(n) appears only in decryption position in u,v .
• the terms u and v are always of the same length (see Remark 1 below).

Proposition 2. cca1 is valid in every computational model where the encryption scheme interpre-

tation is ind-cca1.

Proof. (sketch) For simplicity, we assume that ®w is empty. The proof is a reduction that, given
a PPTM A that can distinguish between t[{u}nr

pk(n)
] and t[{v}nr

pk(n)
], builds a winning adversary

against the ind-cca1 game.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:11

We define the adversary. First, it computes [[u]] and [[v]], calling the decryption oracle if necessary.
It then sends them to the challenger who answers c , which is either [[{u}nr

pk(n)
]] or [[{v}nr

pk(n)
]]. Observe

that we need the freshness hypothesis on nr as it is drawn by the challenger and the adversary
cannot sample it. Using c , the adversary computes [[t[c]]], which it can do because the secret key
does not appear in t , and then returns the bit A([[t[c]]]). The advantage of the adversary is exactly
the advantage of A, which we assumed non-negligible, hence the adversary wins the game. □

Remark 1. In the cca1 axiom, we did not specify how we ensure that u and v are always of
the same length. Since the length of a term depends on implementation details (e.g. how the
pair ⟨_ , _⟩ implemented), we let the user supply implementation assumptions, but require that
these assumptions satisfy some properties (this is necessary to get decidability).4 To simplify the
presentation, we omit all length constraints for now. We describe them later, in Appendix B.2. ⋄

cca2 Axiom. To extend this axiom to the ind-cca2 game, we need to deal with calls to the
decryption oracle performed after some calls to the left-right oracle. For example, consider the
case where one call (u,v) was made. Let α ≡ {u}nr

pk(n)
and α ′ ≡ {v}nr

pk(n)
(where ≡ denotes syntactic

equality) be the result of the call on, respectively, the left and the right. A naive first try could
be to state that decryptions are indistinguishable. That is, if we let s ≡ t[α] and s ′ ≡ t[α ′], then
dec(s, sk(n)) ∼ dec(s ′, sk(n)). But this is not valid: for example, take u ≡ 0,v ≡ 1, t ≡ д([]) (where
[] is a hole variable). Then the adversary can, by interpreting д as the identity function, obtain a
term semantically equal to 0 on the left and 1 on the right. This allows him to distinguish between
the left and right cases.

We prevent this by adding a guard checking that we are not decrypting α on the left (resp. α ′ on
the right): if not, we return the decryption dec(s, sk(n)) (resp. dec(s ′, sk(n))) asked for, otherwise
we return a dummy message 0(dec(s, sk(n))) (resp. 0(dec(s ′, sk(n)))).

Definition 5. Let α ≡ {u}nr
pk(n)

and α ′ ≡ {v}nr
pk(n)

, then ccass is the recursive set of atomic axioms:

®w, t[α], if eq(t[α],α) then 0(dec(t[α], sk(n)))
else dec(t[α], sk(n))

∼ ®w, t[α ′], if eq(t[α ′],α ′) then 0(dec(t[α ′], sk(n)))
else dec(t[α ′], sk(n))

under the side-conditions of Definition 4, i.e. t ,u,v, ®w are ground, and:
• nr does not appear in t ,u,v, ®w .
• n appears only in pk(n) or sk(n) in t ,u,v, ®w .
• sk(n) does not appear in t , ®w , and sk(n) appears only in decryption position in u,v .
• the terms u and v are always of the same length.

This axiom is valid whenever the encryption is ind-cca2.

Proposition 3. ccass is valid in every computational model where the encryption scheme interpre-

tation is ind-cca2.

We do not prove validity of these axioms yet, as we actually use an extended version cca2 of
ccass (given in Appendix B) where:
• We allow for any number of calls to the left-right oracle, by adding a guard for each call. We
use extra syntactic side-conditions to remove superfluous guards.
• The cca2 axiom schema is closed under alpha-renaming of names in N .
• We restrict t to be without if_then_else_ and 0(_). This is needed in the completeness proof.

4Basically, we add to the cca1 axioms a premise ensuring that the lengths are the same, which we let the user under-
axiomatize (in a restricted manner) through a length function Length(_) and a length equality predicate EQL(_, _).

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:12 Adrien Koutsos

• Finally, the axioms allow for an arbitrary number of public/private key pairs to be used
simultaneously (e.g., with keys pk(n) and pk(n′), we have the instance {A}n0

pk(n)
, {B}n1

pk(n′)
∼

{C}n0
pk(n)
, {D}n1

pk(n′)
), and an instance of the axiom can contain any number of interleaved

left-right and decryption oracles calls. 5

3.3 Transitivity

The last point is what allows us to eliminate transitivity in many examples. E.g, consider four
encryptions, two of them (α and γ) using the public key pk(n), and the other two (β and δ) using
the public key pk(n′):

α ≡ {A}n0
pk(n)

β ≡ {B}n1
pk(n′)

γ ≡ {C}n0
pk(n)

δ ≡ {D}n1
pk(n′)

Then the following formula is a valid instance of the cca2 axioms on, simultaneously, pk(n) and
pk(n′):

α , β ∼ γ ,δ
cca2(pk(n), pk(n′))

However, proving the above formula using cca2 only on one key at a time, as in [8], requires
transitivity:

α , β ∼ α ,δ
cca2(pk(n′))

α ,δ ∼ γ ,δ
cca2(pk(n))

α , β ∼ γ ,δ

When Transitivity is Needed. But, not surprisingly, transitivity can be necessary to complete a
proof. Notably, this is the case when there are key-usability issues. For example, consider the toy
scenario were an agent sends a message, say 0, encrypted with a key pk(n), and then encrypts
the corresponding secret key sk(n), with some long-term key pk(nlt). To prove the secrecy of the
message sent, consider to goal:

{0}n
1
e

pk(n)
, {sk(n)}

n
2
e

pk(nlt)
∼ {1}n

1
e

pk(n)
, {sk(n)}

n
2
e

pk(nlt)

where we changed the message encrypted from 0 to 1. We cannot apply cca2 on pk(n) because
the secret key appears outside a decryption position. And we cannot apply cca2 only on the key
pk(nlt), because the first encryption is different on the left and the right (0 vs 1). There seems to
be no proof using axioms Ax. But there is a proof if we add transitivity (given in Figure 3), by
replacing the encrypted key sk(n) by sk(n′) (where n′ is a fresh name) using cca2 on pk(nlt), and
then applying cca2 on key pk(n).

3.4 Comments and Examples

Our set of axioms is not complete w.r.t. the computational interpretation semantics. Indeed, being
so would mean axiomatizing exactly which distributions (computable in polynomial time) can be
distinguished by PPTMs , which is unrealistic and would lead to undecidability.
Still, our axioms are expressive enough to complete concrete proofs of security. We illustrate

this on three examples: a proof of the simple formula from Example 1, a proof of a more complex
formula and a proof of the security of one round of the nsl protocol [32]. Of course, such proofs
can be found automatically using our decision procedure.
In this section, and everywhere else in the paper, we describe derivations starting from the

conclusion, and moving up the proof tree.
5Axioms for the ind-cca2 cryptographic assumption have already appeared in the literature, in [6]. These axioms are only
for a single call to the left-right oracle, and a single key, while our axiom schema is more general. However, note that a
more general axiom is not needed if you have transitivity (as in [6]), as we explain in Section 3.3.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:13

{0}n
1
e

pk(n)
, {sk(n)}

n
2
e

pk(nlt)
∼

cca2(pk(nlt))
{0}n

1
e

pk(n)
, {sk(n′)}

n
2
e

pk(nlt)

∼ cca2(pk(n))

{1}n
1
e

pk(n)
, {sk(n′)}

n
2
e

pk(nlt)
∼

cca2(pk(nlt))
{1}n

1
e

pk(n)
, {sk(n)}

n
2
e

pk(nlt)

Fig. 3. Derivation using the transitivity rule.

{0}nA
pkA
, pkB , nB , skB , n

∼ {1}nA
pkA
, pkB , nB , skB , n

cca2(pkA, skA)

{{0}nA
pkA
}
nB
pkB
, skB , n

∼ {{1}nA
pkA
}
nB
pkB
, skB , n

FA

{{0}nA
pkA
}
nB
pkB
, dec(t0, skB), n

∼ {{1}nA
pkA
}
nB
pkB
, dec(t1, skB), n

FA
(2) + Dup

eq(t0, {{0}nA
pkA
}
nB
pkB
), ⟨dec(t0, skB) , n⟩

∼

eq(t1, {{1}nA
pkA
}
nB
pkB
), ⟨dec(t1, skB) , n⟩

FA
(3) + Dup

{{0}nA
pkA
}
nB
pkB
, s0, n

∼ {{1}nA
pkA
}
nB
pkB
, s1, nA

cca2(pkB , skB)

eq(t0, {{0}nA
pkA
}
nB
pkB
), ⟨s0 , n⟩

∼

eq(t1, {{1}nA
pkA
}
nB
pkB
), ⟨s1 , nA⟩

FA
(3) + Dup

if eq(t0, {{0}nA
pkA
}
nB
pkB
) then ⟨dec(t0, skB) , n⟩

else ⟨s0 , n⟩

∼ if eq(t1, {{1}nA
pkA
}
nB
pkB
) then ⟨dec(t1, skB) , n⟩

else ⟨s1 , nA⟩

CS

⟨dec(t0, skB) , n⟩ ∼ if eq(t1, {{1}nA
pkA
}
nB
pkB
) then ⟨dec(t1, skB) , n⟩

else ⟨dec(t1, skB) , nA⟩

R

Remark: in the right branch, when we apply the cca2 axiom to:
{{0}nA

pkA
}
nB
pkB
, s0, n ∼ {{1}nA

pkA
}
nB
pkB
, s1, nA

we need to alpha-rename nA by n on the right side of the formula. This is not a problem, as the
extended cca2 axiom schema, given in Appendix B, is closed under alpha-renaming of names.

Fig. 4. Derivation of ϕ.

Example 2. We prove the formula below, where д() ∈ G is an adversarial function symbol:
if д() then n0 else n1 ∼ n

First, we introduce a condition д() on the right to match the structure of the left side using R.
Then, we split the proof in two using the CS axiom. We conclude using the reflexivity modulo
alpha-renaming axiom (this axiom is subsumed by cca2, therefore we do not include it in Ax).

д(), n0 ∼ д(), n
Refl

д(), n1 ∼ д(), n
Refl

if д() then n0 else n1 ∼ if д() then n else n

CS

if д() then n0 else n1 ∼ n

R
⋄

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:14 Adrien Koutsos

Example 3 (Introduction on One Side). We give here an example of formula that cannot be proved
without introducing a condition in a CS application and applying the cca2 axiom on different
public/private key pair in each branch. We use the keys pkA ≡ pk(n0), skA ≡ sk(n0), pkB ≡ pk(n1)
and skB ≡ sk(n1). Let tm ≡ д({{m}nA

pkA
}
nB
pkB
). Consider the formula below:

ϕ ≡ ⟨dec(t0, skB) , n⟩ ∼ if eq(t1, {{1}nA
pkA
}
nB
pkB
) then ⟨dec(t1, skB) , n⟩

else ⟨dec(t1, skB) , nA⟩

We would like to apply the cca2 axiom. The problem is that, on the else branch of the right term,
the encryption randomness nA is leaked. Therefore the only way to prove the else branch is to
use the fact that the decryption dec(t1, skB) is under the correct guard and to apply cca2 on keys
(pkB , skB). For the then branch, we can directly use the cca2 axioms on keys (pkA, skA). Let sm be
the following term:

sm ≡ if eq(tm , {{m}
nA
pkA
}
nB
pkB
) then 0(dec(tm , skB)) else dec(tm , skB)

We give the derivation of ϕ in Figure 4. ⋄

Example 4 (Proof of nsl). We consider a simple setting with an initiator A and a different
respondent B playing one session each, and no key server (see Figure 5).

We model this in the logic. First, we let pk
A
≡ pk(nA) and skA ≡ sk(nA) be the public/private key

pair of agent A (we define similarly (pk
B
, skB)). Since A does not wait for any input before sending

its first message, we put it into the initial frame:

ϕ0 ≡ pk
A
, pk

B
, {⟨nA , A⟩}

n0
pkB

Then, both agents wait for a message before sending a single reply. When receiving xA (resp. xB),
the answer of agent A (resp. B) is expressed in the logic as follows:

tA[xA] ≡ if eq(π1(dec(xA, skA)), nA) then

if eq(π2(π2(dec(xA, skA))),B) then

{π1(π2(dec(xA, skA)))}n2
pk

B

tB[xB] ≡ if eq(π2(dec(xB, skB)),A) then

{⟨π1(dec(xB, skB)) , ⟨nB , B⟩⟩}n1
pk

A

During an execution of the protocol, the adversary has several choices. First, it decides whether to
interact with A or B first. We focus on the case where it first sends a message to B (the other case
is similar). Then, it can honestly forward the messages or forge new ones. E.g., when sending the
first message to B, it can either forward A’s message {⟨nA , A⟩}n0

pkB
or forge a new message. We are

going to prove the security of the protocol in the following case (the other cases are similar):
• the first message, sent to B, is honest. Therefore we take xB ≡ {⟨nA , A⟩}n0

pkB
, and B answers:

tB[xB] =R {⟨nA , ⟨nB , B⟩⟩}n1
pk

A

• the second message, sent to A, is forged. Therefore we take xA ≡ д(ϕ1), where ϕ1 ≡
ϕ0, tB[xB]. As, a priori, nothing preventsд(ϕ1) from being equal to tB[xB], we use the condition
eq(д(ϕ1), tB[xB]) to ensure that this message is forged. The answer from A is then:

s ≡ if eq(д(ϕ1), tB[xB]) then 0 else tA[д(ϕ1)] (1)

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:15

{⟨nA , A⟩}
n0
pkB

{⟨nA , ⟨nB , B⟩⟩}
n1
pk

A

{nB}
n2
pk

B

A B

Fig. 5. The nsl protocol.

We show the secrecy of the nonce nB: we let t ′
B
[xB] (resp. s ′) be the term tB[xB] (resp. s) where we

replaced all occurrences of nB by 0. For example, t ′
B
[xB] =R {⟨nA , ⟨0 , B⟩⟩}n1

pk
A

. This yields the goal:

ϕ0, tB[xB], s ∼ ϕ0, t ′B[xB], s
′ (2)

We let δ be the guarded decryption that will be used in the cca2 axiom:
δ ≡ if eq(д(ϕ1), tB[xB]) then 0(dec(д(ϕ1), skA))

else dec(д(ϕ1), skA)

(3)

and sδ be the term s where all occurrences of dec(д(ϕ1), skA) have been replaced by δ . We have
s =R sδ . We also introduce shorthands for some subterms of sδ : we let aδ , bδ and eδ be the terms
eq(π1(δ), nA), eq(π2(π2(δ))),B) and {π1(π2(δ))}n2

pk
B

. We define δ ′, s ′δ ′,a
′
δ ′,b

′
δ ′ and e

′
δ ′ similarly.

We then rewrite s and s ′ into sδ and s ′δ ′ using R. Then we apply FA several times, first to
deconstruct sδ and s ′δ ′ , and then to deconstruct aδ ,bδ and a′δ ′,b

′
δ ′ . Finally, we use Dup to remove

duplicates, and we apply cca2 simultaneously on key pairs (pk
A
, skA) and (pkB, skB) (we omit here

the details of the syntactic side-conditions that have to be checked):

ϕ0, tB[xB], nA,δ , eδ ∼ ϕ0, t ′
B
[xB], nA,δ ′, e ′δ ′

cca2

ϕ0, tB[xB],aδ ,bδ , eδ ∼ ϕ0, t ′
B
[xB],a′δ ′,b

′
δ ′, e

′
δ ′
(FA + Dup)∗

ϕ0, tB[xB], sδ ∼ ϕ0, t ′
B
[xB], s ′δ ′

(FA + Dup)∗

ϕ0, tB[xB], s ∼ ϕ0, t ′
B
[xB], s ′

R
⋄

Remark 2. The process of computing the formula in (2) from the protocol description can be done
automatically, using a simple procedure similar to the folding procedure from [8]. The formula
in (2) has already been split between the honest and dishonest cases using the case study axiom
CS (we omit the CS applications to keep the proof readable). For example, the term in (1) is the
“else” branch of a CS application on condition eq(д(ϕ1), tB[xB]) (which does not contain nested
conditions, as required by the CS side-condition). ⋄

3.5 Comparison with Other Axiomatizations

We compare our core axiomatization (i.e. excluding cryptographic axioms) with the one introduced
in [6].6 Because we want a decidable axiomatization, we restricted or removed some axioms.
Therefore, unsurprisingly, the axiomatization in [6] is more powerful that ours.

Some of our axioms are restricted versions of the axioms in [6]. First, the IfBranch axiom
of [6] is exactly our CS axiom, without the restriction to if-free conditions. Second, they used a
6There are other axiomatization of the BC indistinguishability logic in the literature, notably [34]. While the core axioms
presented in [34] and [6] are different, they have the same expressive power (we refer the reader to [6] for equivalence
proofs between different axiomatizations). The only exception is the case disjunction axiom of [34], which we believe cannot
be expressed using [6]’s axiomatization.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:16 Adrien Koutsos

axiom EqCong, which states that the relation = (which is syntactic sugar for eq(_, _) ∼ true) is a
congruence relation:

eq(x ,x) ∼ true eq(x ,y) ∼ eq(y,x)

eq(x ,y) ∼ true eq(y, z) ∼ true

eq(x , z) ∼ true

®u,C[y] ∼ ®v eq(x ,y) ∼ true

®u,C[x] ∼ ®v

This axiom (actually axioms) allow to do equational reasoning inside the logic, using the ∼ predicate
and the eq(_, _) function symbol. Our version of this axiom, R, does the equational reasoning outside
the logic, using a term rewriting system =R . This allows us to use rewriting, while avoiding the
general congruence axioms, which are problematic. Indeed, handling automatically the equality
transitivity axiom presents the same problem as for the ∼ transitivity axiom: it introduces an
arbitrarily large intermediate term z. With our TRS based axiom R, we have better control over the
rewritings used in proofs, which will allow us to bound their size. But the EqCong axiom is, a priori,
more general than R, as it allows to use the other ∼ axioms to prove an equality eq(x ,y) ∼ true,
while we only allow for a fixed set of equalities in =R .

Finally, some axioms presented in [6] are missing from our axiomatization:

®u ∼ ®v ®v ∼ ®w
®u ∼ ®w

Trans
true ≁ false

TFDist
®u ∼ ®v if n < st(®u), n′ < st(®v)

®u, n ∼ ®v, n′
FreshInd

if n < st(t)
eq(n, t) ∼ false

FreshNEq eq(if b then u[b] else v[b],

if b then u[true] else v[false])

∼ true
IfEval

We already explained why we excluded the transitivity axiom. The TFDist axiom is simple, and
could maybe be added to our set of axioms. Since we closed our atomic axioms under alpha-
renaming, we do not need FreshInd: indeed, we can just keep the names n and n

′ throughout
the proof until we apply an atomic axiom.7 FreshNEq states that if n is independent from t (i.e.
n < st(t)), then the probability that n and t are equal is negligible. We do not know if decidability is
preserved if we add this axiom. Finally, IfEval allows to replace a condition by true (resp. false)
in the then (resp. else) branch of an if_then_else_. Actually, the authors of [6] shows that, using
IfEval and the other axioms, the following rule is admissible:

if eq(u,v) then t[v] else s ∼ w

if eq(u,v) then t[u] else s ∼ w (4)
This means that when we rewrite a term t into a term s , we can use additional equalities coming
from the conditions we are in the then branch of. Moreover, the equality condition eq(u,v) could
have been introduced earlier, e.g. using the rewriting t[u] =r if eq(u,v) then t[u] else t[u]. For
these reasons, automatically handling the rule in (4) seems very challenging.

4 THE TERM REWRITING SYSTEM R

In this section, we explain how we orient =R to obtain a convergent (terminating and confluent)
term rewriting system. First, we recall the definition of a Lexicographic Path Ordering [26].

Definition 6. Let ≻f be a precedence over function symbols (i.e. an order over function symbols).
The lexicographic path ordering ≻ associated with ≻f is the relation defined by:

s = f (s1, . . . , sn) ≻ t = д(t1, . . . , tm) iff

∃i ∈ J1,nK s.t. si ⪰ t

or f = д ∧ ∀j ∈ J1,mK, s ≻ tj ∧ s1, . . . , sn ≻lex t1, . . . , tn

or f ≻f д ∧ ∀j ∈ J1,mK, s ≻ tj

7Actually, we believe that Ax ∪ FreshInd is equivalent to Ax, though we did not prove it.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:17

where ≻lex is the lexicographic ordering obtained from ≻.
Proposition 4 (Dershowitz, Jouannaud [26]). If ≻f is a total precedence, then the corresponding

LPO ≻ is a reduction ordering: ≻ is a well-founded order closed under substitutions and context

application. Moreover, ≻ is a total ordering on ground terms.

Let ≻f be a total precedence on F ,N such that if_then_else_ is the smallest element (elements
ofN are treated as function symbols of arity zero). We define the lexicographic path ordering ≻ on
ground terms using ≻f .

Definition 7. Let ≻ be the lexicographic path ordering on T(F ,N) using precedence ≻f .
Now, we want to have some leeway in the ordering of terms. We do this by letting ≻u be an

arbitrary total order on if-free conditions that are R≤3-irreducible. We define the extension ≻lpou of
≻u to arbitrary ground conditions. Basically, ≻lpou compares if-free R≤3-irreducible conditions using
≻u ; conditions that are not if-free or not R≤3-irreducible are compared using ≻; and we choose the
behavior of ≻lpou on cross-cases (i.e. one if-free R≤3-irreducible condition and one not if-free or not
R≤3-irreducible) so as to have a pre-order.

Definition 8. For any total ordering ≻u on ground if-free R≤3-irreducible terms, we let ≻lpou be
the relation defined on ground terms by:

b ≻
lpo

u a =

b ≻u a if a and b are if-free and R≤3-irreducible
b ≻ a if a and b are not if-free or not R≤3-irreducible
true if a is if-free and R≤3-irreducible, and b is not
false if b is if-free and R≤3-irreducible, and a is not

Note that, since ≻ and ≻u are total orders on ground terms, ≻lpou is also a total order on ground
terms. We then order R4 using ≻lpou .

Definition 9. For any total ordering ≻u on ground if-free R≤3-irreducible terms, we let→R≻u4
be

the ordering of R4 on ground terms defined by:

if b then (if a then x else y) else z → if a then (if b then x else z)

else (if b then y else z)

(when b ≻lpou a)

if b then x else (if a then y else z) → if a then (if b then x else y)

else (if b then x else z)

(when b ≻lpou a)

Since ≻lpou is a total order on ground terms, any ground instance of the equalities in R4 is ordered
by→R≻u4

, from left to right or right to left.
Moreover, we let→R≻u =→R1 ∪ →R2 ∪ →R3 ∪ →R≻u4

.
The term rewriting system →R≻u is an orientation of the rules given in Figure 1 on ground

terms. When the ordering ≻u is irrelevant, we write→R instead of→R≻u . We state the convergence
theorem.

Theorem 2. For all ≻u , the term rewriting system→R≻u defined on ground terms is a convergent

orientation of R, i.e. =R and (→R≻u ∪ →
−1
R≻u)

∗
are the same relations over the set of ground terms, and

→∗R≻u is a convergent relation.

Observe that this result subsumes Theorem 1.

Proof. Using Newman’s lemma [29], we only need to prove that→R≻u is locally confluent and
terminating.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:18 Adrien Koutsos

→R′2

{
f (®u, ifb (x , y), ®v) → ifb (f (®u,x , ®v) , f (®u,y, ®v)) (f ∈ F\if)

→R′3

iftrue(x , y) → x

if
false
(x , y) → y

ifb (x , x) → x

ifb ((ifb (x , y)) , z) → ifb (x , z)

ifb (x , (ifb (y , z))) → ifb (x , z)

→R0
4

if b then (if a then x else y) else z → if a then (if b then x else z) else (if b then y else z)

(b ≻ a, a,b not if-free or not R≤3-irreducible)
if b then x else (if a then y else z) → if a then (if b then x else y) else (if b then x else z)

(b ≻ a, a,b not if-free or not R≤3-irreducible)

→R1
4

if b then (ifa (x , y)) else z → ifa ((if b then x else z) , (if b then y else z))

(b not if-free or not R≤3-irreducible)
if b then x else (ifa (y , z)) → ifa ((if b then x else y) , (if b then x else z))

(b not if-free or not R≤3-irreducible)

→R2
4

{
ifb ((ifa (x , y)) , z) → ifa ((ifb (x , z)) , (ifb (y , z))) (b ≻u a)

ifb (x , (ifa (y , z))) → ifa ((ifb (x , y)) , (ifb (x , z))) (b ≻u a)

→Ri
{
if b then u else v → ifb (u , v) (b if-free and R≤3-irreducible)

Fig. 6. The Relations→R′2 ,→R′3 ,→R0
4
,→R1

4
,→R2

4
and→Ri used for termination

Local Confluence (see Appendix A for details). We show that all critical pairs are joinable. Normally,
we would rely on some automated checker for local confluence. Unfortunately, as we rely on a
side-condition to orient R4 (using a LPO), writing down the rules in a tool is not straightforward. By
consequence, we manually checked that every critical pair is joinable. This is done in Appendix A.

Termination. To prove termination, we let Fterm be the signature F to which we added a symbol
ifb (,) for every if-free R≤3-irreducible condition b:

Fterm = F ∪
{
ifb (,) | b ∈ T (F\if,N),b is a R≤3-irreducible condition

}
This yields an infinite countable signature. We extend the precedence ≻f to Fterm ∪ N by having
the function symbols {ifb (,)} be smaller than all the other function symbols, and ifb (,) ≻f ifa(,)
if and only if b ≻u a. Observe that the extended precedence is still a total order.
We then consider the term rewriting system→R′ on T(Fterm,N), defined by removing→R4

from→R and adding all the rules in Figure 6:

→R′=→R1 ∪ →R2 ∪ →R′2 ∪ →R3 ∪ →R′3 ∪ →R0
4
∪ →R1

4
∪ →R2

4
∪ →Ri

One can easily (but tediously) check that ≻ is compatible with→R′ : the only non-trivial cases
are the cases in→R2 (the first rule is decreasing because f ≻f if_then_else_, the second rule using
the lexicographic order), in→R′2 (same arguments than for R2) and the cases in→R0

4
,→R1

4
,→R2

4
(where we use the side conditions b ≻ a, b ≻u a . . .).

Since ≻ is a lexicographic path ordering we know that it is total and well-founded on ground-
terms. Therefore→R′ is a terminating term rewriting systems on ground terms.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:19

u v

u ′ v ′

∗

R

!Ri
∗

R′

!Ri

Conventions: black edges stand for universal quantifications, red edges for existentials.

Fig. 7. Diagram Used in the Proof of Theorem 2.

To conclude, one just has to observe that for every ground terms u,v and integer n, if u →(n)R v

then there exist u ′,v ′ such that u →!
Ri u

′, v →!
Ri v

′ and u ′ →(≥n)R′ v ′. We depict this graphically
in the diagram in Figure 7 We prove this easily by induction on n. Since→R′ is terminating on
ground terms, and since any infinite sequence for→R can be translated into an infinite sequence
for→R′ , it follows that→R is terminating on ground terms. □

Contexts. As usual, a context D[]®x (written D when there is no confusion) on a signature S is a
term in T(S, {[]y | y ∈ ®x } where ®x are distinct special variables called holes. Given a context D[]®x
and terms ®t with |®t | = n, we let D[®t] be the term obtained from D[]®x by substituting all occurrences
of the hole []xi by ®t i (for every i).
Often, we want to distinguish between holes that contain “internal” conditions, and holes that

contain terms appearing at the leaves. To do this we introduce the notion of if-context. An if-context
D[]®x ⋄®y is a context using only the if_then_else_ function symbol and two sets of holes variables: ®x
is for conditions and ®y is for leaves.

Definition 10. For all distinct variables ®x , ®y , an if-context D[]®x ⋄®y is a context in:

T(if_then_else_, {[]z | z ∈ ®x ∪ ®y })

such that for all position p, D |p ≡ if b then u else v implies:
• b ∈ {[]z | z ∈ ®x }
• u,v < {[]z | z ∈ ®x }

Example 5. Let ®x = x1,x2,x3 and ®y = y1,y2,y3,y4, we can define the if-context D[]®x ⋄®y :

if []x1 then

(
if []x2 then if []x1 then []y1 else []y2

else []y3

)
else

(
if []x3 then []y2 else []y4

)
⋄

The normal form of term t by →R≻u is of the form C[®b ⋄ ®u], where ®b, ®u are if-free terms in
R-normal form. We are going to call ®b the conditions of t ↓R≻u , and ®u its leaves.

Definition 11. For every if-free terms ®b, ®u, if t is the term C[®b ⋄ ®u] then we let cond-st(t) be the
set of conditions ®b, and leave-st(t) be the set of terms ®u.

Example 6. Let b1,b2, t1, t2, t3 be if-free terms, and let s be the following term (we give the labelled
tree representation of s on the right):

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:20 Adrien Koutsos

if b1 then if b2 then t1 else t2

else t3

b1

b2

t1 t2

t3

Then cond-st(s) = {b1,b2} and leave-st(s) = {t1, t2, t3}. ⋄

Interestingly, the leaves and conditions of t ↓R≻u do not depend on the order ≻u on ground
conditions. Formally:

Proposition 5. Let ≻u and ≻′u be two total orderings on if-free R≤3-irreducible conditions. Then
for every ground term t we have:

leave-st(t ↓R≻u) = leave-st(t ↓R≻′u) and cond-st(t ↓R≻u) = cond-st(t ↓R≻′u)

Proof. Let C,C ′ be two if-contexts such that t ↓R≻u ≡ C[®b ⋄ ®u] and t ↓R≻′u ≡ C
′[®b ′ ⋄ ®u ′] where:

®b = leave-st(t ↓R≻u) ®u = cond-st(t ↓R≻u) ®b ′ = leave-st(t ↓R≻′u) ®u ′ = cond-st(t ↓R≻′u)

We know thatC[®b ⋄ ®u] →∗
R≻
′
u
C ′[®b ′ ⋄ ®u ′]. Since the terms ®b, ®u, ®b ′ and ®u ′ are if-free and in R-normal

form, we can only apply the rules:
if b then x else x → x

if true then x else y → x

if false then x else y → y

if b then (if b then x else y) else z → if b then x else z

if b then x else (if b then y else z) → if b then x else z

if b then (if a then x else y) else z → if a then (if b then x else z)

else (if b then y else z)

(when b ≻lpou a)

if b then x else (if a then y else z) → if a then (if b then x else y)

else (if b then x else z)

(when b ≻lpou a)

Moreover, if a term C1[®a 1 ⋄ ®v 1] can be rewritten in one step into C2[®a 2 ⋄ ®v 2] using one of the
rules above then ®a 2 ⊆ ®a 1 and ®v 2 ⊆ ®v 1. Hence, by induction, ®b ′ ⊆ ®b and ®u ′ ⊆ ®u. Similarly, since
C ′[®b ′ ⋄ ®u ′] →∗R≻u C[®b ⋄ ®u], we get that ®b ⊆ ®b ′ and ®u ⊆ ®u ′. We deduce that ®b ≡ ®b ′ and ®u ≡ ®u ′. □

By consequence, for any termu, the sets leave-st(t ↓R) and cond-st(t ↓R) are always well-defined,
by taking an arbitrary ordering of if-free R≤3-irreducible conditions.

5 MAIN RESULT AND DIFFICULTIES

We let Ax be the conjunction of Struct-Ax and cca2. We now state our main result.

Theorem (Main Result). The following problem is decidable:

Input: A ground formula ®u ∼ ®v .
Question: Is Ax ∧ ®u ≁ ®v unsatisfiable?

We give here an overview of the problems that have to be overcome in order to obtain the
decidability result. Before starting, a few comments. We close all rules under permutations. The
Sym rule commutes with all the other rules, and the cca2 axiom schema is closed under Sym.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:21

Therefore we can remove Perm and Sym from the set of rules. Observe that CS, FA,Dup and cca2
are all decreasing rules, i.e. the premises are smaller than the conclusion. The only non-decreasing
rules are R, which may rewrite a term into a larger one, and Restr, which we eliminate later.
Therefore, to obtain a complete and terminating strategy for Ax, we need to bound the size of the
terms introduced when applying the R rule. The main result of this paper is a characterization of
unnecessary rewritings, which yields a bound on the size of the premises of a useful R application.
We will deduce from this an upper-bound on the minimal proof of a formula, if it exists.

First, we define a way of describing fragments of our logic:

Definition 12. For every formula ϕ, we write P ⊢ ϕ if P is a proof of ϕ.

Definition 13. Let Σ be the set of axiom names, seen as an alphabet. For all L ⊆ Σ∗, we let F(L)
be the fragment of our logic defined by: a formula ϕ is in the fragment iff there exists a proof P
such that P ⊢ ϕ and, for every branch ρ of P , the wordw obtained by collecting the axiom names
along ρ (starting from the root) is in L.

Example 7. The derivations in Example 2 and Figure 4 are, respectively, in the fragments:
F (R · CS · Refl) and F (R · CS · (FA + Dup)∗ · cca2) ⋄

Necessary Introductions. As we saw in Example 2, it might be necessary to use R in the “wrong
direction”, typically to introduce new conditions. A priori, this yields an unbounded search space.
Therefore our goal is to characterize in which situations we need to use R in the “wrong direction”,
and with which instances. We identify two necessary reasons for introducing new conditions.
• First, to match the shape of the term on the other side, like д() in Example 2:

if д() then n0 else n1 ∼ if д() then n else n

if д() then n0 else n1 ∼ n

R

In this case, the introduced condition is exactly the condition that appeared on the other side
of ∼. With more complex examples this may not be the case. Nonetheless, an introduced
condition is always bounded by the condition it matches.
• Second, we might introduce a guard in order to fit to the definition of safe decryptions in the
cca2 axioms, as in (3) in Example 4. Here also, the introduced guard will be of bounded size.
Indeed, guards of dec(s, sk) are of the form eq(s,α) where α is a subterm of s . Therefore, for
a fixed s , there are a bounded number of them, and they are of bounded size.

These two (informally defined) conditions are actually sufficient: any other rewriting is a unneces-
sary detour. We illustrate this on an example:

Example 8 (Cut Elimination). We consider a proof of s ∼ t where the CS rule is applied on two
conditions that have just been introduced by the R rule:

a, s ∼ b, t a, s ∼ b, t

if a then s else s ∼ if b then t else t
CS

s ∼ t R

Here, the condition a and b can be of arbitrary size. Intuitively, this is not a problem since any
proof of a, s ∼ b, t includes a proof of s ∼ t . ⋄

The idea is that we can extract a proof of s ∼ t from any proof of a, s ∼ b, t . We prove this by
showing that Restr applications can be eliminated.

Lemma 1 (Restr Elimination). For any set of atomic axioms U closed under Restr, if P ⊢ ®u ∼ ®v
with P in the fragment:

F ((CS + R + FA + Dup + U + Restr)∗)

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:22 Adrien Koutsos

then there exists P ′ such that P ′ ⊢ ®u ∼ ®v and P ′ contains no Restr applications. Moreover:

• the height of P ′ is no larger than the height of P .
• if P is in a fragment F(L) where L is closed by sub-words then P ′ is in F(L).

Proof. We do a proof by induction on the height of the derivation P of ®u ∼ ®v . More precisely,
we prove that for any height n and formula ®u ∼ ®v , for any derivation P of ®u ∼ ®v in the fragment:

F ((CS + R + FA + Dup + U + Restr)∗)

such that P is of height n, there exists a derivation P ′ with no Restr of ®u ∼ ®v of height no larger
than n.
Assume that we have a derivation P of ®u ∼ ®v where the last rule applied is Restr:

®u, ®t ∼ ®v, ®s

®u ∼ ®v
Restr

We discriminate on the second last rule applied:
• If it is a atomic axiom in U, we conclude using the fact that U is closed under Restr.
• If it is a FA axiom and ®t is not involved in this function application then P is of the form:

.... (A)
®u, ®u ′, ®t ∼ ®v, ®v ′, ®t ′

f (®u), ®u ′, ®t ∼ f (®v), ®v ′, ®t ′
FA

f (®u), ®u ′ ∼ f (®v), ®v ′
Restr

To conclude, we apply the induction hypothesis to extract a proof of ®u, ®u ′ ∼ ®v, ®v ′ in the
wanted fragment from (A). We conclude by applying the FA rule:

.... (A)
®u, ®u ′, ®t ∼ ®v, ®v ′, ®t ′

®u, ®u ′ ∼ ®v, ®v ′
Restr

ind. hyp.
=⇒

.... (A
′)

®u, ®u ′ ∼ ®v, ®v ′
apply FA

=⇒

.... (A
′)

®u, ®u ′ ∼ ®v, ®v ′

f (®u), ®u ′ ∼ f (®v), ®v ′
FA

• If it is a FA axiom and ®t is involved in this function application then P is of the form:
.... (A)

®u, ®u ′, ®u ′′ ∼ ®v, ®v ′, ®v ′′

®u, ®u ′, f (®u ′′) ∼ ®v, ®v ′, f (®v ′′)
FA

®u ∼ ®v
Restr

By applying the induction hypothesis, we extract a proof of ®u ∼ ®v in the wanted fragment:
.... (A)

®u, ®u ′, ®u ′′ ∼ ®v, ®v ′, ®v ′′
ind. hyp.
=⇒

.... (A
′)

®u ∼ ®v

• If it is CS:
.... (A)

®w 0, ®w 1,b, (ui)i ∈I∪J ∼ ®w
′
0, ®w

′
1,b
′, (u ′i)i ∈I∪J

.... (B)
®w 0, ®w 1,b, (vi)i ∈I∪J ∼ ®w

′
0, ®w

′
1,b
′, (v ′i)i ∈I∪J

®w 0, ®w 1, (if b then ui else vi)i ∈I∪J ∼ ®w
′
0, ®w

′
1, (if b

′
then u ′i else v

′
i)i ∈I∪J

CS

®w 0, (if b then ui else vi)i ∈I ∼ ®w
′
0, (if b

′
then u ′i else v

′
i)i ∈I

Restr

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:23

We apply the induction hypothesis twice:
.... (A)

®w 0, ®w 1,b, (ui)i ∈I∪J ∼ ®w
′
0, ®w

′
1,b
′, (u ′i)i ∈I∪J

®w 0,b, (ui)i ∈I ∼ ®w
′
0,b
′, (u ′i)i ∈I

Restr

ind. hyp.
=⇒

.... (A
′)

®w 0,b, (ui)i ∈I ∼ ®w
′
0,b
′, (u ′i)i ∈I

.... (B)
®w 0, ®w 1,b, (vi)i ∈I∪J ∼ ®w

′
0, ®w

′
1,b
′, (v ′i)i ∈I∪J

®w 0,b, (vi)i ∈I ∼ ®w
′
0,b
′, (v ′i)i ∈I

Restr

ind. hyp.
=⇒

.... (B
′)

®w 0,b, (vi)i ∈I ∼ ®w
′
0,b
′, (v ′i)i ∈I

We obtain the derivation:
.... (A

′)

®w 0,b, (ui)i ∈I ∼ ®w
′
0,b
′, (u ′i)i ∈I

.... (B
′)

®w 0,b, (vi)i ∈I ∼ ®w
′
0,b
′, (v ′i)i ∈I

®w 0, (if b then ui else vi)i ∈I ∼ ®w
′
0, (if b

′
then u ′i else v

′
i)i ∈I

CS

• The Dup and R axioms are trivial to handle.
Remark that in the local proof rewritings above, we never changed the order of the rule applications,
but only removed some rules. It follows that if P is in a fragment F(L) where L is closed by sub-
words, then the proof P ′ obtained using the Restr elimination procedure is in F(L). □

Remark 3. In the proof, we need the atomic axioms U to be closed under Restr. Therefore, we
are going to close the cca2 axiom schema under Restr. This adds a new difficulty: let ccaa2 be the
axiom schema before closing it under Restr, then a formula ®u ∼ ®v is an instance of cca2 if and only
if there exists ®u ′, ®v ′ such that ®u, ®u ′ ∼ ®v, ®v ′ is an instance of ccaa2 :{

®u ∼ ®v
cca2 }

=
{
∃®u ′, ®v ′ s.t. ®u, ®u ′ ∼ ®v, ®v ′

ccaa2

®u ∼ ®v
Restr

}
Here, ®u ′, ®v ′ can be of arbitrary size. This is problematic, as it means that to check whether ®u ∼ ®v is
a valid instance of cca2, we have to guess two arbitrarily large vectors of terms ®u ′, ®v ′.

We solve this in Appendix B.1: we show that there always exists ®u ′, ®v ′ of of polynomial size w.r.t.
®u, ®v . We deduce a NP procedure to check whether a ground formula ®u ∼ ®v is an instance of cca2:
we guess ®u ′, ®v ′ of polynomial size, and we check that ®u, ®u ′ ∼ ®v, ®v ′ is an instance of ccaa2 (which
can be done in polynomial time). ⋄

Using this lemma, we can deal with Example 8 by doing a proof cut elimination. More generally,
by induction on the proof size, we can guarantee that no such proof cuts appear. This is the strategy
we are going to follow: look for proof cuts that introduce unbounded new terms, eliminate them,
and show that after sufficiently many cut eliminations all the subterms appearing in the proof
are bounded by the (R-normal form of the) conclusion. But a proof may contain more complex
behaviors than just the introduction of a condition followed by a CS application. For example the
condition being matched could have been itself introduced earlier to match another condition,
which itself was introduced to match a third condition etc.

Example 9. We illustrate this on an example. When it is more convenient, we write terms
containing only if_then_else_ and other subterms (handled as constants) as binary trees; we also
index some subterms with a number, which helps keeping track of them across rule applications.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:24 Adrien Koutsos

Consider the derivation:
.... (A)

a1,b2,b3,u4,w5,u6,v7 ∼ d1, c2,d3, s4, t5, r6,p7

a1

b2

u4 b3

w5 u6

v7

∼

d1

c2

s4 d3

t5 r6

p7

FA
(3)

if a then u else v ∼ if c then s else t
R

where p ≡ if c then s else t . Here the conditions b,d and the terms w, r are, a priori, arbitrary.
Therefore we would like to bound them or remove them through a cut elimination. The cut
elimination technique used in Example 8 does not apply here because we cannot extract a proof
of a ∼ c . But we can extract a proof of b2,b3 ∼ c2,d3. Using the axioms soundness, this means that
in every appropriate computational model, [[b,b]] ≈ [[c,d]]. Therefore, no adversary can distinguish
between getting twice the same value sampled from [[b]] and getting a pair of values sampled from
[[c,d]]. In particular, [[c]]η,ρ = [[d]]η,ρ , except for a negligible number of random tapes ρ. ⋄

A First Key Lemma. A natural question is to ask whether the semantic equality between [[c]]
and [[d]] implies a syntactic equality.8 While this is not the case in general, there are fragments of
our logic in which this holds. To define such a fragment, we annotate the rules FA by the function
symbol involved, and we let FAs = {FAf | f ∈ F\if,0} be the restriction of FA to function symbols
different from if_then_else_. Formulas that can be proven in the fragment F(FAs

∗ · Dup∗ · cca2)
have a particular shape, which is completely characterized by the rules applied in the derivation:

Proposition 6. For all b,b ′ ∈ T (F ,N), if b ∼ b ′ is in the fragment F(FAs
∗ · Dup∗ · cca2) then

b ≡ C[®w, (αi)i , (decj)j], b ′ ≡ C[®w, (α ′i)i , (dec
′
j)j] and the cca2 instance applied is (up-to α -renaming):

®w, (αi)i , (decj)j ∼ ®w, (α ′i)i , (dec
′
j)j

where (αi ,α
′
i)i are the encryption oracle calls and (decj , dec′j)j are the decryption oracle calls.

Proof. This is easy immediate by induction on the proof derivation. □

Using this characterization, we proof the following key lemma:

Lemma 2. For all b,b ′,b ′′, if b,b ∼ b ′,b ′′ is in the fragment F(FAs
∗ · Dup∗ · cca2) then b ′ ≡ b ′′.

Proof. From Proposition 6 we have:

b ≡ Cl [®w l , (α li)i ∈I l , (dec
l
j)j ∈J l] b ′ ≡ Cl [®w l , (α ′li)i ∈I l , (dec

′l
j)j ∈J l]

b ≡ Cr [®w r , (α ri)i ∈I r , (dec
r
j)j ∈J r] b ′′ ≡ Cr [®w r , (α ′ri)i ∈I r , (dec

′r
j)j ∈J r]

Assume that Cl . Cr . Let p be the position of a hole of Cl such that p is a valid position but not
a hole position in Cr (if this is not the case, invert b ′ and b ′′). Then we have three cases:
• The hole at b |p is mapped to a term u ∈ ®w l . Then, we can rewrite the proof such that p is a
hole position in both terms.

8We say that [[c]] and [[d]] are semantically equal if the bit-strings distributions [[c]] and [[d]] are equal, except for a negligible
number of samplings.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:25

• The hole at b |p is mapped to an encryption oracle call {m}ne
pk(n)

in b and {m′}ne
pk(n)

in b ′. Since
{m}ne

pk(n)
is an encryption in the cca2 application, we know from the freshness side-condition

that ne does not appear in ®w r . But since Cr
|p is not a hole, the proof of b,b ∼ b ′,b ′′ includes

the sub-proof:
. . . , ne ∼ . . . , n

′
e

cca2
....

. . . ,m, pk(n), ne ∼ . . . ,m
′, pk(n), ne

. . . , {m}ne
pk(n)
∼ . . . , {m′}ne

pk(n)

FA

Since ne is a name in N and cannot be modified by any rules in {R, FAs,Dup}. Therefore
ne ∈ ®w

r . This contradict the freshness side-condition. Absurd.
• If the hole at b |p is mapped to a decryption oracle call decli0 in b. Since C

r
|p is not a hole, and

since function applications on FAs cannot be applied on the if_then_else_ function symbols
we know that there existsm,m′ such that decli0 ≡ dec(m, sk(n)) and dec

′l
i0 ≡ dec(m′, sk(n)).

Moreover, since decli0 is a decryption in the cca2 application, we know from the key-usability
side-condition that sk(n) appears only in decryption position in ®w r . Then the reasoning we
have in the previous cases applies here. Indeed, we know that Cr

|p is not a hole, hence the
proof of b,b ∼ b ′,b ′′ includes one of the following sub-proofs:

. . . , sk(n) ∼ . . . , sk(n)
cca2

....
. . . ,m, sk(n) ∼ . . . ,m′, sk(n)

. . . , dec(m, sk(n)) ∼ . . . , dec(m′, sk(n))
FA

or

. . . ,m, n ∼ . . . ,m′, n
cca2

....
. . . ,m, n ∼ . . . ,m′, n

. . . ,m, sk(n) ∼ . . . ,m′, sk(n)
FA

sk

....
. . . ,m, sk(n) ∼ . . . ,m′, sk(n)

. . . , dec(m, sk(n)) ∼ . . . , dec(m′, sk(n))
FA

Hence either n ∈ ®w r or sk(n) ∈ ®w r . Absurd. □

Using this lemma, we can deal with Example 9 whenever the proof of a1,b2,b3 ∼ d1, c2,d3 lies in
the fragment F(FAs

∗ · Dup∗ · cca2). By applying the lemma on b2,b3 ∼ c2,d3 we obtain that c ≡ d .
By applying the lemma a second time on a1,b2 ∼ d1, c2 (since d ≡ c) we deduce a ≡ b. Hence:

a1,b2,b3,u4,w5,u6,v7 ∼ d1, c2,d3, s4, t5, r6,p7 ≡ a1,a2,a3,u4,w5,u6,v7 ∼ c1, c2, c3, s4, t5, r6,p7

Therefore, using Lemma 1, we can extract a proof:
.... (A

′)

a1,u4,v7 ∼ c1, s4,p7

Where, we recall, p ≡ if c then s else t . Hence we have the cut elimination:
.... (A

′)

a1,u4,v7 ∼ c1, s4,p7

a1

u4 v7
∼

c1

s4 c

s t

FA

if a then u else v ∼ if c then s else t
R

Notice that all sub-terms above are bounded, although the condition c appears twice on the right.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:26 Adrien Koutsos

Proof Sketch. We sketch the outline of the remaining of the completeness proof:
• Commutations: first we show that we can assume that rules are applied in some given
order. We prove this by showing some commutation results and adding new rules.
• Proof Cut Eliminations: through proof cut eliminations, we guarantee that every condition
appearing in the proof is α-bounded. Intuitively a condition is α-bounded if it is a subterm of
the conclusion or if it guards a decryption appearing in an α-bounded term.
• Decision Procedure: we give a procedure that, given a goal formula t ∼ t ′, computes the
set of α-bounded terms for this formula. We show that this procedure computes a finite set,
and deduce that the proof space is finite. This yields an effective algorithm to decide our
problem.

6 COMMUTATIONS AND CUT ELIMINATIONS

In this section we show, through rule commutations, that we can restrict ourselves to proofs using
rules in some given order, through two rule commutations lemmas, and a proof cut elimination. In
the next section, we show how this restricts the shapes of the terms appearing in a proof.

6.1 Rule Commutations

Everything in this subsection applies to any setU of atomic axioms closed under Restr. We specialize
to cca2 later. We start by showing a set of rule commutations of the formw ⇒ w ′, wherew and
w ′ are words over the set of rule names. An entry w ⇒ w ′ means that a derivation in w can
be rewritten into a derivation in w ′, with the same conclusion and premises. Here are the basic
commutations we use:

Lemma 3. The following rule commutations are correct:

Dup · R ⇒ R · Dup

Dup · FA ⇒ FA∗ · Dup
Dup · CS ⇒ CS · Dup

FA · R ⇒ R · FA

FA · CS ⇒ R · CS · FA

Proof. The commutations can be found in Figure 8. □

Using these rules, we obtain a first restriction.

Lemma 4. For any set of atomic axioms U closed under Restr, the ordered strategy:

F((CS + R)∗ · FA∗ · Dup∗ · U)

is complete for F((CS + FA + R + Dup + U)∗).

Proof. Using Lemma 3, we commute all the Dup to the right, which yields F((CS + R + FA)∗ ·
Dup

∗ · U). Then, we commute all FA to the right, stopping at the first Dup. □

Example 10. We give an example of such a proof rewriting:

x ∼ z
π1(⟨x , y⟩) ∼ z

R

д(π1(⟨x , y⟩)) ∼ д(z)
FA

д(π1(⟨x , y⟩)),д(π1(⟨x , y⟩)) ∼ д(z),д(z)
Dup

⇒

x ∼ z
x ,x ∼ z, z Dup

x ,д(x) ∼ z,д(z)
FA

д(x),д(x) ∼ д(z),д(z)
FA

д(π1(⟨x , y⟩)),д(π1(⟨x , y⟩)) ∼ д(z),д(z)
R

⋄

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:27

Delay FA.
• FA · CS ⇒ R · CS · FA:
®w 1, ®w 2,b, (ui)i ∈I∪J ∼ ®w ′1, ®w

′
2,b
′, (u ′i)i ∈I∪J ®w 1, ®w 2,b, (vi)i ∈I∪J ∼ ®w ′1, ®w

′
2,b
′, (v ′i)i ∈I∪J

®w 1, ®w 2, (if b then ui else vi)i ∈I∪J ∼ ®w
′
1, ®w

′
2, (if b

′
then u ′i else v

′
i)i ∈I∪J

CS

®w 1, (if b then ui else vi)i ∈I , f (®w 2, (if b then ui else vi)i ∈J)
∼ ®w ′1, (if b

′
then u ′i else v

′
i)i ∈I , f (®w

′
2, (if b

′
then u ′i else v

′
i)i ∈J)

FA

Can be rewritten into:
®w 1, ®w 2,b, (ui)i ∈I∪J ∼ ®w ′1, ®w

′
2,b
′, (u ′i)i ∈I∪J

®w 1,b, (ui)i ∈I , f (®w 2, (ui)i ∈J)
∼ ®w ′1,b

′, (u ′i)i ∈I , f (®w
′
2, (u

′
i)i ∈J)

FA

®w 1, ®w 2,b, (vi)i ∈I∪J ∼ ®w ′1, ®w
′
2,b
′, (v ′i)i ∈I∪J

®w 1,b, (vi)i ∈I , f (®w 2, (vi)i ∈J)
∼ ®w ′1,b

′, (v ′i)i ∈I , f (®w
′
2, (v

′
i)i ∈J)

FA

®w 1, (if b then ui else vi)i ∈I , if b then f (®w 2, (ui)i ∈J) else f (®w 2, (vi)i ∈J)
∼ ®w ′1, (if b

′
then u ′i else v

′
i)i ∈I , if b

′
then f (®w ′2, (u

′
i)i ∈J) else f (®w ′2, (v

′
i)i ∈J)

CS

®w 1, (if b then ui else vi)i ∈I , f (®w 2, (if b then ui else vi)i ∈J)
∼ ®w ′1, (if b

′
then u ′i else v

′
i)i ∈I , f (®w

′
2, (if b

′
then u ′i else v

′
i)i ∈J)

R

• FA · R ⇒ R · FA:
®u 1, ®v 1 ∼ ®u

′
1, ®v
′
1

®u , ®v ∼ ®u ′, ®v ′
R

®u , f (®v) ∼ ®u ′, f (®v ′)
FA

⇒

®u 1, ®v 1 ∼ ®u
′
1, ®v
′
1

®u 1, f (®v 1) ∼ ®u
′
1, f (®v

′
1)

FA

®u , f (®v) ∼ ®u ′, f (®v ′)
R

Delay Dup.
• Dup · R ⇒ R · Dup.
If the R rules involves a term which is not duplicated then this is trivial. Assume the R
rewriting involves a duplicated term, and that t =R s and t ′ =R s ′:

®u , ®v , s ∼ ®u ′, ®v ′, s ′

®u , ®v , t ∼ ®u ′, ®v ′, t ′
R

®u , ®v , t , ®v , t ∼ ®u ′, ®v ′, t ′, ®v ′, t ′
Dup

⇒

®u , ®v , s ∼ ®u ′, ®v ′, s ′

®u , ®v , s, ®v , s ∼ ®u ′, ®v ′, s ′, ®v ′, s ′
Dup

®u , ®v , t , ®v , t ∼ ®u ′, ®v ′, t ′, ®v ′, t ′
R

• Dup · FA ⇒ FA
∗ · Dup.

Similarly if the FA rules does not involve a duplicated term then this is trivial. Otherwise:

®u , ®v , ®w ∼ ®u ′, ®v ′, ®w ′

®u , ®v , f (®w) ∼ ®u ′, ®v ′, f (®w ′)
FA

®u , ®v , f (®w), ®v , f (®w)
∼ ®u ′, ®v ′, f (®w ′), ®v ′, f (®w ′)

Dup ⇒

®u ∼ ®u ′

®u , ®v , ®w , ®v , ®w ∼ ®u ′, ®v ′, ®w ′, ®v ′, ®w ′
Dup

®u , ®v , f (®w), ®v , ®w ∼ ®u ′, ®v ′, f (®w ′), ®v ′, ®w ′
FA

®u , ®v , f (®w), ®v , f (®w)
∼ ®u ′, ®v ′, f (®w ′), ®v ′, f (®w ′)

FA

• Dup · CS ⇒ CS · Dup. Commutation of Dup with CS is similar.

Fig. 8. Function Application and Duplicate Rules Commutations

Splitting the FA Rule. To go further, we split the function application rules FA as follows: if the
deconstructed symbol is if_then_else_ then we denote the function application by FA(b,b ′), where
b,b ′ are the involved conditions; if the deconstructed symbol f is in F\if,0, then we denote the

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:28 Adrien Koutsos

function application by FAf . We give below the two new rules:

®w,a,u,v ∼ ®r ,b, s, t

®w, if a then u else v ∼ ®r , if b then s else t
FA(b,b ′)

®u, ®v ∼ ®s, ®t

®u, f (®v) ∼ ®s, f (®t)
FAf

The set of rule names is now infinite, since there is a rule FA(b,b ′) for every ground terms b,b ′.
Intuitively, we want to use R at the beginning of the proof only. This is helpful since, as we

observed earlier, all the other rules are decreasing (i.e. premises are smaller than the conclusion).
The problem is that we cannot fully commute CS and R. For example, in:

a1,u1 ∼ c1, s1
a,u ∼ c, s R

a2,v1 ∼ c2, t1
a,v ∼ c, t R

if a then u else v ∼ if c then s else t
CS

(5)

we can commute the rewritings on u,v, s and t , but not on a and c because they appear twice in
the premises, and a1 and a2 may be different (same for c1 and c2).

We solve this by adding new rules to track relations between branches. We first give simplified
versions. For every if-free ground conditions a and c in R-normal form, we introduce the rules:
®u,C

[
a a a

]
∼ ®v,C ′

[
c c c

]
®u,C[a] ∼ ®v,C ′[c]

2Box
s a1,u ∼ c1, s a2,v ∼ c2, t

if a1 a2 a
then u else v ∼ if c1 c2 c

then s else t
CS

s
□

where a is a new symbol of sort bool2 → bool, and of fixed semantics: it ignores its
arguments and has the semantics [[a]]. Intuitively, a1 a2 a

stands for the condition a, and a1,a2
are, respectively, the left and right versions of a. Then, using these rules, we can rewrite the
derivation in (5):

a1,u1 ∼ c1, s1 a2,v1 ∼ c2, t1
if a1 a2 a

then u1 else v1 ∼ if c1 c2 c
then s1 else t1

CS
b
□

if a a a then u else v ∼ if c c c then s else t
R

if a then u else v ∼ if c then s else t
2Box

s

The 2Boxs allows to introduce two versions of a and c , which can be independently rewritten. Using
this, we can do both rewritings before applying the CSs□ rule.

Let us define formally the unrestricted rules. First, we denote B the set of new function symbols.

Definition 14. We let B be the set of function symbols:

F ∪ { _ _
b
| b if-free ground condition}

We need the functions in B to block the if-homomorphism to ensure that for all a c b ∈ st(t),
[[a]] = [[c]] = [[b]]. Therefore the set of equalities R2 is not extended to B. For example we have:

if a then c else d e b ̸→
∗
R if a then c e b else d e b

The R rule is replaced by R□ which has an extra side-condition: R□ can rewrite ®w,u[s] into
®w,u[t] as long as ®w,u[s]’s boxed conditions

{
a c b ∈ st(®w,u[s])

}
contain t ’s boxed conditions{

a c b ∈ st(t)
}
.

Definition 15. We let R□ be the following axiom schema:

®w,u[t] ∼ ®v

®w,u[s] ∼ ®v
R□ when s =R t and { a c b ∈ st(t)} ⊆ { a c b ∈ st(®w,u[s])}

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:29

The side-condition ensures that no new arbitrary a c b is introduced. New boxed conditions
are only introduced through the 2Box rule. Similarly, the FA axiom is not extended to B: boxed
conditions can only be open using the CS□ rule.

Example 11. We give two examples of valid application of the R□ rules. The first R□ application
is valid because we do not introduce any boxed condition on the left, and because we remove a
boxed condition on the right. The second R□ application is valid because the introduced boxed
condition already appears in the conclusion:
if eq(д({0}n

pk
), {0}n

pk
) then dec(д({0}n

pk
), sk)

else dec(д({0}n
pk
), sk)

∼ v

dec(д({0}n
pk
), sk) ∼ if a c b then v else v

R□

if a c b then (if a c b then u elsew)

else v

∼ t

if a c b then u else v ∼ t
R□

⋄

When boxing a condition c , we want the term c□ indexing the box c c c□
to characterize c’s

semantics in a proof invariant way. By consequence, we replace all boxes a1 a2 a
in c by a, and

we normalize the resulting term. Formally, we introduce the following erasure function which
removes boxed condition:

Definition 16. We let 2erase be the function defined on if-free ground terms by:

2erase(t) ≡

2erase(b) if t ≡ b1 b2 b
n if t ≡ n and n ∈ N

f (2erase(t1), . . . , 2erase(tn)) if t ≡ f (t1, . . . , tn) and f , if_then_else_

Example 12. We give an example with a term containing only one boxed condition a c b :

2erase

(
eq(if a c b then u else v,A)

)
≡ eq(if b then u else v,A) ⋄

This function is used to define the full (not simplified) versions of 2Box and CS□:
Definition 17. We let 2Box and CS□ be the axioms:

®u,C
[
a a

2erase(a)↓R

]
∼ ®u ′,C ′

[
a′ a′

2erase(a′)↓R

]
®u,C[a] ∼ ®u ′,C ′[a′]

2Box
when a,a′ ∈ T (F\if ∪ B,N)

®w,a1, (ui)i ∼ ®w ′,a′1, (u
′
i)i ®w,a2, (vi)i ∼ ®w ′,a′2, (v

′
i)i

®w,
(
if a1 a2 a

then ui else vi
)
i ∼ ®w

′,
(
if a′1 a′2 a′

then u ′i else v
′
i
)
i

CS□ when a,a′ ∈ T (F\if,N)

Remark that for the CS□ rule to be sound we need [[a1]], [[a2]] and [[a]] to be equal, up to a
negligible number of samplings (same for a′1,a′2 and a). This is not enforced by the rules, so it has
to be an invariant of our strategy.

Definition 18. A term t is well-formed if and only if for every a c b ∈ st(t), a =R c =R b. We
lift this to formulas as expected.

Proposition 7. The following rules preserve well-formedness:

R□, 2Box,CS□, FAs, {FA(b,b ′)},Dup

Besides, R□, CS□ and 2Box are sound on well-formed formulas.

Proof. The only rule not obviously preserving well-formedness is R□, but its side-conditions
guarantee the well-formedness invariant. The only rule that is not always sound is CS□, and it is
trivially sound on well-formed formulas. □

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:30 Adrien Koutsos

Remark 4. We extend cond-st to terms in T(B,N) in a non-obvious way, by erasing all boxes.
Formally, for all t ∈ T (B,N), we let:

cond-st(t) = cond-st(2erase(t)) ⋄

Ordered Strategy. We can now give the new rule commutations.

Lemma 5. The following rule commutations are correct:

FAs · FA(b,b ′) ⇒ R · FA(b,b ′) · FAs
∗ · Dup

CS□ · R□ ⇒ R□ · CS□
CS□ · 2Box ⇒ R□ · 2Box · CS□

Proof. The rule commutations can be found in Figure 9. □

This allows to have R□ rules only at the beginning of the proof.

Lemma 6. For any set of atomic axioms U closed under Restr, the ordered strategy:

F((2Box + R□)
∗ · CS∗□ · {FA(b,b

′)}∗ · FAs
∗ · Dup∗ · U)

is complete for F((CS + FA + R + Dup + U)∗).

Proof. We start from the result of Lemma 4, split the FA rules and commute rules until we get:

F((CS + R)∗ · {FA(b,b ′)}∗ · FAs

∗ · Dup∗ · U)

We then replace all applications of CS by 2Box · CS□. All a a a introduced are immediately
“opened” by a CS□ application, hence we know that the side-conditions of R□ hold every time we
apply R. Therefore we can replace all applications of R by R□, which yields:

F((CS□ + 2Box + R□)
∗ · {FA(b,b ′)}∗ · FAs

∗ · Dup∗ · U)

Finally we commute the CS□ applications to the right. □

6.2 The Freeze Strategy

We now show that we can restrict the terms on which the rules in {FA(b,b ′)} can be applied: when
we apply a rule in {FA(b,b ′)}, we “freeze” the conditions b and b ′ to forbid any further applications
of {FA(b,b ′)} to them.

Example 13. Let ai ≡ if bi then ci else di (i ∈ {1, 2}), we want to forbid the following partial
derivation to appear:

b1, c1,d1,u1,v1 ∼ b2, c2,d2,u2,v2
a1,u1,v1 ∼ a2,u2,v2

FA(b1,b2)

if a1 then u1 else v1 ∼ if a2 then u2 else v2
FA(a1,a2)

⋄

For this, we define a new function symbol arity one, which allows to freeze a condition and
prevent applications of {FA(b,b ′)}. Basically, when we apply a rule in {FA(b,b ′)} on the conditions
b1 and b2:

b1 ≡ if a1 then u1 else v1 b2 ≡ if a2 then u2 else v2

We replace, in the premise, a1 by a1 in b1 and a2 by a2 in b2. Then, we show that we can restrict
ourselves to proofs where we never apply FA on a frozen if_then_else_ condition.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:31

• FAs · FA(b,b
′) ⇒ R · FA(b,b ′) · FAs

∗ · Dup

®u, ®v, b, s, t ∼ ®u′, ®v ′, b′, s′, t ′

®u, ®v, if b then s else t

∼ ®u′, ®v ′, if b′ then s′ else t ′

FA(b, b′)

®u, f (®v, if b then s else t)

∼ ®u′, f (®v ′, if b′ then s′ else t ′)

FAf
⇒

®u, b, s, ®v, t ∼ ®u′, b′, s′, ®v ′, t ′

®u, b, ®v, s, ®v, t ∼ ®u′, b′, ®v ′, s′, ®v ′, t ′
Dup

®u, b, f (®v, s), f (®v, t) ∼ ®u′, b′, f (®v ′, s′), f (®v ′, t ′)
FA
(2)
f

®u, if b then f (®v, s) else f (®v, t)

∼ ®u′, if b′ then f (®v ′, s′) else f (®v ′, t ′)

FA(b, b′)

®u, f (®v, if b then s else t)

∼ ®u′, f (®v ′, if b′ then s′ else t ′)

R

• CS□ · R□ ⇒ R□ · CS□:
(w1

j)j , b1, (u
1
i)i ∼ (w

′1
j)j , b

′
1, (u

′1
i)i

(w j)j , a1, (ui)i ∼ (w ′j)j , a
′
1, (u

′
i)i

R□

(w2
j)j , b2, (v

1
i)i ∼ (w

′2
j)j , b

′
2, (v

′1
i)i

(w j)j , a2, (vi)i ∼ (w ′j)j , a
′
2, (v

′
i)i

R□

(w j)j , (if a1 a2 b
then ui else vi)i ∼ (w ′j)j , (if a′1 a′2 b′

then u′i else v
′
i)i

CS□

can be rewritten into:
(w1

j)j , b1, (u
1
i)i ∼ (w

′1
j)j , b

′
1, (u

′1
i)i (w2

j)j , b2, (v
1
i)i ∼ (w

′1
j)j , b

′
2, (v

′1
i)i

(if b1 b2 b
then w1

j else w
2
j)j , (if b1 b2 b

then u1
i else v

1
i)i

∼ (if b′1 b′2 b′
then w ′1j else w ′2j)j , (if b′1 b′2 b′

then u′1i else v ′1i)i

CS□

(w j)j , (if a1 a2 b
then ui else vi)i ∼ (w ′j)j , (if a′1 a′2 b′

then u′i else v
′
i)i

R□

• CS□ · 2Box ⇒ R□ · 2Box · CS□. Let b,b ′ ∈ T (F\if ∪ B,N), and let:

b□ ≡ b b
2erase(b)↓R

and b ′□ ≡ b ′ b ′
2erase(b′)↓R

Then the following proof:
(w j [b□])j , a1[b□], (ui [b□])i ∼ (w ′j [b

′
□])j , a

′
1[b
′
□], (u

′
i [b
′
□])i

(w j [b])j , a1[b], (ui [b])i ∼ (w ′j [b
′])j , a′1[b

′], (u′i [b
′])i

2Box
(w j [b])j , a2[b], (vi [b])i
∼ (w ′j [b

′])j , a′2[b
′], (v ′i [b

′])i

(w j [b])j ,
(
if a1[b] a2[b]

a
then ui [b] else vi [b]

)
i

∼ (w ′j [b
′])j ,

(
if a′1[b

′] a′2[b
′]

a′
then u′i [b

′] else v ′i [b
′]
)
i

CS□

can be rewritten into:
(w j [b□])j , a1[b□], (ui [b□])i

∼ (w ′j [b
′
□])j , a

′
1[b
′
□], (u

′
i [b
′
□])i

(w j [b])j , a2[b], (vi [b])i
∼ (w ′j [b

′])j , a′2[b
′], (v ′i [b

′])i(
if a1[b□] a2[b]

a
then w j [b□] else w j [b]

)
j ,

(
if a1[b□] a2[b]

a
then ui [b□] else vi [b]

)
i

∼
(
if a′1[b

′
□] a′2[b

′]
a′

then w ′j [b
′
□] else w

′
j [b
′]
)
j ,

(
if a′1[b

′
□] a′2[b

′]
a′

then u′i [b
′
□] else v

′
i [b
′]
)
i

CS□

(
if a1[b] a2[b]

a
then w j [b] else w j [b]

)
j ,

(
if a1[b] a2[b]

a
then ui [b] else vi [b]

)
i

∼
(
if a′1[b

′] a′2[b
′]

a′
then w ′j [b

′] else w ′j [b
′]
)
j ,

(
if a′1[b

′] a′2[b
′]

a′
then u′i [b

′] else v ′i [b
′]
)
i

2Box

(w j [b])j ,
(
if a1[b] a2[b]

a
then ui [b] else vi [b]

)
i

∼ (w ′j [b
′])j ,

(
if a′1[b

′] a′2[b
′]

a′
then u′i [b

′] else v ′i [b
′]
)
i

R□

The commutation with an application of 2Box in the right branch is exactly the same.

Fig. 9. Function Application and Boxed Case Study Rules Commutations

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:32 Adrien Koutsos

Definition 19. Let be a new function symbol of arity one. For every ground term s , we let s̃ be:

s̃ ≡

{
if b then u else v if s ≡ if b then u else v

s if s ∈ T (F\if,N)

Moreover we replace every FA(b1,b2) by BFA(b1,b2), which freezes conditions b1 and b2.

Definition 20. We let BFA be the rule:

®w1, b̃1,u1,v1 ∼ ®w2, b̃2,u2,v2
®w1, if b1 then u1 else v1 ∼ ®w2, if b2 then u2 else v2

BFA(b1,b2)

We let {BFA(b1,b2)} be the restriction of {BFA(b1,b2)} to instances where b1 and b2 are not frozen.
Finally, we let UnF be the rule which unfreezes all conditions: every b is replaced by b.

Example 14. If the conditions b ′ is if-free then:

b0

a0 b1

a1 a2

, s, t ∼ b ′, s ′, t ′

©«
b0

a0 b1

a1 a2

ª®®¬
s t

∼
b ′

s ′ t ′

BFA and

b0

a0 b1

a1 a2

, s, t ∼ b ′, s ′, t ′

b0

a0 b1

a1 a2

, s, t ∼ b ′, s ′, t ′

UnF

⋄

We can extend the Restr elimination procedure of Lemma 1 to deal with the new rules CS□ and
2Box (but not R□):

Lemma 7. For any set of atomic axioms U closed under Restr, if P ⊢ ®u ∼ ®v with P in the fragment:

F ((CS□ + 2Box + FA + Dup + U + Restr)∗)

then there exists P ′ such that P ′ ⊢ ®u ∼ ®v and P ′ contains no Restr applications. Moreover:

• the height of P ′ is no larger than the height of P .
• if P is in a fragment F(L) where L is closed by sub-words then P ′ is in F(L).

Proof. This is the same proof than for Lemma 1, without the R case and replacing the CS axiom
by the CS□ axiom. Note that the 2Box rule is trivial to handle. □

We can state the following ordered strategy lemma:

Lemma 8. For any set of atomic axioms U closed under Restr, the ordered strategy:

F((2Box + R□)
∗ · CS∗□ · {BFA(b,b

′)}∗ · UnF · FAs
∗ · Dup∗ · U)

is complete for F((CS + FA + R + Dup + U)∗).

Basically, the proof consists in eliminating all proof cuts of the shape given in Example 13. The
cut elimination is simple, though voluminous. Before starting the proof, we define the induction
ordering used in the proof.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:33

Proof ordering. Let us consider the following well-founded order on proofs: a proof is interpreted
by the multi-set of pair (b,b ′) appearing as (potentially frozen) labels of BFA applications where
we erased the function symbol . We then order these multi-set using the multi-set ordering ≻mult,
which is induced by the product ordering ≻×, which itself is built upon an arbitrary total rewrite
ordering on ground terms without boxes ≻ (e.g. a LPO for some arbitrary precedence over function
symbols).

Example 15. Assume that b1 ≡ if b then a else c and b2 ≡ if b ′ then a′ else c ′. Let P1 be the proof:

b,a, c,u1,v1 ∼ b ′,a′, c ′,u2,v2

b,a, c,u1,v1 ∼ b ′,a′, c ′,u2,v2
UnF

b̃1,u1,v1 ∼ b̃2,u2,v2
BFA(b,b ′)

if b1 then u1 else v1 ∼ if b2 then u2 else v2
BFA(b1,b2)

And P2 be the derivation:

b,a, c,u1,v1 ∼ b
′,a′, c ′,u2,v2

b̃, ã, c̃,u1,v1 ∼ b̃ ′, ã′, c̃ ′,u2,v2
UnF

b̃, ã,u1,v1, c̃,u1,v1 ∼ b̃ ′, ã′,u2,v2, c̃ ′,u2,v2
Dup

b̃, ã,u1,v1, if c then u1 else v1 ∼ b̃ ′, ã′,u2,v2, if c
′
then u2 else v2

BFA(c, c ′)

b̃, if a then u1 else v1, if c then u1 else v1 ∼ b̃ ′, if a
′
then u2 else v2, if c

′
then u2 else v2

BFA(a,a′)

if b then (if a then u1 else v1) else (if c then u1 else v1)

∼ if b ′ then (if a′ then u2 else v2) else (if c
′
then u2 else v2)

BFA(b,b ′)

if b1 then u1 else v1 ∼ if b2 then u2 else v2
R

Observe that P1 and P2 are two different derivations of the same formula. P1 and P2 are respectively
interpreted as the multi-sets:

{(b1,b2), (b,b
′)} and {(b,b ′), (a,a′), (c, c ′)}

Remark that when interpreting the derivation as multi-sets, we unfroze the conditions. The condi-
tions b,a, c (resp. b ′,a′, c ′) are strict subterms of b1 (resp. b2), therefore we have (b1,b2) ≻× (b,b ′),
(b1,b2) ≻× (a,a

′) and (b1,b2) ≻× (c, c ′). Hence:

{(b1,b2), (b,b
′)} ≻mult {(b,b

′), (a,a′), (c, c ′)}

By consequence, P2 is a smaller proof of if b1 then u1 else v1 ∼ if b2 then u2 else v2 than P1. ⋄

Proof of Lemma 8. First we are going to show a cut elimination strategy to get rid of the
deconstruction of frozen conditions introduced by:

®w1, b̃1,u
′
1,v
′
1 ∼ ®w2, b̃2,u

′
2,v
′
2

®w1, if b1 then u1 else v1 ∼ ®w2, if b2 then u2 else v2
BFA(b1,b2)

Assume now that u ∼ v is not provable without deconstructing frozen conditions introduced
as described above. We consider a proof P1 of u ∼ v that we suppose minimal for ≻mult. We
consider the first conditions (b1,b2) (starting from the bottom) which are deconstructed. We let
b1 ≡ if b then a else c and b2 ≡ if b ′ then a′ else c ′, we know that our proof has the following

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:34 Adrien Koutsos

shape:
.... (A3)

®x ,b,a, c, ®y ∼ ®x ′,b ′,a′, c ′, ®y ′

®x , b̃1, ®y ∼ ®x ′, b̃2, ®y ′
BFA(b,b ′)

.... (A2)

®w 1, b̃1,u1,v1 ∼ ®w 2, b̃2,u2,v2
®w 1, if b1 then u1 else v1 ∼ ®w 2, if b2 then u2 else v2

BFA(b1,b2)
.... (A1)

C[if b1 then u1 else v1] ∼ C[if b2 then u2 else v2]
u ∼ v R

Where C is a one-hole context. Since (b1,b2) are the first conditions deconstructed in this proof
we know that C is such that the hole does not appear in a condition branch. This proof can be
rewritten as the following proof P2:

.... (A3)

®x , b̃, ã, c̃, ®y ∼ ®x ′, b̃ ′, ã′, c̃ ′, ®y ′.... (A2)

®w 1, b̃, ã, c̃,u1,v1 ∼ ®w 2, b̃ ′, ã′, c̃ ′,u2,v2

®w 1, b̃, ã,u1,v1, c̃,u1,v1 ∼ ®w 2, b̃ ′, ã′,u2,v2, c̃ ′,u2,v2
Dup

®w 1, b̃, ã,u1,v1, if c then u1 else v1 ∼ ®w 2, b̃ ′, ã′,u2,v2, if c ′ then u2 else v2
BFA(c, c ′)

®w 1, b̃, if a then u1 else v1, if c then u1 else v1 ∼ ®w 2, b̃ ′, if a′ then u2 else v2, if c ′ then u2 else v2
BFA(a,a′)

®w 1, if b then (if a then u1 else v1) else (if c then u1 else v1)

∼ ®w 2, if b then (if a′ then u2 else v2) else (if c
′
then u2 else v2)

BFA(b,b ′)

.... (A1)
C[if b then (if a then u1 else v1) else (if c then u1 else v1)]

∼ C[if b ′ then (if a′ then u2 else v2) else (if c
′
then u2 else v2)]

C[if b1 then u1 else v1] ∼ C[if b2 then u2 else v2]
R

u ∼ v R

One can check that A1 remains the same in the second proof tree since the hole in C is not in a
condition branch. The A1,A2,A3 parts are the same in both proofs, so letM be the interpretation of
A1,A2,A3 as a multi-set. Then the interpretation of P1 and P2 are, respectively, the multi-sets:

M ∪ {(b1,b2), (b,b
′)} and M ∪ {(b,b ′), (a,a′), (c, c ′)}

Therefore P2 is a strictly smaller proof of u ∼ v than P1 (this is almost the same multi-sets than in
Example 15). Absurd. □

7 PROOF FORM AND KEY PROPERTIES

The goal of this section is to show that we can assume w.l.o.g. that the terms appearing in the proof
(following the ordered freeze strategy) after the (2Box + R□)

∗ part have a particular form, that we
call proof form. We also show properties of this restricted shape that allow more cut eliminations.

7.1 Shape of the Terms

Most of the completeness results shown before are for any set of atomic axioms closed under Restr.
We now specialize these results to cca2, to get some further restrictions.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:35

When applying the atomic axioms cca2, we would like to require that terms are in R-normal form,
e.g. to avoid the application of cca2 to terms with an unbounded component, such as π1(⟨u , v⟩).
Unfortunately, the side-conditions of cca2 are not stable by R. E.g., consider the cca2 instance:

{if eq(д(nu), nu) then A else B}nr
pk(n)
∼ {C}nr

pk(n)

cca2

The R-normal form of the left term is:
if eq(д(nu), nu) then {A}

nr
pk(n)

else {B}nr
pk(n)

which cannot be used in a valid cca2 instance, since the condition eq(д(nu), nu) should be somehow
“hidden” by the encryption. To avoid this difficulty, we use a different normal form for terms: we
try to be as close as possible to the R-normal form, while keeping condition branching below
their encryption. This normalization strategy preserves the shape of the terms required by the
cca2 axiom, as well as its side-conditions. In other word, if ®u ∼ ®v is a valid cca2 instance then its
normalization ®un ∼ ®vn is also a valid cca2 instance. We illustrate this on an example. The term:{

if (if b then a else c) then {if d then u else v}n1
pk

elsew
}
n2
pk

is normalized as follows:{
if b then if a then {if d then u else v}n1

pk
elsew

else if c then {if d then u else v}n1
pk

elsew

}
n2

pk

(6)

Observe that cca2 side-conditions are preserved. For example, the condition on occurrences
of encryption randomness in (6) holds: e.g. the randomness n1 is only used for the encryption
{if d then u else v}n1

pk
.

Basic Terms. We omit the rewriting strategy for now (C.f. Appendix D). Instead, we describe
the final shape of the terms, and prove some of their properties terms. We let A≻ be the ordered
strategy from Lemma 8, and we define several restriction of A≻:

F
(
(2Box + R□)

∗· CS∗□·{BFA(b,b
′)}∗ · UnF · FAs

∗ · Dup∗ · cca2
)

(A≻)

F
(
CS
∗
□·{BFA(b,b

′)}∗ · UnF · FAs

∗ · Dup∗ · cca2
)

(ACS□)

F
(
{BFA(b,b ′)}∗ · UnF · FAs

∗ · Dup∗ · cca2
)

(A
BFA

)
F
(
FAs

∗ · Dup∗ · cca2
)

(AFAs
)

The rule CS□ is the only branching rule, therefore, after applying all the CS□ rules, we can associate
to each branch l of the proof a left cca2 trace Sl = (Kl ,Rl , El ,Dl) of the cca2 axiom, where Kl ,
Rl , El and Dl are the sets of, respectively, secret keys, encryption randomness, encryptions and
decryptions on the left side. We use Sl to define the normal form of the terms appearing, on the left,
in branch using the cca2 instance ϕ ∼ ψ . This is done through four mutually inductive definitions:
• Sl -encryption oracle calls are well-formed encryptions.
• Sl -decryption oracle calls are well-formed decryptions.
• Sl -normalized basic terms are terms built using function symbols in F\if,0 and well-formed
encryptions and decryptions.
• Sl -normalized simple terms are combinations of normalized basic terms using if_then_else_.

We give only the definition of Sl -normalized basic terms (the full definitions are in Appendix D). A
Sl -basic term is a term build using Sl -encryption oracle calls, Sl -decryption oracle calls, function
symbols in F\if,0 and names in N , with some restrictions. More precisely, we require that:
• We do not use names in R, as this would contradict cca2 randomness side-conditions.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:36 Adrien Koutsos

• We do not decrypt terms using secret keys in K .
To enforce the two conditions above, we define two syntactic side-conditions.

Definition 21. For every ground terms ®u , ®v , we let fresh(®u ; ®v) holds if and only if no term in ®v is
a subterm of a term in ®v , i.e.:

{u | u ∈ ®u } ∩ st(®v) = ∅

Definition 22. For every ground terms ®u and set of secret keys K , we let nodec(K, ®u) holds if
and only if for every for every sk(n) ∈ K , for every u ∈ ®u , the occurrences of n in u are in subterms
of the form pk(n).

Using this, we define what is a Sl -basic term.

Definition 23. A Sl -basic term is a term of the formU [®w, (α j)j , (deck)k] where:
• U and ®w are if-free,U does not contain 0(_), fresh(R; ®w) and nodec(K, ®w).
• (α j)j are Sl -encryption oracle calls.
• (deck)k are Sl -decryption oracle calls.

A Sl -basic condition is a Sl -basic term of sort bool.

A Sl -basic term is normalized if it has been built without introducing any R-redex.

Definition 24. A Sl -basic term is normalized if it is of the formU [®w, (α j)j , (deck)k] where:
• (α j)j are encryptions under (pkj , skj)j , and (deck)k are decryptions under (pkk , skk)k .
• U [®w, ({[]j }

0
pkj
)j , (dec([]k , skk))k] is in R-normal form.

A Sl -normalized basic condition is a Sl -normalized basic term of sort bool.

Eager Reduction. We state here an crucial property of theAFAs
= F(FAs

∗ ·Dup∗ · cca2) fragment,
which deals with the following proof cut: when trying to prove that u ∼ u ′ holds, one may rewrite
u and u ′ into, respectively, π1(⟨u , v⟩) and π1(⟨u ′ , v ′⟩), using R. The problem is that v and v ′ are
arbitrary large terms. E.g. this is the case in the following proof:

.... (P)
u,v ∼ u ′,v ′

π1(⟨u , v⟩) ∼ π1(⟨u
′ , v ′⟩)

FAπ1 · FA⟨ , ⟩

u ∼ u ′
R

Of course there is a shortcut here: P is a proof of u,v ∼ u ′,v ′, hence by Restr we have a proof of
u ∼ u ′. Using the Restr elimination procedure (Lemma 1), we obtain a proof Pcut of u ∼ u ′ such
that Pcut is no larger than P . By generalizing this proof cut elimination, we show that if we have a
proof P ⊢AFAs

β ∼ β ′ where β and β ′ are basic terms, then we can rewrite β and β ′ into normalized

basic terms γ ,γ ′ such that there exists P ′ no larger than P with P ′ ⊢AFAs

γ ∼ γ ′.

Lemma 9 (Informal). Let P ⊢AFAs
β ∼ β ′ where β and β ′ are basic terms. Then there exist γ =R β

and γ ′ =R β
′
such that:

• γ and γ ′ are normalized basic terms.
• There exists P ′ such that P ′ ⊢AFAs

γ ∼ γ ′, and P ′ contains less FAs rules than P .

This is stated and shown formally later, in Appendix C.2.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:37

· · ·

FAs

∗

FAs

∗

·
·
·

FAs

∗

ACS□

·
·
·

ACS□

CS
∗
□

BFA

∗

Fig. 10. The Shape of the Term is Determined by the Proof.

Normalized Proof Form. Every application of CS□:

a1,u ∼ b1, s a2,v ∼ b2, t

if a1 a2 a
then u else v ∼ if b1 b2 b

then s else t
CS□

is such that if we extract the sub-proof of ai ∼ bi (for i ∈ {1, 2}), we get a proof inACS□ . Therefore,
we can check that terms after (2Box + R□)

∗ are of the form informally described in Figure 10.
We define a normal form for such proofs, called normalized proof form, and we define ⊢npf by
P ⊢npf t ∼ t ′ if and only if P ⊢ t ∼ t ′, the proof P is inA≻ and is in normalized proof form. We do not
give the full definition, but one of the key ingredients is to require that for every term s appearing
in a branch l of the proof P , if s is the conclusion of a sub-proof in the fragment F(FAs

∗ · Dup∗ · U)

then s is a Sl -normalized basic term.

Lemma 10. Every formula in F((CS + FA + R + Dup + cca2)∗) is provable using the strategy ⊢npf.

Proof. (sketch) The full proof is in Appendix D. First, we rewrite terms by pulling conditions
upward without crossing an encryption function symbol, and without modifying decryption guards.
This yield a proof P where every term s appearing at the conclusion of a sub-proof of P in the
fragment AFAs

is a Sl -basic term. Using Lemma 9, we know that there exists a smaller proof P ′ of
the same formula such that every term s appearing at the conclusion of a sub-proof of P ′ in the
fragment AFAs

is a Sl -normalized basic term. □

7.2 Key Properties

Characterization of Basic Terms. We give a key characterization proposition for basic terms: if
two Sl -normalized basic terms β and β ′ are such that, when R-normalizing them, they share a leaf
term, then they are identical.

Proposition 8. For all Sl -normalized basic terms β, β ′, if we have:

leave-st(β ↓R) ∩ leave-st(β
′ ↓R) , ∅

then β ≡ β ′.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:38 Adrien Koutsos

Proof. (sketch) The full proof is in Appendix E. We give the intuition: since they are Sl -
normalized basic terms, we know that β ≡ U [®w, (α j)j , (deck)k], β ′ ≡ U ′[®w ′, (α ′j)j , (dec

′
k)k] and:

U [®w, ({[]j }
nj

pkj
)j , (dec([]k , skk))k]

U ′[®w ′, ({[]′j }
nj

pk
′
j
)j , (dec([]

′
k , sk

′
k))k]

are in R-normal form. Using the fact that U ,U ′, ®w, ®w ′ are if-free, and the hypothesis that β and
β ′ share a leaf term, we first show that we can assume U ≡ U ′ and ®w ≡ ®w ′ by induction on the
number of positions where U and U ′ differ. Take p where they differ, w.l.o.g. assume β ′

|p to be a
hole ofU ′ (otherwise swap β and β ′). We have three cases:
• If β |p is in ®w , we simply changeU to include everything up to p.
• If β |p is in some encryption α j ≡ {m}n

pk
, then we know that n appears in ®w , which is not

possible since, as β is a Sl -normalized basic term, n ∈ Rl does not appear in ®w .
• If β |p is in some decryption deck ≡ dec(uk , skk) then, similarly to the previous case, we have
skk appearing in ®w , which contradicts the fact that skk ∈ Kl do not appear in ®w .

Knowing that U ≡ U ′ and ®w ≡ ®w ′, it only remains to show that the encryptions (α j)j and (α ′j)j ,
and the decryptions (deck)k and (dec′k)k are identical. The former follows from the fact that, for
a given encryption randomness n ∈ Rl , there exists a uniquem such {m}n_ ∈ El ; and the latter
follows from the fact that there is a unique way to guard a decryption in Dl (this is not obvious,
and relies on cca2 side-conditions). □

Proofs of b ∼ false or true. Using the previous proposition, we can show that for all b, if b is if-free
then there is no derivation of b ∼ true or b ∼ false in A≻. Such derivations would be problematic
since true and false are conditions of constant size, but b could be of any size (and we are trying to
bound all conditions appearing in a proof). Also, the else branch of a true condition can contain
anything and is, a priori, not bounded by the proof conclusion.

Proposition 9. Let b an if-free condition in R-normal form, with b . false (resp. b . true). Then
there exists no derivation of b ∼ false (resp. b ∼ true) in A≻.

Proof. This is shown by induction on the size of the derivation. The full proof is in Appendix G,
and relies on Proposition 8. □

8 BOUNDING THE PROOF AND DECISION PROCEDURE

We give here two similar proof cut eliminations, one used on BFA conditions and the other on CS□

conditions.

BFA Rule. We already used this cut elimination to deal with Example 9 for conditions involved
in BFA applications. The cuts we want to eliminate are of the form:

a1,a2,u3,v4,w5 ∼ b1, c2, r3, s4, t5

a1

a2

u3 v4

w5

︸ ︷︷ ︸
σ

∼

b1

c2

r3 s4

t5

︸ ︷︷ ︸
τ

BFA

(2)

(7)

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:39

Using Lemma 1, we extract a proof of a1,a2 ∼ b1, c2, which, thanks to the ordered strategy, is in
F(FAs

∗ · Dup∗ · cca2). From Lemma 2 we get that b ≡ c . We then replace (7) by:
a1,u3,w5 ∼ b1, r3, t5

a1

u3 w5

∼
b1

r3 t5

BFA

σ ∼ τ
R

We retrieve a proof in A≻ by pulling R to the beginning of the proof.

CS□ Rule. The CS□ case is more complicated. E.g., take two boxed CS□ conditions for the same
if-free condition a, and two arbitrary CS□ conditions for the right side:

a□
i ≡ ali ari a

(i ∈ {1, 2}) b□
1 ≡ bl1 br1 b

c□2 ≡ cl2 cr2 c

Consider the following cut:
.... (A)

al1,a
l
2,u3 ∼ b

l
1 , c

l
2, r3

.... (B)
al1,a

r
2 ,v4 ∼ b

l
1 , c

r
2 , s4

.... (C)
ar1 ,w5 ∼ b

r
1 , t5

a□
1

a□
2

u3 v4

w5

︸ ︷︷ ︸
σ

∼

b□
1

c□2

r3 s4

t5

︸ ︷︷ ︸
τ

CS
(2)
□

As we did for BFA, we can extract from (A), using Lemma 1, a proof of al1,al2 ∼ bl1 , cl2 . But using the
ordered strategy, we get that this proof is in ACS□ , which we recall is the fragment:

F(CS∗□ · {BFA(b,b
′)}∗ · UnF · FAs

∗ · Dup∗ · cca2)
Therefore we cannot apply Lemma 2. To deal with this cut, we generalize Lemma 2 to the case
where the proof is in ACS□ . For this, we need the extra assumptions that al1,al2,bl1 , cl2 are if-free,
which is a side-condition of CS□.

Lemma 11. For all a,a′,b, c such that their R-normal form is if-free and a =R a′, if there exists a
proof P such that P ⊢npf a,a′ ∼ b, c , then b =R c .

Proof. (sketch) The full proof is given in Appendix G. It uses Proposition 9 to obtain a proof P ′
of a,a′ ∼ b, c without any false and true, and also relies on Proposition 8 and Lemma 2. □

We now deal with the cut above. Using Lemma 11, we know thatb =R c . Sinceb, c are in R-normal
form, b ≡ c and therefore b□

1 =R□ b =R□ c□2 (using well-formedness). Similarly a□
1 =R□ a =R□ a□

2 .
This yields the (cut-free) proof:

.... (A
′)

al1,u3 ∼ b
l
1 , r3

.... (C)
ar1 ,w5 ∼ b

r
1 , t5

a□
1

u3 w5

∼
b□
1

r3 t5

CS□

σ ∼ τ
R□

where (A′) is extracted from (A) by Lemma 7. Finally, to get a proof in A≻, we commute the R□

rewriting to the beginning.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:40 Adrien Koutsos

8.1 Decision Procedure

Now,we explain howwe obtain a decision procedure for our logic. Because the proofs and definitions
are long and technical, we omit most of the details and focus instead on giving a high level sketch
of the proof and decision procedure.

Spurious Conditions. A condition b without if_then_else_ and in R-normal form is said to be
spurious in t if, when R-normalizing t , the condition b disappears. Formally, b is spurious in t if
b < cond-st(t ↓R). E.g., the condition eq(n0, n1) is spurious in:

if eq(n0, n1) then д(n) else д(n)

We say that a basic condition β , which may not be if-free, is spurious in t if all its leaf terms are
spurious in t (i.e. leave-st(β ↓R) ∩ cond-st(t ↓R) = ∅). As we saw in Example 2, we may need to
introduce spurious basic conditions to carry out a proof. Still, we need to bound such terms. To
do this, we characterize the basic conditions that cannot be removed: basically, a basic condition
is α-bounded in a proof of t ∼ t ′ if it is not spurious in t or t ′, or if it is a guard for a decryption
appearing in a α-bounded condition of t ∼ t ′ (indeed, we cannot remove a decryption’s guards, as
this would not yield a valid cca2 instance).
We let ⊢npfα be the restriction of ⊢npf to proofs such that all basic conditions appearing in the

derivation are α-bounded. Using the cut eliminations we introduced earlier, plus some additional
cut eliminations that are given in Appendix G, we can show the following completeness result (the
full proof is in Appendix H).

Lemma 12. ⊢npfα is complete with respect to ⊢npf.

Bounding α-bounded Basic Conditions. Finally, it remains to bound the size of α-bounded basic
conditions. Since basic conditions can be nested (e.g. a basic condition can contain decryption
guards, which are themselves basic conditions etc), we need to bound the length of sequences of
nested basic conditions.
Given a sequence of nested basic conditions β1 <st · · · <st βn , (where u <st v iff u . v and

u ∈ st(v)), we show that we can associate to each βi a “frame term” λi ∈ B(t , t ′) (where B(t , t ′) is
a set of terms of bounded size w.r.t. |t | + |t ′ |). Basically, λi is obtained from βi by “flattening” it: we
remove all decryption guards, and replace the content of every encryption {m}n

pk
by a term {m̃}n

pk
,

where m̃ is if-free and in B(t , t ′). Moreover, we show that, for every Sl -normalized basic terms β ,γ
and their associated frame terms λ, µ, if λ ≡ µ then β ≡ γ (this result is similar to Proposition 8).
Since the βis are all pair-wise distinct (as <st is strict), and since for every i , the frame term λi

uniquely characterizes βi , we know that the λi s are pair-wise distinct. Using a pigeon-hole argument,
this shows that n ≤ |B(t , t ′)|. Then, by induction on the number of nested basic conditions, we
show a triple exponential upper-bound in |t | + |t ′ | on the size of the basic conditions appearing in
a cut-free proof of t ∼ t ′.

Decision Procedure. To conclude, we show that there exists a non-deterministic procedure that,
given two terms t and t ′, non-deterministically guesses a set of α-bounded basic terms that can
appear in a proof P of P ⊢npfα t ∼ t ′ (in triple exponential time in |t | + |t ′ |). Then the procedure
guesses the rule applications, and checks that the candidate derivation is a valid proof (in polynomial
time in the candidate derivation size). This yields a 3-NExpTime decision procedure that shows the
decidability of our problem.

Theorem (Main Result). The following problem is decidable:

Input: A ground formula ®u ∼ ®v .
Question: Is Ax ∧ ®u ≁ ®v unsatisfiable?

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:41

8.2 The Pure Case

In this section, we specialize the decision procedure to the pure case, where there is no cryptographic
axioms: we replace the cca2 axiom schema by the reflexivity axiom modulo alpha-renaming. Two
vectors of terms ®u and ®v are alpha-equal, which we write ®u ≡α ®v , if and only if there exists a
bijection θ : N → N from names to names such that ®u ≡ ®vθ . Then, Reflα is the axiom schema:

®u ∼ ®v
Reflα when ®u ≡α ®vθ

We let Axpure be the set of axioms obtained from Ax by removing the cca2 axiom schema, and
adding the Reflα axiom schema, for reflexivity module alpha-renaming of names. The following
lemma gives a necessary condition on t and ′ for the formula t ∼ t to be derivable using Axpure.
Basically, t and t ′ must be R-equal to the same simple term s , modulo alpha-renaming of each basic
terms in s (note that the renaming can be different for each basic term).

Lemma 13. For any ground terms t , t ′, if there exists a proof P using axioms Axpure of t ∼ t ′, then:

t =R u ≡ C[(s1, . . . , sn) ⋄ (sn+1, . . . , sm)] and t ′ =R u ′ ≡ C[(s ′1, . . . , s
′
n) ⋄ (s

′
n+1, . . . , s

′
m)]

where C[] is an if-context and:

• for every 1 ≤ i ≤ m, si is an if-free term in R-normal form, such that:

si ≡α s ′i and si ∈ st(t ↓R) ∪ st(t ′ ↓R) or s ′i ∈ st(t ↓R) ∪ st(t
′ ↓R)

Moreover, the names of si and s
′
i all appear in st(t) ∪ st(t ′).

• there exists a derivation of u ∼ u ′ in F(CS∗ · {BFA(b,b ′)}∗ · FAs
∗ · Dup∗ · Reflα).

• No condition appears twice on the same branch of u (resp. u ′).

Proof (sketch). First, we note that since the cca2 axiom schema already allow for reflexivity
module alpha-renaming of names, we have Axpure ⊆ Ax. Hence, from Lemma 12, we can restrict
ourselves to proofs in ⊢npfα . To conclude, we look at proofs in ⊢npfα that only use reflexivity modulo
alpha-renaming, to deduce the shape of t and t ′. The details are given in Appendix H. □

Example 16. let д() ∈ G and n, n′, n1, n2 ∈ N . Consider the goal t ∼ t ′ where:

t ≡ if д(n) then ⟨n , n1⟩

else ⟨n , n2⟩

and t ′ ≡ ⟨n , n′⟩

Then we have the derivation:
where θ = {n′ 7→ n1}

д(n), ⟨n , n1⟩ ∼ д(n), ⟨n , n
′⟩

Reflα
where θ = {n′ 7→ n2}

д(n), ⟨n , n2⟩ ∼ д(n), ⟨n , n
′⟩

Reflα

if д(n) then ⟨n , n1⟩

else ⟨n , n2⟩
∼
if д(n) then ⟨n , n′⟩

else ⟨n , n′⟩

CS

t ∼ t ′
R

Using the notations of Lemma 13, we have t =R C[s1 ⋄ (s2, s3)] and t =R C[s ′1 ⋄ (s
′
2, s
′
3)] where:

C[x ⋄ (y, z)] ≡ if x then y else z s1 ≡ д(n) ≡ s
′
1

s ′2 ≡ ⟨n , n
′⟩ and s2 ≡ s ′2{n′ 7→ n1} s ′3 ≡ ⟨n , n

′⟩ and s3 ≡ s ′3{n′ 7→ n2}

Remark that we have a different substitution in each branch. ⋄

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:42 Adrien Koutsos

Simplifying P . Consider a derivation of t ∼ t ′ of the form given by Lemma 13. Since all condi-
tions appearing in the derivation are if-free, we can replace every BFA(b,b ′) application by a CS
application. Moreover, we can assume that all Reflα applications are on formulas containing no
function symbols (i.e. only names), and that there are no Dup rule applications, by repeating the
following proof rewritings:

®u , f (®v) ∼ ®u ′, f (®v ′)
Reflα =⇒ ®u , ®v ∼ ®u ′, ®v ′

Reflα

®u , f (®v) ∼ ®u ′, f (®v ′)
FAs

®u ,v ∼ ®u ′,v ′
Reflα

®u ,v,v ∼ ®u ′,v ′,v ′
Dup =⇒ ®u ,v,v ∼ ®u ′,v ′,v ′

Reflα

Therefore, we can assume that P is in F(R · CS∗ · FAs

∗ · Reflα), where leaves contain only names.

Decision Procedure for the Pure Case. We let w = C[(σ1, . . . ,σn) ⋄ (σn+1, . . . ,σm)] be the term
obtained fromu andu ′ by having, for every 1 ≤ i ≤ m, σi be a term in {si ; s ′i }∩ (st(t ↓R)∪ st(t ′ ↓R))
(which is always possible). To obtain back u (resp. u ′) from w , we just need to know the alpha-
renaming used in each branch.

In every branch ofw , either at least half the conditions belong to u, or at least half the conditions
belong to u ′. Moreover, every branch of u and u ′ does not contain the same condition twice.
Consequently, at least half ofw conditions do not appear twice. Sincew ’s conditions are all members
of st(t ↓R) ∪ st(t ′ ↓R), it follows that that each branch ofw contains at most 2.N conditions, where
N is the cardinal of st(t ↓R) ∪ st(t ′ ↓R). We deduce thatw is a binary tree of depth at most 2.N + 1
(2.N different conditions plus the leaf), labeled by terms in st(t ↓R) ∪ st(t

′ ↓R). Therefore,w is of
exponential size in N .

Sincew is of exponential size in N , it has at most exponentially many leaves. Therefore, the proof
P has at most exponentially many application of Reflα . To guess an application of Reflα , we just
need to guess a renaming of the names of t ′ into the names of t (indeed, u and u ′ use only names
of t and t ′). Upper-bounding this by the number of functions from the names of t ′ into the names
of t , each renaming is of size at most |t | |t ′ | . Consequently, we can guess all Reflα applications in
time |t | |t ′ | times the number of leaves ofw (which is exponential in N).
Putting everything together, we obtain the following non-deterministic decision procedure to

decide if t ∼ t ′ can be derived using Axpure:
• Guess the termw , by non-deterministically guessing a tree of depth at most 2.N + 1, and a
labeling of the tree using st(t ↓R) ∪ st(t

′ ↓R). This can be done in exponential time in N .
• Guess all the alpha-renaming, again in exponential time in N . This allow us to compute the
terms u and u ′.
• Check that t =R u. This can be done in polynomial time in |u | + |t ↓R .9 Similarly, we check
that t ′ =R u ′. If both checks succeed, we know that t ∼ t ′ can be derived using Axpure.

Since |t ↓R | is of size at most exponential in |t |, the decision procedure is in 2-NExpTime (one
exponential less than the general case).

9 CONCLUSION

We designed a decision procedure for a fragment of the Bana-Comon indistinguishability logic.
This allows to automatically verify that a protocol satisfies some security property. Our result can
be reinterpreted, in the cryptographic game transformation setting, as a cut elimination procedure
9Doing this in polynomial time is not completely trivial. We R-normalize t (but not u , as this would cause an exponential
blow-up), and then check that t and u are equal branch by branch. We omit the details.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:43

that guarantees that all intermediate games introduced in a proof are of bounded size w.r.t. the
protocol studied.
A lot of work remains to be done. First, our decision procedure is in 3-NExpTime, which is a

high complexity. But, as we do not have any lower-bound, there may exist a more efficient decision
procedure. Finding such a lower-bound is another interesting direction of research. Then, our
decidability result was proven for cca2 only. While the complete ordered strategies presented in
Section 6 apply to any cryptographic assumptions, some of the properties used to prove decidabil-
ity are specific to the ind-cca2 cryptographic assumption (in particular the characterization of
Section 7). Consequently, extending our decidability result to other cryptographic assumptions (e.g.
euf-cma) is not straightforward, and requires further research.

ACKNOWLEDGMENTS

We thank Hubert Comon for his help and useful comments.
Most of this work was conducted while the author was at the LSV, ENS Paris-Saclay, France. This

work was also partially conducted while the author was at the Max Planck Institute for Security
and Privacy, Germany.
This research has been partially funded by the French National Research Agency (ANR) under

the project TECAP: ANR-17-CE39-0004-01.

REFERENCES

[1] Martín Abadi and Phillip Rogaway. 2002. Reconciling Two Views of Cryptography (The Computational Soundness of
Formal Encryption). J. Cryptology 15, 2 (2002), 103–127.

[2] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J. Alex Halderman, Nadia
Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella
Béguelin, and Paul Zimmermann. 2015. Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice. In ACM

Conference on Computer and Communications Security. ACM, 5–17.
[3] Michael Backes, Ankit Malik, and Dominique Unruh. 2012. Computational soundness without protocol restrictions. In

ACM Conference on Computer and Communications Security. ACM, 699–711.
[4] Michael Backes, Esfandiar Mohammadi, and Tim Ruffing. 2014. Computational Soundness Results for ProVerif -

Bridging the Gap from Trace Properties to Uniformity. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer,
42–62.

[5] Gergei Bana, Rohit Chadha, and Ajay Kumar Eeralla. 2018. Formal Analysis of Vote Privacy Using Computationally
Complete Symbolic Attacker. In ESORICS (2) (LNCS, Vol. 11099). Springer, 350–372.

[6] Gergei Bana, Rohit Chadha, Ajay Kumar Eeralla, and Mitsuhiro Okada. 2020. Verification Methods for the Computa-
tionally Complete Symbolic Attacker Based on Indistinguishability. ACM Trans. Comput. Log. 21, 1 (2020), 2:1–2:44.

[7] G. Bana and H. Comon-Lundh. 2012. Towards Unconditional Soundness: Computationally Complete Symbolic Attacker.
In Principles of Security and Trust, 2012 (LNCS, Vol. 7215). Springer, 189–208.

[8] G. Bana and H. Comon-Lundh. 2014. A Computationally Complete Symbolic Attacker for Equivalence Properties. In
2014 ACM Conference on Computer and Communications Security, CCS ’14. ACM, 609–620.

[9] Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, Yassine Lakhnech, Benedikt Schmidt, and Santi-
ago Zanella Béguelin. 2013. Fully automated analysis of padding-based encryption in the computational model. In
ACM Conference on Computer and Communications Security. ACM, 1247–1260.

[10] Gilles Barthe, Marion Daubignard, Bruce M. Kapron, Yassine Lakhnech, and Vincent Laporte. 2010. On the Equality of
Probabilistic Terms. In Logic for Programming, Artificial Intelligence, and Reasoning - 16th International Conference,

LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised Selected Papers (LNCS, Vol. 6355), Edmund M. Clarke and Andrei
Voronkov (Eds.). Springer, 46–63.

[11] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin. 2011. Computer-Aided Security Proofs for the Working
Cryptographer. In Advances in Cryptology - CRYPTO, 2011 (LNCS, Vol. 6841). Springer, 71–90.

[12] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. 2000. Public-Key Encryption in a Multi-user Setting: Security
Proofs and Improvements. In EUROCRYPT (LNCS, Vol. 1807). Springer, 259–274.

[13] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. 1998. Relations Among Notions of Security for
Public-Key Encryption Schemes. In CRYPTO (LNCS, Vol. 1462). Springer, 26–45.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:44 Adrien Koutsos

[14] Mihir Bellare and Phillip Rogaway. 2006. The Security of Triple Encryption and a Framework for Code-Based
Game-Playing Proofs. In EUROCRYPT (LNCS, Vol. 4004). Springer, 409–426.

[15] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Alfredo Pironti, and Pierre-Yves Strub. 2014. Triple
Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS. In IEEE Symposium on Security and

Privacy. IEEE Computer Society, 98–113.
[16] Bruno Blanchet. [n.d.]. ProVerif: Cryptographic protocols verifier in the formal model. available at http://proseccco.

gforge..inria.fr/personal/bblanchet/proverif/.
[17] Bruno Blanchet. 2008. A Computationally Sound Mechanized Prover for Security Protocols. IEEE Trans. Dependable

Sec. Comput. 5, 4 (2008), 193–207.
[18] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In FOCS. IEEE

Computer Society, 136–145.
[19] Chin-Liang Chang and Richard C. T. Lee. 1973. Symbolic logic and mechanical theorem proving. Academic Press.
[20] V. Cheval, H. Comon-Lundh, and S. Delaune. 2017. A procedure for deciding symbolic equivalence between sets of

constraint systems. Inf. Comput. 255 (2017), 94–125.
[21] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. 2018. DEEPSEC: Deciding Equivalence Properties in Security

Protocols Theory and Practice. In 2018 IEEE Symposium on Security and Privacy, SP 2018. IEEE, 529–546.
[22] Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. 2015. Decidability of Trace Equivalence for Protocols with

Nonces. In CSF. IEEE Computer Society, 170–184.
[23] H. Comon and A. Koutsos. 2017. Formal Computational Unlinkability Proofs of RFID Protocols. In 30th Computer

Security Foundations Symposium, 2017. IEEE Computer Society, 100–114.
[24] Hubert Comon-Lundh, Véronique Cortier, and Guillaume Scerri. 2013. Tractable Inference Systems: An Extension

with a Deducibility Predicate. In CADE (LNCS, Vol. 7898). Springer, 91–108.
[25] Hubert Comon-Lundh, Véronique Cortier, and Eugen Zalinescu. 2010. Deciding security properties for cryptographic

protocols. application to key cycles. ACM Trans. Comput. Log. 11, 2 (2010), 9:1–9:42.
[26] Nachum Dershowitz and Jean-Pierre Jouannaud. 1990. Rewrite Systems. In Handbook of Theoretical Computer Science,

Volume B: Formal Models and Sematics (B). Elsevier and MIT Press, 243–320.
[27] Emanuele D’Osualdo, Luke Ong, and Alwen Tiu. 2017. Deciding Secrecy of Security Protocols for an Unbounded

Number of Sessions: The Case of Depth-Bounded Processes. In CSF. IEEE Computer Society, 464–480.
[28] Alain Finkel and Philippe Schnoebelen. 2001. Well-structured transition systems everywhere! Theor. Comput. Sci. 256,

1-2 (2001), 63–92.
[29] Gérard P. Huet. 1980. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems: Abstract

Properties and Applications to Term Rewriting Systems. J. ACM 27, 4 (1980), 797–821.
[30] Charanjit S. Jutla and Arnab Roy. 2012. Decision Procedures for Simulatability. In ESORICS (LNCS, Vol. 7459). Springer,

573–590.
[31] Adrien Koutsos. 2019. The 5G-AKA Authentication Protocol Privacy. In IEEE European Symposium on Security and

Privacy, EuroS&P 2019, Stockholm, Sweden, June 17-19, 2019. IEEE, 464–479. https://doi.org/10.1109/EuroSP.2019.00041
[32] Gavin Lowe. 1995. An Attack on the Needham-Schroeder Public-Key Authentication Protocol. Inf. Process. Lett. 56, 3

(1995), 131–133.
[33] S. Meier, B. Schmidt, C. Cremers, and D. Basin. 2013. The TAMARIN Prover for the Symbolic Analysis of Security

Protocols. In 25th International Conference on Computer Aided Verification, CAV’13. Springer-Verlag, 696–701.
[34] Guillaume Scerri and Ryan Stanley-Oakes. 2016. Analysis of Key Wrapping APIs: Generic Policies, Computational

Security. In IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016.
IEEE Computer Society, 281–295. https://doi.org/10.1109/CSF.2016.27

[35] Victor Shoup. 2004. Sequences of games: a tool for taming complexity in security proofs. IACR Cryptology ePrint

Archive 2004 (2004), 332. https://eprint.iacr.org/2004/332.

Outline of the Electronic Appendix. We prove local confluence of our term rewriting system in
Appendix A. In Appendix B, we define the cryptographic axioms cca2, and prove some property of
these axioms. In Appendix C, we prove, through a cut elimination procedure, that we can use an
eager reduction strategy for some rules of R. We then define a normal form for derivations, and
prove that we can assume w.l.o.g. that derivations are in normal form in Appendix D. We prove
key properties of terms appearing in derivation in normal form in Appendix E, and in Appendix F
we characterize subterms that corresponds to detours in proof. We use this characterization in
Appendix G to show a first main proof cut elimination lemma. We prove a second main proof cut

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

http://proseccco.gforge..inria.fr/personal/bblanchet/proverif/
http://proseccco.gforge..inria.fr/personal/bblanchet/proverif/
https://doi.org/10.1109/EuroSP.2019.00041
https://doi.org/10.1109/CSF.2016.27
https://eprint.iacr.org/2004/332

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:45

elimination lemma in Appendix H, and show that the resulting derivations contain only subterms
of bounded size.

A LOCAL CONFLUENCE OF R

In this section, we prove that for every user-chosen ordering ≻u , the term rewriting system→R≻u

is locally confluent on ground terms. We give below the most interesting critical pairs, and show
how we join them. For every critical pair, we underline the starting term.
• Critical Pairs R1/(R1 ∪ R2 ∪ R3 ∪ R4): we only show the critical pairs involving π1(_) (the
critical pairs with π2(_) are similar), and for eq(_, _). The critical pairs involving dec(_, _) are
similar to the critical pairs involving π1(_), and the critical pairs for 0(_) are trivial.

if b then u else v ←2
if b then π1(⟨u , w⟩) else π1(⟨v , w⟩) ←

π1(⟨if b then u else v , w⟩) → if b then u else v

w ← if b thenw elsew ←2
if b then π1(⟨w , u⟩) else π2(⟨w , v⟩) ←

π1(⟨w , if b then u else v⟩) → w

true ← eq(if b then u else v, if b then u else v)

→ if b then eq(u, if b then u else v) else eq(v, if b then u else v)

→ if b then (if b then eq(u,u) else eq(u,v)) else eq(v, if b then u else v)

→ if b then eq(u,u) else eq(v, if b then u else v)

→ if b then true else eq(v, if b then u else v)

→∗ if b then true else true

→ true

• Critical Pairs R2/R2: we assume that b ≻lpou c . The other possible orderings are handled in
the same fashion.

if c then (if b then f (u, s) else f (v, s)) else (if b then f (u, t) else f (v, t)) ←2

if c then f (if b then u else v, s) else f (if b then u else v, t) ←

f (if b then u else v, if c then s else t)

→ if b then f (u, if c then s else t) else f (v, if c then s else t)

→2
if b then (if c then f (u, s) else f (u, t)) else (if c then f (v, s) else f (v, t))

→∗ if c then (if b then f (u, s) else f (v, s)) else (if b then f (u, t) else f (v, t))

• Critical Pairs R2/R3:

f (u,w) ← f (if true then u else v,w) → if true then f (u,w) else f (v,w) → f (u,w)

f (u,v) ← f (if b then u else u,v) → if b then f (u,v) else f (u,v) → f (u,v)

if b then f (u, s) else f (w, s) ←

f (if b then u elsew, s) ←

f (if b then (if b then u else v) elsew, s)

→ if b then f (if b then u else v, s) else f (w, s)

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:46 Adrien Koutsos

→ if b then (if b then f (u, s) else f (v, s)) else f (w, s)

→ if b then f (u, s) else f (w, s)

• Critical Pairs R2/R4: we assume that a ≻lpou b ≻
lpo

u c ≻
lpo

u d . The other possible orderings are
handled in the same fashion.

if d then (if b then (if a then u else v) elsew) else (if c then (if a then u else v) elsew) ←∗

if a then if d then (if b then u elsew) else (if c then u elsew)
else if d then (if b then v elsew) else (if c then v elsew)

←2

if a then (if (if d then b else c) then u elsew) else (if (if d then b else c) then v elsew) ←

if (if d then b else c) then (if a then u else v) elsew

→ if d then (if b then (if a then u else v) elsew) else (if c then (if a then u else v) elsew)

• Critical Pairs R3/R3:
u ← if true then u else u → u

u ← if true then u else v ← if true then (if true then u else v) elsew

→ if true then u elsew → u

if b then u else v ← if b then (if b then u else v) else (if b then u else v)

→ if b then u else (if b then u else v) → if b then u else v

• Critical Pairs R3/R4:

if a then u else v ←

if b then (if a then u else v) else (if a then u else v)

→ if a then (if b then u else (if a then u else v)) else (if b then v else (if a then u else v))

→2
if a then if a then (if b then u else u) else (if b then u else v)

else if a then (if b then v else u) else (if b then v else v)

→2
if a then (if b then u else u) else (if b then v else v)

→2
if a then u else v

• Critical Pairs R4/R4:we assume that a≻lpou b ≻
lpo

u c . The other possible orderings are handled
in the same fashion.

if c then if b then (if a then u else s) else (if a then v else s)
else if b then (if a then u else t) else (if a then v else t)

←2

if c then (if a then (if b then u else v) else s) else (if a then (if b then v else u) else t) ←

if a then (if b then u else v) else (if c then s else t)

→ if b then (if a then u else (if c then s else t)) else (if a then v else (if c then s else t))

→2
if b then if c then (if a then u else s) else (if a then u else t)

else if c then (if a then v else s) else (if a then v else t)

→∗ if c then if b then (if a then u else s) else (if a then v else s)
else if b then (if a then u else t) else (if a then v else t)

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:47

B THE cca2 AXIOMS

We define and prove correct a recursive set of axioms for an ind-cca2 encryption scheme. For the
sack of simplicity, we first ignore all length constraints. We explain how length constraints are
added and handled to the logic in Section B.2.

Multi-Users ind-cca2 Game. Consider the following multi-users ind-cca2 game: the adversary
receives n public-keys. For each key pki , he has access to a left-right oracle OLR(pki ,b) that takes
two messagesm0,m1 as input and returns {mb }

nr
pki

, where b is an internal random bit uniformly
drawn at the beginning by the challenger (the same b is used for all left-right oracles) and nr is a
fresh nonce. Moreover, for all key pairs (pki , ski), the adversary has access to an ski decryption
oracle Odec(ski), but cannot call Odec(ski) on a cipher-text returned by OLR(pki ,b) (to do this, the
two oracles use a shared memory where all encryption requests are logged). The advantage of an
adversary against this game and the multi-user ind-cca2 security are defined as usual.

It is known that if an encryption scheme is ind-cca2 then it is also multi-users ind-cca2 (see [12]).
Therefore, we allow multiple key pairs to appear in the cca2 axioms, and multiple encryptions over
different terms using the same public key (each encryption corresponds to one call to a left-right
oracle).

Decryption Guards. If we want the following to hold in any computational model
dec

(
t
[
{u1}

n1
pk
, . . . , {un}

nn
pk

]︸ ︷︷ ︸
s

, sk
)
∼ dec

(
t
[
{v1}

n1
pk
, . . . , {vn}

nn
pk

]︸ ︷︷ ︸
s ′

, sk
)

then we need to make sure that s is different from all {ui }ni
pk

and that s ′ is different from all {vi }ni
pk
.

This is done by introducing all the unwanted equalities in if_then_else_ tests and making sure
that we are in the else branch of all these tests, so as to have a “safe call” to the decryption oracle.
Moreover, the adversary is allowed to use values obtained from previous calls to the decryption
oracle in future calls.

To do this, we use the following function:

Definition 25. We define the function else
∗ by induction:

else
∗(∅,x) ≡ x

else
∗ ((eq(a,b)) :: Γ,x) ≡ if eq(a,b) then 0(x) else else∗(Γ,x)

Example 17. Let u ≡ t[{v1}n
1
r

pk
, {v2}

n
2
r

pk
]. Then:

else
∗
((
eq(u, {v1}

n
1
r

pk
), eq(u, {v2}

n
2
r

pk
)
)
, dec(u, sk)

)
≡

if eq(u, {v1}
n
1
r

pk
) then 0(dec(u, sk)) else if eq(u, {v2}

n
2
r

pk
) then 0(dec(u, sk)) else dec(u, sk)

Morally, this represents a safe call to the decryption oracle. ⋄

Definition of cca2. We use the following notations: for any finite set K of valid private keys,
K ⊑d ®u holds if for all sk ∈ K , the secret key sk appears only in decryption position in ®u ;
nodec(K, ®u) denotes that for all sk(n) ∈ K , the only occurrences of n are in subterms pk(n);
hidden-rand(®r ; ®u) denotes that for all nr ∈ ®r , nr appears only in encryption randomness position
and is not used with two distinct plaintexts.
We are now going to define by induction the cca2 axiom. In order to do this we define by

induction a binary relation RKccaa2
on cca2 executions, where K is the finite set of private keys used

in the terms (corresponding to the public keys sent by the challenger).

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:48 Adrien Koutsos

Definition 26. LetK be a set of private keys. (ϕ,Xenc,Xdec,σrand,θenc, λdec) is a cca2 execution if:
• ϕ is a vector of ground terms in T(F ,N).
• Xenc and Xdec are two disjoint sets of variables used as handles for, respectively, encryptions
and decryptions.
• σrand is a substitution from Xenc to N .
• θenc and λdec are substitutions from, respectively, Xenc and Xdec, to ground terms in T(F ,N).

σrand, θenc and λdec co-domains are the sets of, respectively, encryption randomness, encryption
oracle calls and decryption oracle calls in ϕ. Intuitively, we have:

(ϕ,Xenc,Xdec,σrand,θenc, λdec)R
K
ccaa2
(ψ ,Xenc,Xdec,σ

′
rand
,θ ′

enc
, λ′

dec
)

when we can build ϕ andψ using function symbols, matching encryption oracle calls and matching
decryption oracle calls.

Definition 27. Let K be a finite set of private keys. We define the binary relation RKccaa2
by

induction:
(1) No Call to the Oracles: if K ⊑d ϕ then (ϕ, ∅, ∅, ∅, ∅, ∅)RKccaa2 (ϕ, ∅, ∅, ∅, ∅, ∅) for every se-

quence ϕ of ground terms in T(F ,N) such that nodec(K ;ϕ).
(2) Encryption Case: Let x a fresh variable that does not appear in Xenc ∪ Xdec, sk be a secret

key in K and pk the corresponding public key. Then:(
(ϕ, {u}nr

pk
),Xenc ∪ {x},Xdec,σrand ∪ {x 7→ nr },θenc ∪ {x 7→ {u}

nr
pk
}, λdec

)
RKccaa2

(
(ψ , {v}

n
′
r

pk
),Xenc ∪ {x},Xdec,σ

′
rand
∪ {x 7→ n

′
r },θ

′
enc
∪ {x 7→ {v}

n
′
r

pk
}, λ′

dec

)
if there exist t , t ′ ∈ T (F\0,N ,Xenc) such that:
• (ϕ,Xenc,Xdec,σrand,θenc, λdec)R

K
ccaa2
(ψ ,Xenc,Xdec,σ

′
rand
,θ ′

enc
, λ′

dec
)

• u ≡ tλdec, v ≡ t
′λ′

dec

• nodec(K ; t , t ′), which ensures that the only decryptions are calls to the oracle.
• fresh(nr , n

′
r ;ϕ,u,ψ ,v) and hidden-rand(Xencσrand ∪ Xencσ ′

rand
;ϕ,u,ψ ,v)

(3) Decryption Case: Let sk ∈ K , pk the corresponding public key and z be a fresh variable.
Then:(
(ϕ, else∗(l , dec(u, sk))) ,Xenc,Xdec ∪ {z},σrand,θenc, λdec ∪ {z 7→ else

∗(l , dec(u, sk))}
)

RKccaa2

(
(ψ , else∗(l ′, dec(v, sk))) ,Xenc,Xdec ∪ {z},σ

′
rand
,θ ′

enc
, λ′

dec
∪ {z 7→ else

∗(l ′, dec(v, sk))}
)

if there exists t ∈ T (F\if,0,N ,Xenc,Xdec) such that:
• (ϕ,Xenc,Xdec,σrand,θenc, λdec)R

K
ccaa2
(ψ ,Xenc,Xdec,σ

′
rand
,θ ′

enc
, λ′

dec
)

• u ≡ tθencλdec and v ≡ tθ ′encλ′dec.
• Consider the set Yu of variables x ∈ Xenc such that the encryption binded to x directly
appears in u, i.e. appears outside of another encryption. That is, x must appear in the term
u where we substituted every encryption {_}nx

pk
∈ codom(θenc) by {0}nx

pk
:

xσrand ∈ u
{
{0}nx

pk
/{_}nx

pk
| {_}nx

pk
∈ codom(θenc)

}
↓R

Then l is the sequence of guards l ≡ (eq(u,y1), . . . , eq(u,ym)) where (y1, . . . ,ym) =
sort(Yuθenc).
Similarly, l ′ ≡ (eq(v,y ′1), . . . , eq(v,y ′m)) where (y ′1, . . . ,y ′m) = sort(Yuθ

′
enc
)10.

• nodec(K ; t) and hidden-rand(Xencσrand ∪ Xencσ ′
rand

;ϕ,u,ψ ,v)
10Remark that we use, for v , the set Yu defined using u . As we will see later, this is not a problem because Yu = Yv .

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:49

where sort is a deterministic function sorting terms according to an arbitrary linear order.

Remark 5. In the decryption case, we add a guard only for encryption that appear directly in u.
Without this restriction, we would add one guard eq(u,xθenc) for every x ∈ Xenc such that xθenc is
an encryption using public-key pk.

For example, if Xenc = {x0,x1,x2} and θenc = {x0 7→ α0,x1 7→ α1,x2 7→ α2} where:
α0 7→ {m0}

n0
pk

α1 7→ {m1}
n1
pk

α2 7→ {α1}
n2
pk

then to guard dec(д(α2), sk), we need to add three guards, eq(д(α2),α0), eq(д(α2),α1) and eq(д(α2),α2).
This yields the term:

if eq(д(α2),α0) then 0(dec(д(α2), sk))
else if eq(д(α2),α1) then 0(dec(д(α2), sk))
else if eq(д(α2),α2) then 0(dec(д(α2), sk))
else dec(д(α2), sk)

But here, the adversary, represented by the adversarial function д, is computing the query to the
decryption oracle using only α2. Hence, it cannot use α1, which is hidden by the encryption, nor
α0 which does not appear at all. Therefore, there is no need to add the guards eq(д(α2),α0) and
eq(д(α2),α1), since д has a negligible probability of returning α0 or α1.
To remove unnecessary guards when building the decryption oracle call dec(u, sk), we require

that eq(u,α) is added to the list of guards if and only if α ≡ {_}n
pk

appears directly in u. This yields
smaller axioms, e.g. the term dec(д(α2), sk) is guarded by:

if eq(д(α2),α2) then 0(dec(д(α2), sk))
else dec(д(α2), sk)

Finally, the sort function is used to ensure that guards are always in the same order, which guarantees
that two calls with the same terms are guarded in the same way. ⋄

We can now define the recursive set of axioms ccaa2 and show their validity. We also state and
prove a key property of these axioms.

Definition 28. ccaa2 is the set of atomic axioms ϕ ∼ ψµ, where µ is a renaming of names in N
and there exist two cca2 executions Y,Y ′ such that:
Y = (ϕ,Xenc,Xdec,σrand,θenc, λdec) Y ′ = (ψ ,Xenc,Xdec,σ

′
rand
,θ ′

enc
, λ′

dec
) Y RKccaa2

Y ′

In that case, we say that (Y,Y ′) is a valid ccaa2 application, and ϕ ∼ ψµ is a valid ccaa2 instance.

Proposition 10. All formulas in cca
a
2 are computationally valid if the encryption scheme is

ind-cca2.

Proof. First, ϕ ∼ ψµ is computationally valid if and only if ϕ ∼ ψ is computationally valid.
Hence, w.l.o.g. we consider µ empty. LetMc be a computational model where the encryption and
decryption symbol are interpreted as an ind-cca2 encryption scheme. Let ϕ ∼ ψ be a valid instance
of ccaa2 such that [[ϕ]] 0Mc

[[ψ]] i.e. there is a PPTM A that has a non-negligible advantage of
distinguishing these two distributions.

Since ϕ ∼ ψ is an instance of cca2 we know that there exist two cca2 executions such that:
(ϕ,Xenc,Xdec,σrand,θenc, λdec)R

K
ccaa2
(ψ ,Xenc,Xdec,σ

′
rand
,θ ′

enc
, λ′

dec
)

We are going to build from ϕ andψ a winning attacker against the multi-user ind-cca2 game.
This attacker has access to a LR oracle and a decryption oracle for all keys in K . We are going

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:50 Adrien Koutsos

to build by induction on RKccaa2
a algorithm B that samples from [[ϕ]] or [[ψ]] (depending on the

oracles internal bit). The algorithm B uses a memoisation technique: it builds a store whose keys
are subterms of ϕ,ψ already encountered and variable in Xenc ∪ Xdec, and values are elements of
theMc domain.

(1) (ϕ, ∅, ∅, ∅, ∅, ∅)RKccaa2 (ϕ, ∅, ∅, ∅, ∅, ∅): for every term t in the vector ϕ, B samples from [[t]] by
induction as follows:
• if t is in the store then B returns its value.
• nonce n: B draws n uniformly at random and stores the drawn value.
Remark that nodec(K,ϕ) ensures that n is not used in a secret key sk appearing in K ,
which we could not compute. If it is a public key pk, either the corresponding secret key sk
is such that sk ∈ K and the challenger sent us a random sample from [[pk]], or sk does not
appear in K and then B can draw the corresponding key pair itself.
• f (t1, . . . , tn), then B inductively samples the function arguments ([[t1]], . . . , [[t1]]) and then
samples from [[f]] ([[t1]], . . . , [[t1]]). B stores the value at the key f (t1, . . . , tn).

(2) Encryption Case:(
(ϕ, {u}nr

pk
),Xenc ∪ {x},Xdec,σrand ∪ {x 7→ nr },θenc ∪ {x 7→ {u}

nr
pk
}, λdec

)
RKccaa2

(
(ψ , {v}

n
′
r

pk
),Xenc ∪ {x},Xdec,σ

′
rand
∪ {x 7→ n

′
r },θ

′
enc
∪ {x 7→ {v}

n
′
r

pk
}, λ′

dec

)
Since we have fresh(nr , n′r ;ϕ,u,ψ ,v) we know that the top-level terms do not appear in the
store. It is easy to check that B inductive definition is such that B store has a value associated
with every variable in Xenc ∪ Xdec and that, if x ∈ Xenc, then the store value of x is either
sampled from [[xθenc]] or from [[xθ ′enc]] (depending on the challenger internal bit), and that if
x ∈ Xdec then the store value of x is either sampled from [[xλdec]] or from [[xλ′

dec
]] (depending

on the challenger internal bit). We also observe that if the challenger internal bit is 0 then for
allw :

OLR(pk,b)([[u]], [[v]]) = OLR(pk,b)([[u]],w)

Similarly if the challenger internal bit is 1 then for allw :

OLR(pk,b)([[u]], [[v]]) = OLR(pk,b)(w, [[v]])

B samples two values α , β such that if the challenger internal bit is 0 then α is sampled from
[[u]] and if the challenger internal bit is 1 then β is sampled from [[v]]. Therefore whatever
the challenger internal is bit, OLR(pk,b)(α , β) is sampled from OLR(pk,b)([[u]], [[v]]):
• α is sampled from [[u]] using the case 1 algorithm. Remark that when we encounter a
decryption under sk′ ∈ K , we know that it was already sampled and can therefore retrieve
it from the store.
• similarly, β is sampled from [[v]] using the case 1 algorithm.
The condition nodec(K ; t , t ′) ensures that no secret key fromK appears inu,v anywhere else
than in decryption positions for already queried oracle calls (which can therefore be retrieved
from the store), and the two conditions fresh(nr , n′r ;ϕ,u,ψ ,v) and hidden-rand(Xencσrand ∪
Xencσ

′
rand

;ϕ,u,ψ ,v) ensure that all randomness used by the challenger left-right oracles do
not appear anywhere else than in encryption randomness position for the corresponding
left-right oracle calls.
We store the result of the left-right oracle call at key x .

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:51

(3) Decryption Case:

((ϕ, else∗(l , dec(u, sk))) ,Xenc,Xdec ∪ {z},σrand,θenc, λdec ∪ {z 7→ else
∗(l , dec(u, sk))})

RKccaa2

(
(ψ , else∗(l ′, dec(v, sk))) ,Xenc,Xdec ∪ {z},σ

′
rand
,θ ′

enc
, λ′

dec
∪ {z 7→ else

∗(l ′, dec(v, sk))}
)

We know that u ≡ tθencλdec and v ≡ tθ ′encλ′dec. B uses the case 1 algorithm to sample γ from
[[tθencλdec]] or [[tθ ′encλ′dec]] depending on the challenger internal bit. nodec(K ; t) ensures that
no call to the decryption oracles are needed and hidden-rand(Xencσrand∪Xencσ ′

rand
;ϕ,u,ψ ,v)

guarantee that the randomness drawn by the challenger for LR oracle encryptions do not
appear in t .
Observe that all calls to OLR(pk,b) have already been stored. Let x1θenc, . . . ,xpθenc be the
corresponding keys in the store. Hence if γ is equal to any of the values stored at keys
x1θenc, . . . ,xpθenc then B return [[0]](γ), otherwise B can call the decryption oracle Odec(sk)
on γ .
As we observed in Remark 5, if the challenger internal bit is 0, checking whether γ is different
from the values sampled from [[x1θenc]], . . . , [[xpθenc]] amounts to checking whether γ is
different from the values sampled from [[y1]], . . . , [[ym]], except for a negligible number of
samplings. Therefore we are sampling from the correct distribution (up to a negligible number
of samplings).
Moreover, the set of variables x ∈ Xenc such that the encryption binded to x in θenc appears
directly in the left decryption u:

xσrand ∈ u
{
{0}nx

pk
/{_}nx

pk
| {_}nx

pk
∈ codom(θenc)

}
↓R

is exactly the set of variables x such that the encryption binded to x in θ ′
enc

appears directly
in the right decryption v :

xσrand ∈ v
{
{0}nx

pk
/{_}nx

pk
| {_}nx

pk
∈ codom(θ ′

enc
)
}
↓R

Hence, if the internal bit is 1 then checking whether γ is different from the values sampled
from [[x1θ ′enc]], . . . , [[xpθ ′enc]] amounts to checking whether γ is different from the values
sampled from [[y ′1]], . . . , [[y ′m]], except for a negligible number of samplings.
We store the result at key z.

The attacker against the multi-user ind-cca2 game simply returnsA(B). Since B samples either
from [[ϕ]] if b = 0 or from [[ψ]] if b = 1 (up to a negligible number of samplings), and since A
has a non-negligible advantage of distinguishing [[ϕ]] from [[ψ]] we know that the attacker has a
non-negligible advantage against the multi-user ind-cca2 game. □

B.1 Closure Under Restr

To close our logic under Restr, we need the atomic axioms to be closed. Therefore, we let cca2 be
the closure of ccaa2 under Restr.

Definition 29. cca2 is the set of formula ϕ ∼ ψ such that we have the derivation:

ϕ ′ ∼ ψ ′
ccaa2

ϕ ∼ ψ
Restr

The main contribution of this sub-section, given below, states that any instance ®u ∼ ®v of cca2
can be automatically extended into an instance ®u ′ ∼ ®v ′ of ccaa2 of, at most, polynomial size.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:52 Adrien Koutsos

Proposition 11. For every instance ®u ∼ ®v of cca2, there exists ®u 1, ®v 1 such that ®u , ®u 1 ∼ ®v , ®v 1
is an instance of cca

a
2 (modulo Perm) and | ®u 1 | + | ®v 1 | is of polynomial size in | ®u | + | ®v |. We let

completion(®u ∼ ®v) be the formula ®u , ®u 1 ∼ ®v , ®v 1.

Proof. We first show how to extend an instance of cca2 into an instance of ccaa2 . Let (ui)i ∈I ∼
(vi)i ∈I be an instance of ccaa2 . Let I ′ ⊆ I , we want to extend (ui)i ∈I ′ ∼ (vi)i ∈I ′ into an instance of
ccaa2 . Let ϕ ≡ (ui)i ∈I ,ψ ≡ (vi)i ∈I , since (ui)i ∈I ∼ (vi)i ∈I is an instance of ccaa2 we have:

(ϕ,Xenc,Xdec,σrand,θenc, λdec)R
K
ccaa2
(ψ ,Xenc,Xdec,σ

′
rand
,θ ′

enc
, λ′

dec
)

For all x ∈ Xenc ∪Xdec, we let ix ∈ I be the index corresponding to xθencλdec ∼ xθ ′
enc
λ′
dec

. Moreover,
for all x ∈ Xdec, we let tix be the context used for the decryption in the definition of RKccaa2 (hence
we have xλdec ≡ else

∗(l , dec(tixθencλdec), sk)).

Outline. We are going to define I lr , I l , I r ⊆ I and (ũi)i ∈J , (ṽi)i ∈J (where J = I lr ∪ I l ∪ I r) such
that:
• I lr , I l , I r are pair-wise disjoints and I ′ ⊆ I lr .
• (ũi)i ∈J ∼ (ṽi)i ∈J is an instance of ccaa2 of polynomial size with respect to

∑
i ∈I ′ |ui | + |vi |.

Intuitively, I lr is the subset of indices of I\I ′ of the terms that are subterm of (ui)i ∈I ′ ∼ (vi)i ∈I ′ on
the left and on the right, i.e. for all i ∈ I lr , ui ∈ st((ui)i ∈I ′) and vi ∈ st((vi)i ∈I ′). The terms whose
index is in I lr are easy to handle, as they are immediately bounded by the terms whose indices is
in I ′.
Then, I l is the subset of indices of I\I ′ of the terms that are subterms of (ui)i ∈I ′ ∼ (vi)i ∈I ′ on

the left only (i.e. for every i ∈ I l , we only know that ui ∈ st((ui)i ∈I ′)). Terms with indices in I l are
easy to bound on the left, but not on the right. To bound the right terms, we introduce dummy
messages (by replace encryptions by encryption of д(), where д is an adversarial function symbol
in G). Similarly I r is the subset of indices of I\I ′ of the terms that are subterms of (ui)i ∈I ′ ∼ (vi)i ∈I ′
on the right only.

First, we define I lr , I l , I r , and then we define the corresponding ccaa2 instance (ũi)i ∈J ∼ (ṽi)i ∈J .

Inductive Definition of the Left and Right Appearance Sets. We define by induction on i ∈ I ′ the
sets I li , I ri ⊆ I . Intuitively, I li is the set of indices of I needed so that ui is well-defined (same for I ri
and vi). Let i ∈ I ′, we do a case disjunction on the rule applied to ui ,vi in RKccaa2

:

• No Call to the Oracles: In that case we take I li = I ri = {i}.
• Encryption Case: let t , t ′ ∈ T (F\0,N ,Xdec) such that ui ≡ {tλdec}__ and vi ≡ {t ′λ′dec}

_
_ . To

have ui well-defined, we need all the decryptions in ui to be well-defined (same forvi). Hence
let:

I li = {i} ∪
⋃

x ∈Xdec∩st(t)

I lix I ri = {i} ∪
⋃

x ∈Xdec∩st(t ′)

I rix

• Decryption Case: recall that ui ≡ else
∗(l , dec(u, sk)) where u ≡ tiθencλdec. Therefore we

need all encryption in Xenc ∩ st(ti) and decryption in Xdec ∩ st(ti) to be defined, on the left
and on the right. Hence we let:

I li = {i} ∪
⋃

x ∈(Xdec∪Xenc)∩st(ti)

I lix I ri = {i} ∪
⋃

x ∈(Xdec∪Xenc)∩st(ti)

I rix

We let:

I lr =
⋃
i ∈I ′

I li ∩
⋃
i ∈I ′

I ri I l =
⋃
i ∈I ′

I li ∩
⋃
i ∈I ′

I ri I r =
⋃
i ∈I ′

I li ∩
⋃
i ∈I ′

I ri

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:53

These three sets are disjoint and form a partition of
⋃

i ∈I ′ I
l
i ∪ I

r
i . Remark that for every i ∈ I lj , ui is

a subterm of uj . Hence, for every i ∈ I lr ∪ I l , there exists j ∈ I ′ such that ui is a subterm of uj .

Building the New Instance. We define (by induction on i) the terms (ũi)i ∈J , by letting ũi be:
• ui when i ∈ I lr ∪ I l .
• {д()}n

pk
when i ∈ I r and ui is an encryption, with ui ≡ {_}n

pk
.

• else
∗(l̃ , dec(ũ, sk)) when i ∈ I r and ui is a decryption, where ui ≡ else

∗(l , dec(u, sk)), u ≡
tiθencλdec, l is the sequence of guards l ≡ (eq(u,y1), . . . , eq(u,ym)) where (y1, . . . ,ym) =
sort(Yuθenc). Then we take:
– ũ ≡ ti θ̃encλ̃dec, where θ̃enc = {x 7→ ũix | x ∈ Xenc} and λ̃dec = {x 7→ ũix | x ∈ Xdec}.
– l̃ ≡ (eq(ũ, ỹ1), . . . , eq(ũ, ỹm)) where (ỹ1, . . . , ỹm) = sort(Yu θ̃enc).

Similarly, we define ṽi for every i ∈ J .

Conclusion. Let J = I lr ∪ I l ∪ I r . To conclude, we check that (ũi)i ∈J ∼ (ṽi)i ∈J :
• is a ccaa2 instance. This is done by induction on i ∈ J .
• is of polynomial size w.r.t. (ui)i ∈I ′ ∼ (vi)i ∈I ′ .

We omit the details of the proof of the first point.
For the second point, we first show by induction on i that |I li | ≤ |ui | and |I ri | ≤ |vi |. We deduce

that:
|J | =

��⋃
i ∈I ′

I ri ∪ I
l
i

�� ≤∑
i ∈I ′
|I ri | + |I

l
i | ≤

∑
i ∈I ′
|ui | + |vi |

Let i ∈ I lr ∪ I l , we know that there exists j ∈ I ′ such that ui is a subterm of uj . Since ũi ≡ ui , we
deduce that |ũi | ≤ |uj | ≤

∑
j ∈I ′ |uj | + |vj |.

Let i ∈ I r . If ũi is an encryption then it is of constant size. Assume ũi is a decryption. Then
ũi is the decryption vi where any encryption whose index is in I lr has been replaced by its left
counterpart, and any encryption whose index is in I r has been replaced by a dummy encryption
(the case I l cannot happen, since i ∈ I r). Since there are at most |vi | − 1 such encryptions (as vi
contain at least one occurrence of the dec function symbol), and since any encryption with index
in I lr or I r is upper-bounded by

∑
j ∈I ′ |uj | + |vj |, we get that:

|ũi | ≤ |vi | + (|vi | − 1).
∑
j ∈I ′
|uj | + |vj | ≤ |vi |.

∑
j ∈I ′
|uj | + |vj | ≤

(∑
j ∈I ′
|uj | + |vj |

)2
We deduce that (ũi)i ∈J ∼ (ṽi)i ∈J is of polynomial size in

∑
j ∈I ′ |uj | + |vj |. □

B.2 Length in the cca2 Axioms

If we want the formula {t}r
pk
∼ {t ′}r

′

pk
′ to be a valid application of the cca2 axioms, we need to make

sure that t and t ′ are of the same length. Since the length of terms depend on implementation details
(e.g. how is the pair ⟨_ , _⟩ implemented), we let the user supply implementation assumptions. We
use a predicate symbol EQL(_, _) in the logic, together with some derivation rules DL (supplied by
the user), and we require that they verify the following properties:
• Complexity: for every u,v , we can decide whether EQL(u, v) is a consequence of DL in
polynomial time in |u | + |v |.
• Branch Invariance: for all term b,u,v, t , if EQL(if b then u else v, t) is derivable using DL

then EQL(u, t) and EQL(v, t) are derivable using DL.
We add to all cca2 instances the side condition EQL(ml , mr) for every encryption oracle call on
(ml ,mr). Then, we know that our cca2 instances are valid in any computational modelMc where

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:54 Adrien Koutsos

Length(n) = lη Length(0le) = le

Length(u) = Length(u ′) if u =R u ′ and Length(u), Length(u ′) are not undefined

Length(⟨u , v⟩) = Length(u) + Length(v) + l ⟨ , ⟩ ∀le .Length(padle (u)) = le
∀k .Length({u}n

pk
) = k .l{block} + l {} if Length(u) = k .lblock

∀k .Length(dec(u, sk)) = k .lblock if Length(u) = k .l{block} + l {}

Length(if b then u else v) =

{
Length(u) if Length(u) = Length(v)

undefined otherwise

Fig. 11. Definition of the Length partial function.

the encryption is interpreted as a ind-cca2 encryption scheme, and where the following property
holds: for every ground terms u,v , if EQL(u, v) is derivable using DL, then:

[[length(u)]]Mc
= [[length(v)]]Mc

Example: Block Cipher. We give here an example of derivation rules DL that axiomatize the fact
that the encryption function is built upon a block cipher, taking blocks of length lblock and returning
blocks of length l{block} . The length constant l {} is used to represent the constant length used, e.g.,
for the IV and the HMAC.
We let L be a set of length constants, and we define a length expression to be an expression of

the form
∑
l ∈L kl .l , where L is a finite subset of L and (kl)l ∈L are positive integers. We consider

length expressions modulo commutativity (i.e. 3.l1 + 4.l2 ≈ 4.l2 + 3.l1), and we assume that for
every length expression le , there exists a function symbol padle ∈ F . Intuitively padle is function
padding messages to length l : if the message is too long it truncates it, and if the message is too
short it pads it. Similarly, we assume that for every le , we have a function symbol 0le ∈ F or arity
zero which, intuitively, returns le zeroes. Also, we assume that L contains the following length
constants: l ⟨ , ⟩, lenc , lblock, lη .

We define the Length (partial) function on terms in Figure 11. Then, we let DL be the (recursive)
set of atomic axioms:

Length(u) = Length(v) , undefined

EQL(u, v)

Proposition 12. The function Length is well defined, and the set of axioms DL satisfies the

soundness and branch invariance properties.

Proof. To check that Length is well defined, one just need to look at the critical pairs in the
definition and check that they are joinable. Soundness is easy, as JLengthKMc

is just an under-
approximation of JlengthKMc

in every computational modelMc where the encryption is interpreted
as a block cipher, the padding functions are interpreted as expected etc.

Finally, branch invariance follows directly from the definition of Length(if b then u else v). □

Remark 6. We can allow the user to add any set of length equations, as long as the branch
invariance property holds and the Length function is well-defined. E.g. one may wish to add
equations like Length(A) = Length(B) = Length(C) = lagent. ⋄

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:55

C SHAPE OF THE TERMS

In this section, we give the definitions of S-encryption oracle calls, S-decryption oracle calls, S-
normalized basic terms and S-normalized simple terms, which we omitted in Section 7.

C.1 Definitions

Definition 30. A cca2 trace S is a tuple (K,R, E,D) where:
• K ⊆ {sk(n) | n ∈ N} is a set of secret keys.
• R ⊆ N is a set of encryption randomness.
• E ⊆ {{m}ne

pk(n)
| ne ∈ R ∧ sk(n) ∈ K} is a set of encryptions.

• D ⊆ {dec(m, sk(n)) | sk(n) ∈ K} is a set of decryptions.

We can associate to every cca2 instance a left and a right cca2 trace.

Definition 31. Given a cca2 instance ϕ ∼ ψ and its corresponding ccaa2 application:

(_,Xenc,Xdec,σrand,θenc, λdec)RKccaa2 (_,Xenc,Xdec,σ
′
rand
,θ ′

enc
, λ′

dec
)

we define the left cca2 trace S = l-trace(ϕ ∼ ψ) by:
S = (K,Xencσrand,Xencθenc,Xdecλdec)

We define similarly its right cca2 trace S′ = r-trace(ϕ ∼ ψ).

Let ϕ ∼ ψ be a cca2 instance and S = l-trace(ϕ ∼ ψ) be its left cca2 trace. We use S to define
the normal form of the terms appearing, on the left, in branch using the cca2 instance ϕ ∼ ψ . This
is done through four mutually inductive definitions:
• S-encryption oracle calls are well-formed encryptions.
• S-decryption oracle calls are well-formed decryptions.
• S-normalized basic terms are terms built using function symbols in F\if,0 and well-formed
encryptions and decryptions.
• S-normalized simple terms are combinations of normalized basic terms using if_then_else_.

Later, we prove that all intermediate terms in proofs can be assumed to be in these normal forms.
To keep the proof tractable, this will be done in two steps. Therefore we introduce two versions of
some forms. E.g., we define S-simple terms to be terms having a particular form, and S-normalized

simple terms to be S-simple terms satisfying some further properties.
A public/private key pair is valid if the same name has been used to generate the keys.

Definition 32. A valid public/private key pair is a pair of terms (pk(n), sk(n)) where n is a name.

An S-encryption oracle call is a valid encryption in E of the form {u}ne
pk
, where ne is a valid

encryption randomness in R, pk is a valid public/private key pair appearing inK and the encrypted
plain-text u is, inductively, a S-normalized simple term.

Definition 33. A S-encryption oracle call is a term of the form {u}ne
pk

where:
• {u}ne

pk
∈ E, ne ∈ R, (pk, sk) is a valid public/private key pair and with sk ∈ K .

• u is a S-normalized simple terms.

Similarly, a S-decryption oracle calls t is valid decryption inD under secret key sk ∈ K such that
all other encryptions and decryptions appearing directly in t , either in guards or in the decrypted
term, are themselves S-encryption oracle calls and S-decryption oracle calls.

Definition 34. A S-decryption oracle call is a term of the form C
[
®д ⋄ (si)i≤p

]
in D where:

• (pk, sk) is valid public/private key pair and sk ∈ K .

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:56 Adrien Koutsos

 t1 tn
· · ·

®b

nr

pk

eq(t,α1)

0(dec(t, sk)) · · ·

eq(t,αn)

0(dec(t, sk)) dec(t, sk)

Encryption Oracle Call Decryption Oracle Call
Convention: α1, . . . ,αn are the encryptions of E under pk appearing directly in t.

Fig. 12. Shapes of Encryption and Decryption Oracle Calls

• There exists a context u if-free and in R-normal form, and a term t such that:
t ≡ u[(α j)j , (deck)k] ∀i < p, si ≡ 0(dec(t , sk)) sp ≡ dec(t , sk) ∀д ∈ ®д, д ≡ eq(t ,α j)

• For all j, α j is a S-encryption oracle call.
• For all k , deck is a S-decryption oracle call.

(α j)j are called u’s encryptions. We often write (deck)k to denote a vector of decryption oracle
calls.

Figure 12 gives a visual representation of the shapes of encryption and decryption oracle calls.
A S-basic term is a term build using S-encryption oracle calls, S-decryption oracle calls, function

symbols in F\if,0 and names in N , with some restrictions. More precisely, we require that:
• We do not use names in R, as this would contradict cca2 randomness side-conditions.
• We do not decrypt terms using secret keys in K .

Definition 35. A S-basic term is a term of the formU [®w, (α j)j , (deck)k] where:
• U and ®w are if-free,U does not contain 0(_), fresh(R; ®w) and nodec(K, ®w).
• (α j)j are S-encryption oracle calls.
• (deck)k are S-decryption oracle calls.

A S-basic condition is a S-basic term of sort bool.
A S-normalized basic term is a a S-basic term that has been built without introducing any

R-redex.
Definition 36. A S-normalized basic term is a S-basic term of the formU [®w, (α j)j , (deck)k]where:
• (α j)j are encryptions under (pkj , skj)j , and (deck)k are decryptions under (pkk , skk)k .
• U [®w, ({[]j }

0
pkj
)j , (dec([]k , skk))k] is in R-normal form.

A S-normalized basic condition is a S-normalized basic term of sort bool.
Finally, a S-simple term is a term build using only S-basic term and the if_then_else_ function

symbols. Moreover, if we use only S-normalized basic term, then we get an a S-normalized simple

term.
Definition 37. A S-simple term (resp. S-normalized simple term) is a term of the form C[®b ⋄ ®u]

where:

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:57

• C is an if-context.
• ®b are S-basic conditions (resp. S-normalized basic conditions).
• ®u are S-basic terms (resp. S-normalized basic terms).

Remark 7. For all term u, the guards of a Sl -decryption oracle calls are Sl -normalized basic
terms. But the leaves of S-decryption oracle calls are not S-normalized basic terms, because they
do not satisfy the condition nodec(K, ·). ⋄

Orderings. The inductive definition ofS-normalized basic terms naturally gives us a well-founded
relation <S

ind
between S-normalized basic terms, S-normalized simple terms, S-decryption oracle

calls and S-encryption oracle calls.

Definition 38. <S
ind

is the reflexive and transitive closure of the relation <S defined as:
• For all S-encryption oracle call t ≡ {u}r

pk
, u <S t .

• For all S-decryption oracle call:
t ≡ C

[
®д ⋄ (si [(α j)j , (deck)k])i≤p

]
for all j, α j <S t and for all k , deck <S t .
• For all S-normalized basic term t ≡ U [®w , (α j)j , (deck)k], for all j, α j <S t and for all k ,
deck <

S t .
• For all S-normalized simple term t ≡ C[®b ⋄ ®u], ∀b ∈ ®b ,b <S t and ∀u ∈ ®u ,u <S t .

We let ≤S
bt
be union of the restriction of <S

ind
to the instances where the left term is aS-normalized

basic term, and the set of guards appearing in the right-term. Formally:

Definition 39. Let <′S
ind

be the reflexive and transitive closure of the order <′S , which has the
same definition than <S , apart for the S-decryption oracle call:
• For all S-decryption oracle call:

t ≡ C
[
®д ⋄ (si [(α j)j , (deck)k])i≤p

]
for all j, α j <′S t ; for all k , deck <′S t ; and for all b ∈ ®д , b <′S t .

We finally define ≤S
bt
by requiring that for every terms u,v :

u ≤S
bt
v iff u <′S

ind
v and u is a S-normalized basic term

C.2 Eager Reduction for AFAs

We now prove that if we have a proof P ⊢AFAs

β ∼ β ′ where β and β ′ are basic terms, then we can
rewrite β and β ′ into normalized basic terms γ ,γ ′ such that there exists P ′ no larger than P with
P ′ ⊢AFAs

γ ∼ γ ′.
To prove this, we may have to extract several sub-proofs of P , and then recombine them into

a single proof P ′. While the rule FAs and Dup can be easily re-combined, this is not the case for
cca2. Therefore, given a finite family of cca2 instances (®ui ∼ ®vi)i ∈I , we give a sufficient condition
guaranteeing that they can be recombined into a single proof (®ui)i ∈I ∼ (®vi)i ∈I .

Definition 40. For every P in AFAs
, we let instance(P) be the unique cca2 instance used in P .

Example 18. If P is the proof:

®w, (αi)i ∈I , (decj)j ∈J ∼ ®w, (α
′
i)i ∈I , (dec

′
j)j ∈J

cca2
....

C[®w, (αi)i ∈I , (decj)j ∈J] ∼ C[®w, (α
′
i)i ∈I , (dec

′
j)j ∈J]

FAs

∗ · Dup∗

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:58 Adrien Koutsos

then instance(P) is the cca2 instance ®w, (αi)i ∈I , (decj)j ∈J ∼ ®w, (α ′i)i ∈I , (dec
′
j)j ∈J . ⋄

We say that a cca2 instanceϕ is a sub-instance of another cca2 instanceψ if the set of encryptions
and decryptions of ϕ are included into, respectively, the set of encryptions and decryptions ofψ .
Moreover, we require that the symmetric part of ϕ contains only sub-terms of the symmetric part
ofψ .

Definition 41. A cca2 instance:

®w0, (αi)i ∈I0 , (decj)j ∈J0 ∼ ®w0, (α
′
i)i ∈I0 , (dec

′
j)j ∈J0

is a sub-instance of a cca2 instance:

®w, (αi)i ∈I , (decj)j ∈J ∼ ®w, (α
′
i)i ∈I , (dec

′
j)j ∈J

if and only if st(®w0) ⊆ st(®w), I0 ⊆ I and J0 ⊆ J .

The following proposition allows to re-combine several proofs P1, . . . , Pn , as long as there exists
a cca2 instance ®u ∼ ®v such that for every i , instance(Pi) is a sub-instance of ®u ∼ ®v .

Proposition 13. Let (βn)n∈N and (β ′n)n∈N be such that for every n ∈ N , there exists a proof

Pn ⊢AFAs
βn ∼ β ′n . If there exists a cca2 instance ®u ∼ ®v such that for every n, instance(Pn) is a

sub-instance of ®u ∼ ®v , then there exists P such that:

• P ⊢AFAs
(βn)n∈N ∼ (β

′
n)n∈N

• instance(P) is a sub-instance of ®u ∼ ®v .
• P contain the same number of FAs rules than the derivations P1, . . . , PN altogether.

Proof. Axioms FAs and Dup verify a frame property. More precisely:

if ®u ′ ∼ ®v ′

®u ∼ ®v
Ax then for every ®wl, ®wr of the same length

®wl, ®u
′ ∼ ®wr, ®v

′

®wl, ®u ∼ ®wr, ®v
Ax

Therefore we can easily combine all proofs (Pn)n∈N . For everyn ∈ N , we let instance(Pn) ≡ ®un ∼ ®u ′n .
Moreover, we let (®vn)n∈N ∼ (®v ′n)n∈N be the formula obtained from (®un)n∈N ∼ (®u ′n)n∈N by removing
all duplicates, and where for every n, ®vn ⊆ ®un and ®v ′n ⊆ ®u ′n . Then we have the derivation:

(®vn)n∈N ∼ (®v
′
n)n∈N

(®un)n∈N ∼ (®u
′
n)n∈N

Dup
∗

....
(βn)n∈N ∼ (β

′
n)n∈N

Now, we want to conclude by applying the cca2 axiom. The problem is that cca2 does not verify
the frame property. But using the fact that for every n, ®un ∼ ®u ′n is a sub-instance of ®u ∼ ®v , and
that (®vn)n∈N ∼ (®v ′n)n∈N does not contain duplicates, we can check that (®vn)n∈N ∼ (®v ′n)n∈N is a
sub-instance of ®u ∼ ®v . Hence we have a valid derivation in AFAs

. □

We now have the tools to formally state and prove Lemma 9.

Lemma 14. Let P ⊢AFAs
β ∼ β ′ and S,S′ be the, respectively, left and right cca2 trace corresponding

to instance(P). If β and β ′ are, respectively, S-basic term and S′-basic term then there exist γ =R β
and γ ′ =R β

′
such that:

• γ and γ ′ are, respectively, S-normalized basic term and S′-normalized basic term.

• There exists P ′ such that P ′ ⊢AFAs
γ ∼ γ ′, instance(P ′) is a sub-instance of instance(P) and P ′

contains less FAs rules than P .

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:59

Proof. Let S = (K,R, E,D). We prove the lemma by induction on the number of FAs rules in
P . If P has no FAs application, then we have three cases:
• β and β ′ are identical, up to α-renaming. In that case, we can check that γ ≡ β ↓R and
γ ′ ≡ β ′ ↓R satisfy the wanted properties.
• β and β ′ are, resp., a S-encryption oracle call and a S′-encryption oracle call. Since an
S-encryption oracle call is also a S-normalized basic term, we conclude by taking γ ≡ β and
γ ′ ≡ β ′.
• β and β ′ are, resp., a S-decryption oracle call and a S′-decryption oracle call. Similarly, a
S-decryption oracle call is also a S-normalized basic term. We conclude by taking γ ≡ β and
γ ′ ≡ β ′.

For the inductive case, β and β ′ must start with the same function symbol. Hence:
β ≡ f (β1, . . . , βn) β ′ ≡ f (β ′1, . . . , β

′
n)

First, we check that β1, . . . , βn are S-basic terms. Indeed, the only way that some βi could not be a
S-basic term was if β was an S-encryption oracle call or a S-decryption oracle call. Then, f must
be {_}__ or dec(_, _):
• in the former case, β ≡ {_}ne_ where ne ∈ R and one of the βi is equal to ne. Since β is a
S-basic term, we know that fresh(R; ne). Contradiction.
• in the latter case, β ≡ dec(_, sk(n)) where sk(n) ∈ K . Since β is a S-basic term, we know that
nodec(K, sk(n)). Contradiction.

Hence β1, . . . , βn are S-basic terms. Similarly β ′1, . . . , β ′n are S′-basic terms.
Using Lemma 1, we know that for every i , we can extract from P a proof of Qi ⊢AFAs

βi ∼ β
′
i .

One can check that the procedure described in Lemma 1 is such that P has as many FA applications
than all the (Qi)i altogether. By induction hypothesis, let:

P1 ⊢AFAs

γ1 ∼ γ
′
1, . . . , Pn ⊢AFAs

γn ∼ γ
′
n

be such that for every i ,γi =R βi ,γ ′i =R β ′,γi is aS-normalized basic term andγ ′i is aS′-normalized
basic term, instance(Pi) is a sub-instance of instance(P) and Pi has less FAs applications than Qi .
By Proposition 13, there exists a proof P ′ of:

P ′ ⊢AFAs

(γn)n∈N ∼ (γ
′
n)n∈N

such that instance(P ′) is a sub-instance of instance(P) and P ′ has as many FAs applications than the
(Pi)i altogether. Since Pi has less FAs applications thanQi , and since P has as many FAs applications
than all the (Qi)i altogether, P ′ has less FAs applications than P .

f (β1, . . . , βn) and f (β ′1, . . . , β
′
n) can only have R1 redexes at the top-level. If they have no R1

redexes, then f (β1, . . . , βn) and f (β ′1, . . . , β
′
n) are, respectively, S-normalized basic term and S′-

normalized basic term. We conclude by applying FAf :
.... (P

′)

γ1, . . . ,γn ∼ γ
′
1, . . . ,γ

′
n

f (γ1, . . . ,γn) ∼ f (γ ′1, . . . ,γ
′
n)

FAf

Therefore, assume f (β1, . . . , βn) or f (β ′1, . . . , β ′n) have a R1 redex. We have several cases:
• Both left and right sides can be reduced by πi (⟨x1 , x2⟩) → xi . W.l.o.g. we assume i = 1:

⟨γ1 , γ2⟩ ∼
〈
γ ′1 , γ

′
2
〉

π1(⟨γ1 , γ2⟩) ∼ π1(
〈
γ ′1 , γ

′
2
〉
)
FAπ1

We look at the next rule in P ′:

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:60 Adrien Koutsos

– If it is cca2, then ⟨γ1 , γ2⟩ and
〈
γ ′1 , γ

′
2
〉
are the same terms, up to α-renaming. We conclude

by taking γ ≡ γ1 and γ ′ ≡ γ ′1 .
– Or it is a function application:

.... (Q)
γ1,γ2 ∼ γ

′
1,γ
′
2

⟨γ1 , γ2⟩ ∼
〈
γ ′1 , γ

′
2
〉 FA⟨ , ⟩

π1(⟨γ1 , γ2⟩) ∼ π1(
〈
γ ′1 , γ

′
2
〉
)
FAπ1

Using Lemma 1, we extract from Q a proof Q ′ ⊢AFAs

γ1 ∼ γ
′
1 no larger than Q . We conclude

by taking γ ≡ γ1 and γ ′ ≡ γ ′1 :
.... (Q

′)

γ1 ∼ γ
′
1

π1(⟨γ1 , γ2⟩) ∼ π1(
〈
γ ′1 , γ

′
2
〉
)
R

(8)

• Only one side can be reduced by πi (⟨x1 , x2⟩) → xi . Therefore the next rule applied in (P ′)
must be cca2 (since the head function symbols differ). But in a cca2 application, we cannot
have ⟨_ , _⟩ ∼ f ′(_) with f ′ , ⟨ , ⟩. Contradiction.
• Both sides can be reduced by dec({x}r

pk(n)
, sk(n)) → x . Hence n = 2, γ1,γ2 ≡ {u}r

pk(n)
, sk(n),

γ ′1,γ
′
2 ≡ {u

′}r
′

pk(n′)
, sk(n′) and P ′ is of the form:

{u}r
pk(n)
, sk(n) ∼ {u ′}r

′

pk(n′)
, sk(n′)

dec({u}r
pk(n)
, sk(n)) ∼ dec({u ′}r

′

pk(n′)
, sk(n′))

FAdec

We look at the next rule applied on {u}r
pk(n), _ ∼ {u

′}r
′

pk(n′), _. If it is a function application
then we have a shortcut using Lemma 1, as we did for (8). If it is cca2, we have two cases:
– {u}r

pk(n) and {u
′}r
′

pk(n′) are the same terms, up to α-renaming. We conclude by taking γ ≡ u
and γ ′ ≡ u ′.

– {u}r
pk(n) and {u

′}r
′

pk(n′) are, respectively, a S-encryption oracle call and a S′-encryption
oracle call. Then sk(n) ∈ K . Since γ2 ≡ sk(n) and γ2 is a S-normalized basic term, we know
that nodec(K, sk(n)). Contradiction.

• Only one side can be reduced by dec({x}r
pk(n)
, sk(n)) → x . Then (P ′) is necessarily of the

form:
{t}r

pk(n)
, sk(n) ∼ {t ′}r

′

p′, sk
′(n′)

dec({t}r
pk(n)
, sk(n)) ∼ dec({t ′}r

′

p′, sk
′(n′))

FAdec

We look at the next rule applied to {t}r
pk(n)

and {t ′}r ′p′ :
– If it is cca2, thenp ′ ≡ pk(n′). Therefore the right side can be reduced by dec({x}r

pk(n′)
, sk(n′))

→ x . Contradiction.
– If it is FA{_}__ then there is a proof of _pk(n), sk(n) ∼ _,p ′, sk(n′), which implies that p ′ ≡
pk(n′). Therefore the right side can be reduced by dec({x}r

pk(n′)
, sk(n′)) → x . Contradiction.

• Both side can be reduced by eq(x ,x) → true. In this case the proof cut elimination is trivial.
• Only one side can be reduced by eq(x ,x) → true. Therefore we have a proof of the form:

t , t ∼ t ′, t ′′

eq(t , t) ∼ eq(t ′, t ′′)
FAeq(,)

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:61

Using Lemma 2 we know that t ′ ≡ t ′′, therefore both side can be reduced by eq(x ,x) → true.
Contradiction. □

D PROOF FORM

D.1 Early Proof Form

We showed in Lemma 8 that:
F

(
(2Box + R□)

∗ · CS∗□ · {BFA(b,b
′)}∗ · UnF · FAs

∗ · Dup∗ · cca2
)

(A≻)

is complete forF((CS+FA+R+Dup+cca2)∗). Let us consider a proof P following this ordering. The
only branching rule in A≻ is the CS□ rule, which has two premises. Hence after having completed
all the CS□ applications we know that the proof will be non-branching and in A

BFA
. We want to

name each branch of the proof tree, and its corresponding instance of the cca2 axiom. To do so, we
index each branch of the proof tree P by some l ∈ L where L is a finite set of labels.

Definition 42. We let ⊢b be the proof system ⊢ with branch annotations. When P ⊢b t ∼ t ′,
we let label(P) be the set of labels annotating the branches in P , and for all l ∈ label(P), we let
instance(P , l) be the cca2 instance used in branch l .

When applying the CS□ rule on two boxed conditions b1 b2 b
and b ′1 b ′2 b′

, we know that
the sub-proofs of b1 ∼ b ′1 and b2 ∼ b ′2 lie in the fragmentACS□ . This gives us useful information on
the shape of the terms. To use this, we define the extractl and extractr functions which allow to
retrieve the left and right sub-proofs of, respectively, b1 ∼ b ′1 and b2 ∼ b ′2.

Definition 43. Given a proof P ⊢ ®u ∼ ®v and a position h in the proof P such that:

P |h =
®w ,b1, (ui)i ∼ ®w

′,b ′1, (u
′
i)i ®w ,b2, (vi)i ∼ ®w

′,b ′2, (v
′
i)i

®w ,
(
if b1 b2 b

then ui else vi
)
i ∼ ®w

′,
(
if b ′1 b ′2 b′

then u ′i else v
′
i
)
i

CS□

We let extractl(h, P) be proof of b1 ∼ b ′1 extracted from P |h , and extractr(h, P) be proof of b2 ∼ b ′2
extracted from P |h , using the Restr elimination procedure described in the proof of Lemma 7.

Using this, we define what are proofs in early proof form.

Definition 44. For all terms t , t ′ and proofs P such that P ⊢b
ACS□

t ∼ t ′, we say that P proof in
early proof form if t and t ′ are of the following form:

t ≡ C
[(

bhl bhr bh

)
h∈H
⋄ (ul)l ∈label(P)

]
∧ t ′ ≡ C

[(
b ′hl b ′hr b′h

)
h∈H
⋄

(
u ′l

)
l ∈label(P)

]
where H is a set of positions in P such that:
• for all h ∈ H , the rule applied at position h in P is a CS□ rule on the conditions:(

bhl bhr bh , b
′hl b ′hr b′h

)
• Let Phl = extractl(h, P) and Phr = extractr(h, P), then:

Phl ⊢bACS□
bhl ∼ b ′hl and Phr ⊢bACS□

bhr ∼ b ′hr

and these two proofs are in early proof form.
• label(Phl) ⊆ label(P), and for all l ∈ label(Phl), instance(Phl , l) is a sub-instance of instance(P , l)
(same for label(Phr)).
• For all l ∈ label(P), the proof of ul ∼ u ′l extracted from P is in the fragment A

BFA
.

Moreover, we let cs-pos(P) ≡ H .

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:62 Adrien Koutsos

Proposition 14. For all terms t , t ′ and proofs P such that P ⊢ACS□
t ∼ t ′, there exists a labelling

P ′ of P such that P ′ ⊢b
ACS□

t ∼ t ′ and P ′ is in early proof form.

Proof. We can check that the proof P has the wanted shape and is properly labelled by induction
on the size of the proof, by observing that for all h ∈ cs-pos(P) and x ∈ {l, r}, extractx(h, P) is of size
strictly smaller that P . We only need to do some α-renaming to have the labelling of the sub-proofs
coincide.
Finally we can check that the resulting proof Q is such that for all h ∈ cs-pos(Q), x ∈ {l, r},

for all l ∈ label(extractx(h, P)), the cca2 instance instance(extractx(h, P), l) is a sub-instance of
instance(P , l). This follows from the fact that extractx(h, P) is obtained through theRestr elimination
procedure from P . □

We define below the set index(P) of all positions of P where a CS□ rule is applied. This includes
the set of positions cs-pos(P), as well as the CS□ applications in sub-proofs of conditions b ∼ b ′.
This set is naturally ordered using the prefix ordering on positions.

Definition 45. Let P ⊢b
ACS□

t ∼ t ′ in early proof form.
• We let index(P) be the set of indices where CS□ rules occur in the proof P :

index(P) = cs-pos(P) ∪
⋃

h∈cs-pos(P)

index (extractl(h, P)) ∪ index (extractr(h, P))

• For all h,h′ ∈ index(t , P), we let < be the ancestor relation on positions, defined by h < h′ if
and only if h is a strict prefix of h′.
• For all h = hx, where h ∈ index(P) and x ∈ {l, r}, we let cs-posP (h) = cs-pos(extractx(h, P)).
When there is no ambiguity on the proof P , we write cs-pos(h) instead of cs-posP (h).

We define the set h-branch(l) of positions of P where a CS□ rule is applied on the branch l . Of
course, for all l ∈ label(P), ϵ ∈ h-branch(l) since ϵ is the index of the toplevel proof P .

Definition 46. Let P ⊢b
ACS□

t ∼ t ′ in early proof form. For all l ∈ label(P), we define:

h-branchP (l) = {hx | h ∈ index(P) ∧ x ∈ {l, r} ∧ l ∈ label(extractx(h, P))} ∪ {ϵ}

We abuse the notation and say that h ∈ h-branchP (l) if there exists x ∈ {l, r} such that hx ∈
h-branchP (l). In that case, we say that x is the direction taken at h in l .
We omit the proof P when there is no ambiguity, writing h-branch(l) instead of h-branchP (l).

D.2 Shape of the Terms

For all proofs inA≻, all R rewritings are done at the beginning of the proofs in the (2Box+R□)
∗ part,

and, afterwards, all rules (apart from Dup) only “peel off” terms by removing the top-most function
symbol. Therefore the terms just after (2Box + R□)

∗ characterize the shape of the subsequent proof.
This observation is illustrated in Figure 13. Recall that for all P ⊢b

ACS□
t ∼ t ′ in early proof form,

we have:

t ≡ C
[(

bhl bhr bh

)
h∈H
⋄ (ul)l ∈label(P)

]
and t ′ ≡ C

[(
b ′hl b ′hr b′h

)
h∈H
⋄ (u ′l)l ∈label(P)

]
where for all l ∈ label(P), the extraction from P of the sub-proof of ul ∼ u ′l is in the fragmentA

BFA
.

Therefore, for every l , ul and u ′l are of the form:

ul ≡ Dl
[
(βi,l)i ∈Il ⋄ (γm,l)m∈Ml

]
u ′l ≡ Dl

[
(β ′i,l)i ∈Il ⋄ (γ

′
m,l)m∈Ml

]
where Dl is an if-context and:

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:63

(
bhl bhr bh

)
h∈H

γn0,0

(
βi,0

)
i

γ0,0

· · ·

γnm,m

(
βi,m

)
i

γ0,m

FAs

∗

FAs

∗

·
·
·

FAs

∗

ACS□

·
·
·

ACS□

CS
∗
□

{BFA(b,b ′)}∗

Fig. 13. The shape of the term is determined by the proof.

• (βi,l)i ∈Il and (β ′i,l)i ∈Il are conditions such that the sub-proofs (βi,l ∼ β ′i,l)i ∈Il extracted from
P are in AFAs

.
• (γj,l)j ∈Ml and (γ ′j,l)j ∈Ml are terms such that the sub-proofs (γj,l ∼ γ ′j,l)j ∈Ml extracted from P

are in AFAs
.

Using these notation, we give some definitions:

Definition 47. Let P ⊢b
ACS□

t ∼ t ′ in early proof form. For every l ∈ label(P), we let:

• (b,b ′) ≤ϵ,l
cs∼cs (t ∼ t ′, P) if and only if there exists h0 ∈ cs-pos(P) such that b ≡ bh0 and

b ′ ≡ b ′h0 .
• (β, β ′) ≤ϵ,l

c∼c (t ∼ t
′, P) if and only if there exists i ∈ Il such that β ≡ βi,l and β ′ ≡ β ′i,l

• (γ ,γ ′) ≤ϵ,l
l∼l
(t ∼ t ′, P) if and only if there existsm ∈ Ml such that γ ≡ γm,l and γ ′ ≡ γ ′m,l .

Remark 8. Let P ⊢b
ACS□

t ∼ t ′ in early proof form and L = label(P). Then:

t ≡ C
[
_ ⋄

(
Dl

[
(β)β ≤ϵ,l

c
(t,P) ⋄ (γ)γ ≤ϵ,l

l
(t,P)

])
l ∈L

]
and t ′ ≡ C

[
_ ⋄

(
Dl

[
(β ′)β ′≤ϵ,l

c
(t ′,P) ⋄ (γ

′)γ ′≤ϵ,l
l
(t ′,P)

])
l ∈L

]
⋄

These relations allow use to obtain all pairs of terms appearing at the root level in P . We naturally
define the asymmetric relation ≤x from ≤x∼x:

Definition 48. Let P ⊢b
ACS□

t ∼ t ′ in early proof form. For every l ∈ label(P) and x ∈ {c, l, cs}, we
let:

∀s . s ≤ϵ,l
x
(t , P) if and only if (s, _) ≤ϵ,l

x∼x (t ∼ t
′, P)

Let h ∈ index(P) and x ∈ {l, r}. We lift these relations to hx using the proof extractx(h, P).

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:64 Adrien Koutsos

Definition 49. Let P ⊢b
ACS□

t ∼ t ′ in early proof form. Let l ∈ label(P), h ∈ index(P), x ∈ {l, r}
and b,b ′ be such that extractx(h, P) is a proof of b ∼ b ′. Then:
• For any ∆ ∈ {c∼c, l∼l, cs∼cs}:

∀s, s ′. (s, s ′) ≤hx,l∆ (t ∼ t ′, P) if and only if (s, s ′) ≤ϵ,l∆ (b ∼ b
′, extractx(h, P))

• For any ∆ ∈ {c, l, cs}:

∀s . s ≤hx,l∆ (t , P) if and only if s ≤ϵ,l∆ (b, extractx(h, P))

Remark 9. We extend these notations to proofs P such that P ⊢b
A≻

t ∼ t ′. Let P ′ be such that:

P ≡
P ′

t ∼ t ′
(2Box + R□)

∗

and P ′ ⊢b
ACS□

t0 ∼ t ′0, then (s, s ′) ≤
h,l
∆ (t ∼ t ′, P) if and only if (s, s ′) ≤h,l∆ (t0 ∼ t ′0, P

′) for any
∆ ∈ {c∼c, l∼l, cs∼cs}. We have a similar definition for ∆ ∈ {c, l, cs}. ⋄

D.3 Proof Form and Normalized Proof Form

Definition 50. Let P ⊢b
ACS□

t ∼ t ′ in early proof form and L = label(P). Let Sl be the left trace of
the cca2 instance used in branch l , and S′l be the right trace of instance(P , l):

SPl = l-trace(instance(P , l)) S′Pl = r-trace(instance(P , l))

We say that P is in proof form if and only if, for every l ∈ L:
• for every h ∈ cs-pos(P) and x ∈ {l, r}, the proof extractx(h, P) is in proof forms.
• (β, β ′) ≤ϵ,l

c∼c (t ∼ t
′, P), β is a S-basic term and β ′ is a S′-basic term.

• (γ ,γ ′) ≤ϵ,l
l∼l
(t ∼ t ′, P), γ is a S-basic term and γ ′ is a S′-basic term.

We obtain the definition of normalized proof form by replacing, in the definition above, basic term
by normalized basic term, and proof form by normalized proof form.

We write P ⊢npf t ∼ t ′ whenever P is a proof of t ∼ t ′ in normalized proof form.

Let P ⊢npf t ∼ t ′, we already defined the set of conditions ≤h,l
c
(t , P) used in the BFA rules in

the sub-proof P of at index h and branch l . In the case of proof in normalized proof form, these
conditions are normalized basic condition. Similarly the set of leaf terms ≤h,l

l
(t , P) in the sub-proof

of P of at index h and branch l is a set of normalized basic terms. Recall that a basic term may
contain other basic terms in its subterm. Hence we can define the set of all normalized basic terms
appearing in the subterms of ≤h,l

c
(t , P)∪ ≤h,l

l
(t , P).

Definition 51. For every P ⊢npf t ∼ t ′, for every term s , s ≤h,l
bt
(t , P) if and only if there exists

u(≤h,l
c
∪ ≤

h,l
l
)(t , P) such that s ≤Sl

bt
u.

D.4 Restriction to Proofs in Normalized Proof Form

Definition 52. We let cca2 be the restriction of cca2 to cases ®w , (αi)i , (decj)j ∼ ®w ′, (α ′i)i , (dec
′
j)j

where:
• (α j)j , (α

′
j)j are encryption oracle calls.

• (decj)j , (dec
′
j)j are decryption oracle calls.

Lemma 15. The following strategy is complete for F((CS + FA + R + Dup + cca2)∗):

F((2Box + R□)
∗ · CS∗□ · {BFA(b,b

′)}∗ · UnF · FAs
∗ · Dup∗ · cca2)

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:65

Proof. By Lemma 8, the following strategy is complete for F(CS + FA + R + Dup + cca2):

F((2Box + R□)
∗ · CS∗□ · {BFA(b,b

′)}∗ · UnF · FAs

∗ · Dup∗ · cca2) (A≻)
For every proof P ⊢b t ∼ t ′ in this fragment, we let LP = label(P) the set of branch indices of
P . Moreover, we let SPl = (K

P
l ,R

P
l , E

P
l ,D

P
l) be the left trace of the cca2 instance of branch l , i.e.

SPl = l-trace(instance(P , l)). Finally, we define the order <lP as follows: for all u,u ′ ∈ EPl ∪D
P
l , we

let u <lP u ′ hold if u is a strict subterm of u ′.
We are going to show that for every proof P of t ∼ t ′ inA≻, there exists a proofQ of t ∼ t ′ such

that for every l ∈ label(Q), EQl and DQ
l are sets of, respectively, SQl -encryption oracle calls and

S
Q
l -decryption oracle calls, and the right part of Q and P are the same. We prove this by induction

on the number of elements of
⋃

l E
P
l ∪D

P
l that are not SPl -encryption oracle calls or SPl -decryption

oracle calls.
Let P be a proof of t ∼ t ′, l ∈ LP and let u minimal for <lP which is not a SPl -encryption oracle

call or a SPl -decryption oracle call. We have two cases:
• If u ∈ EPl is an encryption. We know that u ≡ {m}nr

pk
where the corresponding secret key sk

is in KP
l . Let (αk)k be EPl ∩ st(m), and (decn)n be DP

l ∩ st(m). Let C be the smallest context
such that:

m ≡ C[(αk)k , (decn)n]

From the definition of cca2, we know that C[] does not contain the 0(_) function symbol.
We let A be an if-context and (Bi [])i , (Um[])m be if-free contexts in R-normal form such that
C[] =R A[(Bi [])i ⋄ (Um[])m]. Letm0 be the term:

m0 ≡ A[(Bi [(αk)k , (decn)n])i ⋄ (Um[(αk)k , (decn)n])m]

We know thatm0 =R m. We are going to show thatm0 is a SPl -simple term. Since C[] does
not contain the 0(_) function symbol, we know that the contexts (Bi [])i and (Um[])m do not
contain 0(_). By minimality of u, we know that the (αk)k are SPl -encryption oracle calls, and
the (decn)n are SPl -decryption oracle calls. For every k , αk is of the shape αk ≡ {_}nk

pkk
. For

every n, we let skn be the secret key used in decn . Assume that there is some i such that:
m̃ ≡ Bi [({[]k }

nk
pkk
)k , (dec([]n , skn))n]

is not in R-normal form. Since Bi [] is in R-normal form, we can only have a redex at one
of the encryption. More precisely, there must exist some k such that dec({[]k }nk

pkk
, skk) is

a subterm of m̃. By consequence, skk is a subterm of Bi []. But since skk ∈ K
P
l , we know

that st(Bi) does not contain skk (skk can only appear in DP
l). Contradiction. Hence m̃ is

in R-normal form, which implies that (Bi [(αk)k , (decn)n])i are SPl -normalized basic terms.
Similarly we prove that (Um[(αk)k , (decn)n])m are SPl -normalized basic terms. Hencem0 is a
SPl -normalized simple term.
We then rewrite, using R, every occurrence of {m}nr

sk
by {m0}

nr
sk

in branch l of P . We check that
this yields a valid proof Q . The only difficulty lies in making sure that the side-conditions of
the cca2 application for the decryptions still holds. Their is one subtlety here: an encryption
α ≡ {mα }

nα
pk

must be guarded in some dec(u0, sk) iff it appears directly in u0. This side-
condition is preserved as it is stable by any R rewriting (hence in particular the rewriting of
{m}nr

sk
into {m0}

nr
sk
).

We can check that the resulting proof Q of t ∼ t ′ has a smaller number of terms in EQl ∪D
Q
l

which are not SQl -encryption oracle calls or SQl -decryption oracle calls. Since all other

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:66 Adrien Koutsos

branches l ′ ∈ LP\{l} are left unchanged, and since the right part of the proof (corresponding
to t ′) is also left unchanged we can conclude using the induction hypothesis.
• One can check that the case where u ≡ C[(дe)e ⋄ (sa)a≤p] ∈ D

P
l is a decryption cannot

happen. □

We are now ready to prove that ⊢npf is complete.

Lemma 16. The restriction of the fragment A≻ to formulas provable in ⊢npf is complete for:

F((CS + FA + R + Dup + cca2)∗)

Proof. Using Lemma 15, the following strategy is complete forF((CS+ FA+R +Dup+ cca2)∗):

F((2Box + R□)
∗ · CS∗□ · {BFA(b,b

′)}∗ · UnF · FAs

∗ · Dup∗ · cca2)
First we show that this strategy remains complete even if with restrict it to proofs such that the
terms after (2Box + R□)

∗ are in proof form. Let ⊢ACS□
t ∼ t ′, we want to find t0 =R t , t ′0 =R t ′ and

P ′ such that P ′ ⊢npf t ∼ t ′.
By Proposition 14, we know that there exists P such that P ⊢b

ACS□
t ∼ t ′. Let h ∈ index(P), x ∈

{l, r}, h = hx, and let bh,b ′h be such that extractx(h, P) ⊢bACS□
bh ∼ b ′h. First, we prove that we can

ensure that for every (β, β ′)(≤h,l
c∼c ∪ ≤

h,l
l∼l
)(t ∼ t ′, P), the terms β and β ′ are, respectively, SPl -basic

term and S′Pl -basic terms. We know that:

β ≡ B[®w , (α j)j , (deck)k] β ′ ≡ B[®w , (α ′j)j , (dec
′
k)k]

where B and B′ are if-free and ®w , (α j)j , (deck)k ∼ ®w , (α ′j)j , (dec
′
k)k is a sub-instance of instance(P , l).

Since this is a sub-instance, we know that fresh(RPl ; ®w) and nodec(KP
l , ®w). Moreover, using

the fact that instance(P , l) is a cca2 instance, we know that (α j)j and (deck)k are, respectively,
SPl -encryption oracle calls and SPl -decryption oracle calls. Therefore if ®w is if-free then β is a
SPl -basic term.

Assume that ®w is not if-free. Then there exists contexts Be ,Bc ,B0,B1 such that:
B ≡ Be [if Bc then B0 else B1]] =R if Bc then Be [B0] else Be [B1]

Let t0 be the term obtained from t by replacing this occurrence of β by:
if Bc [®w , (α j)j , (deck)k] then (Be [B0])[®w , (α j)j , (deck)k] else (Be [B1])[®w , (α j)j , (deck)k]

Similarly we define t ′0 by replacing β ′ by the corresponding term. Then t0 =R t and t ′0 =R t ′.
Moreover it is easy to check that the formula t0 ∼ t ′0 is provable in ⊢bACS□

, as we replaced one BFA
application by three BFA applications (without changing the encryptions, decryptions or branches
of the proof etc ...).

We replaced B by three terms Bc ,Be [B0],Be [B1] containing strictly less if then else applications.
Hence, by induction, we ensure that all such contexts B are if-free, by repeating the proof rewriting
above. We deduce that there exists a proof Q of t ∼ t ′ where Q is in proof form.

To obtain a normalized proof form, we only have to apply the Lemma 14 to all branches l , and to
commute the new R rewriting to the bottom of the proof. □

E PROPERTIES OF NORMALIZED BASIC TERMS

E.1 Basic Term Extraction

Definition 53. We call a condition context a contextC[]®x such that all holes appear in the condition
part of an if_then_else_. Formally, for every position p, if C |p is a hole []x then p = p ′.0 and there

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:67

exist u and v such that:
C |p′ ≡ if []x then u else v

We say that u is an almost condition context if u a condition context or a hole.
Example 19. We give an example of a condition context C with two holes on the left, and a

context C ′ which is not a condition context on the right (since it has holes in leaf positions):

C ≡

a

©«
[]x

c d

ª®¬
t0 []y

t1 t2

t3
and C ′ ≡

a

©«
[]x

c d

ª®¬
t0 b

[]y []z

t3

⋄

The main goal of this subsection is to show the following lemma.

Lemma 17. For all P ⊢npf t ∼ t ′, for all h, l and β, β ′ ≤h,lbt (t , P), there exists an almost condition

context β̃ ′[] such that:

β ′ ≡ β̃ ′ [β] and leave-st(β ↓R) ∩ cond-st
(
β̃ ′[] ↓R

)
= ∅

Before delving in the proof, we would like to remark that the above lemma is not entirely
satisfactory. Consider the following example:

β0 ≡ eq({if b then s else t}nr
pk(n)
, 0)

=R if b then eq({s}nr
pk(n)
, 0)︸ ︷︷ ︸

β 0
0

else eq({t}nr
pk(n)
, 0)︸ ︷︷ ︸

β 1
0

β1 ≡ eq({if β00 then u else u}
n
′
r

pk(n)
, 0)

where β00 , β10 < cond-st(u ↓R) and s ,R t . Then β00 , β
1
0 < cond-st(β1 ↓R), because β00 disappear

using the rule if x then y else y → y in R. Hence, Lemma 17 could choose β̃1 ≡ β1. Of course this
situation cannot occur, as we cannot have β00 be a subterm of β1 (this contradicts the freshness
side-condition of encryptions’ randomnesses in the cca2 axiom). But we cannot rule this situation
out simply by applying the lemma, we have to make a more in-depth analysis. We would like to a
stronger version of this lemma that somehow directly “includes” the above observation.

To do this we introduce over-approximations leave-st(·) and cond-st(·) of, respectively, leave-st(· ↓R)
and cond-st(· ↓R). Then, we show that Lemma 17 holds for leave-st(·) and cond-st(·).

Definition 54. We define the function leave-st from the set of terms to the set of if-free terms in
R-normal form:

leave-st(u0, . . . ,un) = ∪i≤n leave-st(ui) leave-st(if b then u else v) = leave-st(u,v)

leave-st(f (u0, . . . ,un)) =
{
f (v0, . . . ,vn) ↓R | ∀i ≤ n,vi ∈ leave-st(ui)

}
(∀f ∈ F\if ∪ N)

We define the function cond-st from the set of terms to the set of if-free conditions in R-normal
form:

cond-st(u0, . . . ,un) = ∪i≤ncond-st(ui) cond-st(f (®u)) = cond-st(®u) (∀f ∈ F\if ∪ N)

cond-st(if b then u else v) = cond-st(b) ∪ leave-st(b) ∪ cond-st(u,v)

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:68 Adrien Koutsos

Remark 10. There are multiples over-approximations. For example, assuming that b,u,v,w, s, t
are if-free terms in R-normal forms, there in an over-approximation in the if_then_else_ case:

leave-st
((b

u b

v w

)
↓R

)
= {u,w} leave-st

(b

u b

v w

)
= {u,v,w}

There in another over-approximation in the f case:

leave-st
(
f
(

b

u v
,

b

s t

)
↓R

)
= { f (u, s), f (v, t)}

leave-st
(
f
(

b

u v
,

b

s t

))
= { f (u, s), f (u, t), f (v, s), f (v, t)}

cond-st() inherits from leave-st() over-approximations, and also over-approximates if_then_else_:
indeed, while cond-st(t ↓R) never contains conditions which are spurious in t , the set cond-st(t)
may. E.g.:

cond-st
(

b

u u
↓R

)
= ∅ cond-st

(
b

u u

)
= {b}

⋄

leave-st(·) is a sound over-approximation of leave-st(· ↓R). Moreover, leave-st(·) and leave-st(· ↓R)
coincides on terms in R-normal form. The same properties hold for leave-st(·) and leave-st(· ↓R).

Proposition 15. leave-st and cond-st are sound over-approximations:

• For all u →∗R u ′, leave-st(u) ⊇ leave-st(u ′). Moreover leave-st(u ↓R) = leave-st(u ↓R).

• For all u →∗R u ′, cond-st(u) ⊇ cond-st(u ′). Moreover cond-st(u ↓R) = cond-st(u ↓R).

Proof. The facts that leave-st(u ↓R) = leave-st(u ↓R) and cond-st(u ↓R) = cond-st(u ↓R) are
straightforward to show. Let us prove by induction on→∗R that for all u →∗R u ′, leave-st(u) ⊇
leave-st(u ′). If u ≡ u ′ this is immediate, assume that u →R v →∗R u ′. By induction hypothesis
we know that leave-st(v) ⊇ leave-st(u ′). Therefore, we only need to show that leave-st(u) ⊇
leave-st(v). We do a case disjunction on the rule applied at u →R v (we omit the redundant or
obvious cases):
• u ≡ if b then (if b then s else t) elsew and v ≡ if b then s elsew then:

leave-st(u) = leave-st(s) ∪ leave-st(t) ∪ leave-st(w)

⊇ leave-st(s) ∪ leave-st(w)

= leave-st(v)
• u ≡ if b then s else s and v ≡ s then:

leave-st(u) = leave-st(s) = leave-st(v)
• u ≡ if (if b then a else c) then s else t andv ≡ if b then (if a then s else t) else (if c then s else t):

leave-st(u) = leave-st(s) ∪ leave-st(t) = leave-st(v)
• u ≡ if b then (if a then s else t) elsew andv ≡ if a then (if b then s elsew) else (if b then t elsew):

leave-st(u) = leave-st(s) ∪ leave-st(t) ∪ leave-st(w) = leave-st(v)

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:69

• u ≡ f (®w , if b then ®s else ®t) and v ≡ if b then f (®w , ®s) else f (®w , ®t) then:

leave-st(u) = { f (®w ′, ®w ′′) ↓R | ∀i,w ′i ∈ leave-st(wi) ∧ ∀j,w ′′j ∈ leave-st(sj) ∪ leave-st(tj)}
⊇ { f (®w ′, ®w ′′) ↓R | ∀i,w ′i ∈ leave-st(wi) ∧ ∀j,w ′′j ∈ leave-st(sj)}
∪ { f (®w ′, ®w ′′) ↓R | ∀i,w ′i ∈ leave-st(wi) ∧ ∀j,w ′′j ∈ leave-st(tj)}

⊇ leave-st(f (®w , ®s)) ∪ leave-st(f (®w , ®t))

⊇ leave-st(v)

• (u ≡ πi (⟨s1 , s2⟩), v ≡ si), (u ≡ dec({m}nr
pk(n)
, sk(n)), v ≡ m) and (u ≡ eq(x ,x), v ≡ x) are

trivial.
Similarly, we show by induction on →∗R that for all u →∗R u ′, cond-st(u) ⊇ cond-st(u ′). If

u ≡ u ′ this is immediate, assume that u →R v →∗R u ′. By induction hypothesis we know that
leave-st(v) ⊇ leave-st(u ′). Therefore, we only need to show that leave-st(u) ⊇ leave-st(v). We do a
case disjunction on the rule applied at u →R v (we omit the redundant or obvious cases):
• u ≡ if b then (if b then s else t) elsew and v ≡ if b then s elsew then:

cond-st(u) = cond-st(s, t ,w) ∪ cond-st(b) ∪ leave-st(b)

⊇ cond-st(s,w) ∪ cond-st(b) ∪ leave-st(b)

⊇ cond-st(v)
• (u ≡ if b then (if a then s else t) elsew ,v ≡ if a then (if b then s elsew) else (if b then t elsew))
and (u ≡ if b then s else s , v ≡ s) are simple.
• u ≡ if (if b then a else c) then s else t andv ≡ if b then (if a then s else t) else (if c then s else t)
then:

cond-st(u) = cond-st(b,a, c, s, t) ∪ leave-st(b,a, c) = cond-st(v)
• u ≡ f (®w , if b then ®s else ®t) and v ≡ if b then f (®w , ®s) else f (®w , ®t) then:

cond-st(u) = cond-st(b, ®w , ®s , ®t) ∪ leave-st(b) = cond-st(v)
• (u ≡ πi (⟨s1 , s2⟩), v ≡ si), (u ≡ dec({m}nr

pk(n)
, sk(n)), v ≡ m) and (u ≡ eq(x ,x), v ≡ x) are

trivial. □

Corollary 1. For every term u, leave-st(u) ⊇ leave-st(u ↓R) and cond-st(u) ⊇ cond-st(u ↓R).

Let us show the following helpful propositions:

Proposition 16. For all Sl -normalized basic terms β , β ′ if:

leave-st(β) ∩ leave-st(β ′) , ∅

then we have Sl -normalized basic terms B[®w , (α j)j , (δ
k)k] and B[®w , (α

′j)j , (δ
′k)k] such that:

β ≡ B[®w , (α j)j , (δ
k)k] β ′ ≡ B[®w , (α ′j)j , (δ

′k)k]

∀j, leave-st(α j) ∩ leave-st(α ′j) , ∅ ∀k, leave-st(δk) ∩ leave-st(δ ′k) , ∅
Proof. We have Sl -normalized basic terms B[®w , (α j)j , (δ

k)k] and D[®w ′, (α ′j)j , (δ ′k)k] such that:

β ≡ B[®w , (α j)j , (δ
k)k] β ′ ≡ D[®w ′, (α ′j)j , (δ

′k)k]

Since β , β ′ are Sl -normalized basic terms, we know that:
B[®w , ({[]j }

_
_)j , (dec([]k , _))k] D[®w ′, ({[]j }

_
_)j , (dec([]k , _))k]

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:70 Adrien Koutsos

are in R-normal form, that B[],D[], ®w , ®w ′ are if-free and that B[],D[] do not contain 0(_). Hence:

leave-st(β) =
{
B[®w , (aj)j , (d

k)k] | ∀j,aj ∈ leave-st(α j) ∧ ∀k,dk ∈ leave-st(δk)
}

leave-st(β ′) =
{
D[®w ′, (a′j)j , (d

′k)k] | ∀j,a′j ∈ leave-st(α ′j) ∧ ∀k,d ′k ∈ leave-st(δ ′k)
}

Similarly to what we did in the proof of Lemma 2, we prove that we can assume that B[] ≡ D[]
by induction on the number of hole positions in B[] or D[] such that (B[]) |p differs from (D[]) |p
(modulo hole renaming). Knowing that B[] ≡ D[], it is then straightforward to show that:

®w ≡ ®w ′ ∀j, leave-st(α j) ∩ leave-st(α ′j) , ∅ ∀k, leave-st(δk) ∩ leave-st(δ ′k) , ∅
The base case is trivial, let us prove the inductive case. LetB[®w , (aj)j , (dk)k] andD[®w ′, (a′j)j , (d ′k)k]

be such that:
∀j,k . aj ∈ leave-st(α j) ∧ dk ∈ leave-st(δk) ∀j,k . a′j ∈ leave-st(α ′j) ∧ d ′k ∈ leave-st(δ ′k)

and:
B[®w , (aj)j , (d

k)k] ≡ D[®w ′, (a′j)j , (d
′k)k] ∈ leave-st(β) ∩ leave-st(β ′)

First, observe that if a position p is valid in both B[] and D[], and is not a hole in both contexts,
then B[] and D[] coincide on p.
Let p be the position of a hole in B[] such that p is a valid position in D[], but not a hole (if p is

not valid in D[], invert B[] and D[]). We then have three cases depending on (B[]) |p :
• B contains a hole []x at position p such that β |p ∈ ®w . Then let D̃ be the context D in which
we replaced the term at position p by []y (where y is a fresh hole variable) and let ®̃w ′ be
the terms ®w ′ extended by β |p (binded to []y). Then B differs D̃ on a smaller number of hole
position, therefore we can conclude by induction hypothesis.
• B contains a hole []x at position p such that β |p is an encryption oracle call {m}nr

pk(np)
. Since

{m}nr
pk(np)

∈ El is an encryption in an instance of a cca2 application, we know from the
freshness side-condition that nr does not appear in ®w and that nr ∈ Rl .
Moreover since β ′ is a Sl -normalized basic term, we know that fresh(Rl ; ®w ′). But since p is
a valid non-hole position in D, we have nr ∈ ®w ′. Absurd.
• Similarly if B contains a hole []x at position p such that β |p is a decryption oracle call
dec(m, sk(n)). Since dec(m, sk(n)) is a decryption oracle call we know that sk(n) ∈ Kl .
Moreover since β ′ is a Sl -normalized basic term, we know that nodec(Kl , ®w

′). But since p is
a valid non-hole position in D, we know that either sk(n) ∈ ®w ′ or n ∈ ®w ′. Absurd. □

We can now state the following proposition, which subsumes Proposition 8.

Proposition 17. For all Sl -normalized basic terms β , β ′, we have β ≡ β ′ whenever:

leave-st(β) ∩ leave-st(β ′) , ∅

Proof. We show this by induction on |β | + |β ′ |. Using Proposition 16 we know that we have
Sl -normalized basic terms B[®w , (α j)j , (δ

k)k],B[®w , (α
′j)j , (δ

′k)k] such that:

β ≡ B[®w , (α j)j , (δ
k)k] β ′ ≡ B[®w , (α ′j)j , (δ

′k)k]

∀j, leave-st(α j) ∩ leave-st(α ′j) , ∅ ∀k, leave-st(δk) ∩ leave-st(δ ′k) , ∅
To conclude we only need to show that for all j, leave-st(α j) ∩ leave-st(α ′j) , ∅ implies that
α j ≡ α ′j and that leave-st(δk) ∩ leave-st(δ ′k) , ∅ implies that δk ≡ δ ′k . The former is immediate,
as leave-st(α j)∩ leave-st(α ′j) , ∅ implies that α j ≡ {m}nr

pk(n)
and α ′j ≡ {m′}nr

pk(n)
. Since α j ,α ′j ∈ El

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:71

and since there is as most one Sl -encryption oracle call with the same randomness, we havem ≡m′.
It only remains to show that for all k , δk ≡ δ ′k . Since δk , δ ′k are Sl -decryption oracle calls we
know that

δk ≡ C
[
®д ⋄ (si)i≤p

]
δ ′k ≡ C ′

[
®д ′ ⋄ (s ′i)i≤p′

]
where:
• There exists contexts u,u ′, if-free and in R-normal form, such that:

∀i < p, si ≡ 0(dec(u[(α j)j , (deck)k], sk)) sp ≡ dec(u[(α j)j , (deck)k], sk)

∀д ∈ ®д , д ≡ eq(u[(α j)j , (deck)k],αд) where αд ∈ (α j)j

∀i < p ′, s ′i ≡ 0(dec(u ′[(α ′j)j , (dec
′
k)k], sk

′)) s ′p ≡ dec(u ′[(α ′j)j , (dec
′
k)k], sk

′)

∀д ∈ ®д ′, д ≡ eq(u ′[(α ′j)j , (dec
′
k)k],α

′
д) where α ′д ∈ (α ′j)j

• (α j)j , (α
′
j)j are Sl -encryption oracle calls.

• (deck)k , (dec
′
k)k are Sl -decryption oracle call.

Since leave-st(δk) ∩ leave-st(δ ′k) , ∅, and since u,u ′ are if-free and in R-normal form we know
that u ≡ u ′, for all j, leave-st(α j) ∩ leave-st(α ′j) and for all k , leave-st(deck) ∩ leave-st(dec′k). It
follows, by induction hypothesis, that for all j, α j ≡ α ′j and for all k , deck ≡ dec

′
k . We only have to

check that the guards are the same. Since δk ,δ ′k ∈ Dl , we know from the definition of the cca2
axioms that δk (resp. δ ′k) has one guard for every encryption α ∈ El such that α ≡ {_}n

pk
and n

appear directly in sp (resp. s ′p). Since we showed that sp ≡ s ′p , we deduce that δk ,δ ′k have the same
guards. Since guards are sorted according to an arbitrary but fixed order (the sort function in the
definition of RKccaa2), we know that δk ≡ δ ′k . □

Corollary 2. For all P ⊢npf t ∼ t ′, for all h, l :
(i) for all β, β ′ ≤h,lc (t , P) if leave-st(β ↓R) ∩ leave-st(β

′ ↓R) , ∅ then β ≡ β
′
.

(ii) for all γ ,γ ′ ≤h,ll (t , P) if leave-st(γ ↓R) ∩ leave-st(γ
′ ↓R) , ∅ then γ ≡ γ

′
.

(iii) for all β ≤h,lc (t , P), γ ≤
h,l
l (t , P) if leave-st(β ↓R) ∩ leave-st(γ ↓R) , ∅ then β ≡ γ .

We can now show the following lemma, which subsumes Lemma 17:

Lemma 18. For all P ⊢npf t ∼ t ′, for all h, l and β, β ′ ≤h,lbt (t , P), there exists an almost condition

context β̃ ′[] such that:

β ′ ≡ β̃ ′ [β] and leave-st(β ↓R) ∩ cond-st
(
β̃ ′[]

)
= ∅

Proof. Let l ∈ label(P). We prove by mutual induction on the definition of Sl -normalized simple
terms, Sl -normalized basic terms, Sl -encryption oracle calls and Sl -decryption oracle calls that for
every u ∈ st(β ′) such that u is in one of the four above cases, there exists a condition context uc []
such that:

u ≡ uc [β] leave-st(β ↓R) ∩ cond-st (uc []) = ∅ leave-st(®u c) = leave-st(®u)

Moreover if u is a Sl -normalized basic term then there exists an almost condition context ud [] such
that:

u ≡ ud [β] leave-st(β ↓R) ∩
(
cond-st (ud []) ∪ leave-st (ud [])

)
= ∅

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:72 Adrien Koutsos

• Normalized Simple Term: Let u ≡ C[®b ⋄ ®s], where ®b are Sl -normalized basic conditions
and ®s are Sl -normalized basic terms. Let ®b d [] and ®s c [] be contexts obtained from ®b , ®s by
induction hypothesis such that ®b , ®s ≡ ®b d [β], ®s c [β] and:

leave-st(®s c []) = leave-st(®s) leave-st(β ↓R) ∩
(
cond-st

(
®b d [], ®s c []

)
∪ leave-st

(
®b d []

))
= ∅

Moreover:
cond-st(C[®b d [] ⋄ ®s c []]) = cond-st(®b d [], ®s c []) ∪ leave-st(®b d [])

leave-st(C[®b d [] ⋄ ®s c []]) = leave-st(®s c []) = leave-st(®s) = leave-st(C[®b ⋄ ®s])

Hence we can take ®u c ≡ C[®b d [] ⋄ ®s c []].
• Normalized Basic Term: Let u ≡ B[®w , (α i)i , (dec

j)j] be a Sl -normalized basic term. Let
(α ic)i , (α

i
d)i and (dec

j
c)j , (dec

j
d)j be the contexts obtained by applying the induction hypothesis

to (α i)i and (decj)j . Using the fact that:

leave-st
(
(α ic)i , (dec

j
c)i

)
= leave-st

(
(α i)i , (dec

j)i
)

and since B and ®w are if-free, one can check that:
leave-st

(
B[®w , (α ic)i , (dec

j
c)j]

)
= leave-st

(
B[®w , (α i)i , (dec

j)j]
)

It is then immediate to check that uc ≡ B[®w , (α ic)i , (dec
j
c)j] satisfies the wanted properties.

It remains to construct the context ud []. If leave-st(β ↓R) ∩ leave-st(u) = ∅ then ud ≡ uc
satisfies the wanted properties. Otherwise using Proposition 17 we know that β ≡ u, hence
we can take ud ≡ [].
• Encryption Oracle Call: The proof done for the normalized basic term case applies here.
• Decryption Oracle Call: The proof done for the normalized simple term case applies
here. □

E.2 Well-Nested Sets

Definition 55. A simple termC[®a ⋄ ®b] is said to be flat if ®a , ®b are if-free terms in R-normal forms.

Definition 56. We let well-nested be the smallest relation between sets (C,D) of flat terms such
that:

(a) (C,D) is well-nested if for every C0[®a 0 ⋄ ®b 0] ∈ C:

∀C[®a ⋄ ®b] ∈ C ∪ D, ®b 0 ∩ ®a = ∅

(b) (C,D) is well-nested if for every β0 ≡ C0[®a 0 ⋄ ®b 0] ∈ C:
(i) For all β ≡ C[®a ⋄ ®b] ∈ C ∪ D, there exist two if-contexts C ′β ,C

′′
β such that:

β =R if β0 then C
′
β [®a
′
β ⋄
®b ′β] else C

′′
β [®a

′′
β ⋄
®b ′′β]

where ®a ′β , ®a
′′
β ⊆ ®a \

®b 0 and ®b ′β , ®b
′′
β ⊆
®b .

(ii) The following couples of sets are well-nested:({
C ′β [®a

′
β ⋄
®b ′β] | C[®a ⋄

®b] ∈ C
}
,
{
C ′β [®a

′
β ⋄
®b ′β] | C[®a ⋄

®b] ∈ D
})

({
C ′′β [®a

′′
β ⋄
®b ′′β] | C[®a ⋄

®b] ∈ C
}
,
{
C ′′β [®a

′′
β ⋄
®b ′′β] | C[®a ⋄

®b] ∈ D
})

Proposition 18. If (C,D) verifies the property (a) above, then it satisfies properties (i) and (ii).

Proof. Trivial by taking C ′β ≡ C
′′
β ≡ C . □

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:73

Definition 57. We let head be the partial function defined on terms such that for all f ∈ F , for
all terms ®t , head(f (®t)) ≡ f .

Definition 58. For all condition contexts C0,C1, we let C0 ⊔c C1 be the condition context, if it
exists, defined as follows: pos(C1 ⊔cC2) = pos(C0) ∩ pos(C1) and for all position p in pos(C0 ⊔cC1):

(C0 ⊔c C1) |p ≡

a if head((C0) |p) ≡ head((C1) |p) ≡ a (a ∈ F ∪ N)

[]x if (C0) |p ≡ []x ∧
(
head((C1) |p) ≡ []x ∨ head((C1) |p) ≡ a

)
(a ∈ F ∪ N)

[]x if (C1) |p ≡ []x ∧
(
head((C0) |p) ≡ []x ∨ head((C0) |p) ≡ a

)
(a ∈ F ∪ N)

If such a condition context does not exist, then C0 ⊔c C1 is the special element undefined. We also
let:

undefined ⊔c C0 ≡ C0 ⊔c undefined ≡ undefined

Example 20. For all conditions a,b, c,d, e, f and terms t0, . . . , t3 , if we let:

C0 ≡ a

©«
[]x

c d

ª®¬
t0 e

t1 t2

t3

C1 ≡ []y

©«
b

c d

ª®¬
t0 []z

t1 t2

t3

C2 ≡ a

[]w

t0 e

t1 t2

t3

Then we have:

C0 ⊔c C1 ≡ []y

©«
[]x

c d

ª®¬
t0 []z

t1 t2

t3

C1 ⊔c C2 ≡ []y

[]w

t0 []z

t1 t2

t3

C0 ⊔c C2 ≡ C2

⋄

Definition 59. We let ⊑c be the relation on condition contexts defined as follows: for all condition
contexts C0,C1, we let C0 ⊑c C1 hold if pos(C1) ⊆ pos(C0) and for all position p in pos(C1):

if head((C1) |p) ≡

{
a then head((C0) |p) ≡ a where (a ∈ F ∪ N)
[]x then head((C0) |p) ∈ F ∪ N ∪ {[]x }

Moreover we let C0 ⊑c undefined for all condition context C0 (and undefined ⊑c undefined).

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:74 Adrien Koutsos

Example 21. Using the condition contexts defined in Example 20, we have, for example, the
following relations:

C0 ⊑c C2 ⊑c

[]v

[]w

t0 e

t1 t2

t3

⊑
c

a

[]w

t0 []u

t1 t2

t3

⊑c

[]v

[]w

t0 []u

t1 t2

t3

⊑
c

⋄

Proposition 19. LetScc be the set of condition contexts extended with undefined. Then (Scc ,⊔c,⊑c)
is a semi-lattice. That is, we have the following properties:

(i) ⊔c is associative, commutative, idempotent.

(ii) ⊑c is an pre-order (i.e. reflexive and transitive).

(iii) For all C0,C1 ∈ Scc , we have C0 ⊑c (C0 ⊔c C1) and C1 ⊑c (C0 ⊔c C1). Moreover (C0 ⊔c C1) is the
least upper-bound of C0 and C1.

Proof. These properties are straightforward to show, we are only going to give the proof that
(C0 ⊔c C1) is the least upper-bound of C0 and C1. Assume that there is C such that:

C0 ⊑c C ⊑c C0 ⊔c C1 C1 ⊑c C ⊑c C0 ⊔c C1

IfC0⊔cC1 ≡ undefined then one can check thatC ≡ undefined. Otherwise we know that pos(C0⊔c
C1) = pos(C0) ∩ pos(C1), and that:

pos(C0) ⊇ pos(C) ⊇ pos(C0 ⊔c C1) pos(C1) ⊇ pos(C) ⊇ pos(C0 ⊔c C1)

Hence pos(C) = pos(C0 ⊔c C1). Using the fact that C ⊑c C0 ⊔c C1 we know that for all position
p ∈ pos(C), if head((C0⊔cC1) |p) = a (witha ∈ F ∪N) then head(C |p) = a. If head((C0⊔cC1) |p) = []x
then either head(C |p) = []x or head(C |p) = a (with a ∈ F ∪ N). In the former case there is
nothing to show, in the the latter case observe that head((C0 ⊔c C1) |p) = []x implies that either
head((C0) |p) = []x or head((C1) |p) = []x . W.l.o.g. assume head((C0) |p) = []x . Then using the fact
that C0 ⊑c C , we know that head((C0) |p) = []x implies that head((C0) |p) = []x . Absurd.

Therefore ∀p ∈ pos(C), head(C |p) = head((C0⊔cC1) |p). Moreover pos(C) = pos(C0⊔cC1). Hence
C ≡ C0 ⊔c C1. □

Let C0,C1 ∈ Scc such that C0 ⊑c C1. Moreover, assume that:
∀p,p ′ ∈ pos(C1), (C1) |p ≡ (C1) |p′ ≡ []x ⇒ (C0) |p ≡ (C0) |p′

Then, we know that C0 and C1 coincides on pos(C1). Therefore, any→R reduction done on C1
can be mimicked on C0. We simultaneously reduce C1 and C0, which yields the terms C ′1 and C ′0,
where C ′1 is in R-normal form. Then the conditions of C ′1 which do not have hole variables (i.e.
cond-st(C ′1 ↓R) ∩ T (F\if,N)) all appear directly as subterm of C ′0, hence are in cond-st(C ′0).

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:75

Proposition 20. For every C0,C1 ∈ Scc , if C0 ⊑c C1 and if:

∀p,p ′ ∈ pos(C1), (C1) |p ≡ (C1) |p′ ≡ []x ⇒ (C0) |p ≡ (C0) |p′

then cond-st(C1 ↓R) ∩ T (F\if,N) ⊆ cond-st(C0).

Proof. Assume that C0 ⊑c C1, with C0,C1 , undefined (the cases C0 = undefined and C1 =
undefined are easy to handle, with the convention that cond-st(undefined) = ∅), and that:

∀p,p ′ ∈ pos(C1), (C1) |p ≡ (C1) |p′ ≡ []x ⇒ (C0) |p ≡ (C0) |p′ (9)

First we show that we can extend this property as follows:

∀p,p ′ ∈ pos(C1), (C1) |p ≡ (C1) |p′ ⇒ (C0) |p ≡ (C0) |p′ (10)

Let q = p · q0 and q = p ′ · q0 be positions in pos(C1). Since (C1) |p ≡ (C1) |p′ , we know that
head((C1) |q) ≡ head((C1) |q′).
• If head((C1) |q) ≡ a (with a ∈ F ∪ N) then, from the fact that C0 ⊑c C1 we get that
head((C0) |q) ≡ a, and that head((C0) |q′) ≡ a.
• If head((C1) |q) ≡ []x then using (9) we get that (C0) |p ≡ (C0) |p′ .

. Then, we show by induction on the length of the reduction sequence that for all C ′1 such that
C1 →

∗
R C ′1, there exists C ′0 such that C ′0 ⊑c C ′1, (9) holds for C ′0,C ′1 and C0 →

∗
R C ′0. Graphically

(hypothesis are in black, goals are in red):

C0 C1

C ′0 C ′1

(9) holds

(9) holds

⊑c

⊑c

R∗ R∗

Let→R′ be→R without the non left-linear rules, which are:
if x then y else y → y dec({x}r

pk(y), sk(y)) → x

ifw then (ifw then x else y) else z → ifw then x else z

ifw then x else (ifw then y else z) → ifw then x else z

We mimic all reduction→R on C1 by a reduction on C0, while maintaining ⊑c and the invariant of
(9). Mimicking rules in→R is easy as they are left-linear. To mimic rules in (→R \ →R′), we use
(10).

Therefore let C ′1 be in R-normal form such that C1 →
∗
R C ′1. Let C ′0 be such that C ′0 ⊑c C ′1,(9) holds

forC ′0,C ′1 andC0 →
∗
R C ′0.C ′1 is of the form D[®b , ®b [] ⋄ ®u] where ®b , ®u are if-free and in R-normal form,

®b does not contain any hole variable and ®b [] is a vector of hole variables. Therefore:

cond-st(C1 ↓R) ∩ T (F\if,N) = cond-st(C ′1) ∩ T (F\if,N) = ®b

Finally, we observe that ®b ⊆ cond-st(C ′0), and that cond-st(C ′0) ⊆ cond-st(C0) by Proposition 15. □

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:76 Adrien Koutsos

Lemma 19. For all P ⊢npf t ∼ t ′, for all h, l , the following couple of sets is well-nested:({
β ↓R | β ≤

h,l
c (t , P)

}
,
{
γ ↓R | γ ≤

h,l
l (t , P)

})
Proof. We do this proof in the case h = ϵ . The other cases are identical.

Part 1. We consider an arbitrary ordering (βi)1≤i≤imax of:

{β | β ≤h,l
c
(t , P)}

Using Lemma 18, we know that all i , i0, there exists a condition context β̃i such that:

βi ≡ β̃i
[
βi0

]
and leave-st(βi0 ↓R) ∩ cond-st

(
β̃i

)
= ∅

From now on we use β (i0)i to denote this condition context, and []i0 the hole variable used in the
condition contexts {β (i0)i | 1 ≤ i ≤ imax}. We extend this notation to i0 = 0 by letting β (0)i ≡ βi .
Let 1 ≤ i ≤ imax, and let l0, . . . , ln be a sequence of distinct indices in {0, . . . , imax} such that

l0 = 0. Using Proposition 19.((iii)) we know that for every 0 ≤ j0 ≤ n, if i , lj0 then:

β
(lj0)
i ⊑c ⊔c j≤nβ

(lj)
i

Using Proposition 20, we deduce that:

cond-st
(
β
(lj0)
i

)
⊇ cond-st

(
⊔c j≤n β

(lj)
i ↓R

)
∩ T(F\if,N)

Which implies that:
leave-st(βlj0 ↓R) ∩ cond-st

(
⊔c j≤n β

(lj)
i ↓R

)
= ∅ (11)

Moreover, if n = n0 + 1 and i , ln+1, we can check that:

⊔c j≤n0β
(lj)
i ≡

(
⊔c j≤n0+1 β

(lj)
i

)
{⊔c j≤n0β

(lj)
ln0+1
/[]ln0+1 }

=R if

(
⊔c j≤n0 β

(lj)
ln0+1

)
then

(
⊔c j≤n0+1 β

(lj)
i

)
{true/[]ln0+1 }

else

(
⊔c j≤n0+1 β

(lj)
i

)
{false/[]ln0+1 }

(12)

Part 2. Similarly, let (γm)1≤m≤mmax be an arbitrary ordering of:

{γ | γ ≤h,l
l
(t , P)}

Let 1 ≤ i0 ≤ imax. For everym, we have γ (i0)m such that:

γm ≡ γ
(i0)
m

[
βi0

]
and leave-st(βi0 ↓R) ∩ cond-st

(
γ (i0)m

)
= ∅

Moreover, we let γ (0)m ≡ γm . Let 1 ≤ m ≤ mmax, and let l0, . . . , ln be a sequence of distinct indices in
{0, . . . , imax} such that l0 = 0. We have equations corresponding to (11) and (12), with ⊔c j≤nγ

(lj)
m

instead of ⊔c j≤nβ
(lj)
i .

Part 3. Consider the following family of couples of sets:{((
⊔c j≤n β

(lj)
i {ej/[]lj | j ≤ n} ↓R

)
1≤i≤imax

,
(
⊔c j≤n γ

(lj)
m {ej/[]lj | j ≤ n} ↓R

)
1≤m≤mmax

) ��
l0, . . . , ln distinct indices in {0, . . . , imax} s.t. l0 = 0 and (ej)1≤j≤n ∈ {true, false}n

}
(13)

We show by decreasing induction on n, starting from n = imax + 1 down to n = 0, that all the
elements above are well-nested.

Let l0, . . . , ln be distinct indices in {0, . . . , imax} such that l0 = 0, and let (ej)1≤j≤n ∈ {true, false}n .

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:77

Base case. If n = nmax + 1 then from (11) we get that for every l , i in {1, . . . , imax}:

leave-st(βl ↓R) ∩ cond-st
((
⊔c j≤n β

(j)
i

)
{ej/[]j | j ≤ n} ↓R

)
= ∅

Moreover:
leave-st

((
⊔c j≤n β

(j)
l

)
{ej/[]j | j ≤ n} ↓R

)
⊆ leave-st(βl ↓R)

Hence:

leave-st
((
⊔c j≤n β

(j)
l

)
{ej/[]j | j ≤ n} ↓R

)
∩ cond-st

((
⊔c j≤n β

(j)
i

)
{ej/[]j | j ≤ n} ↓R

)
= ∅ (14)

Similarly, for every 1 ≤ m ≤ mmax:

leave-st
((
⊔c j≤n β

(j)
l

)
{ej/[]j | j ≤ n} ↓R

)
∩ cond-st

((
⊔c j≤n γ

(j)
m

)
{ej/[]j | j ≤ n} ↓R

)
= ∅

By consequence, the following set is well-nested:((
⊔c j≤n β

(j)
i {ej/[]j } ↓R

)
1≤i≤imax

,
(
⊔c j≤n γ

(j)
m {ej/[]j } ↓R

)
1≤m≤mmax

)
Inductive Case. If n ≤ nmax , 0, then from (12) we get that for every l , i in {1, . . . , imax}:(
⊔c j≤n β

(lj)
i

)
{elj /[]lj | j ≤ n} =R

if

((
⊔c j≤n β

(lj)
ln+1

)
{elj /[]lj | j ≤ n}

)
then

(
⊔c j≤n+1 β

(lj)
i

)
{elj /[]lj | j ≤ n}{true/[]ln+1 }

else

(
⊔c j≤n+1 β

(lj)
i

)
{elj /[]lj | j ≤ n}{false/[]ln+1 }

As we did for (14), we can show that for every i , ln+1:

leave-st(⊔c j≤nβ
(lj)
ln+1
↓R) ∩ cond-st

((
⊔c j≤n+1 β

(lj)
i

)
{elj /[]lj | j ≤ n + 1} ↓R

)
= ∅

Where eln+1 is either true or false. Similarly, for everym:

leave-st(⊔c j≤nβ
(lj)
ln+1
↓R) ∩ cond-st

((
⊔c j≤n+1 γ

(lj)
m

)
{elj /[]lj | j ≤ n + 1} ↓R

)
= ∅

Moreover, by induction hypothesis, we know that:((
⊔c j≤n+1 β

(lj)
i

)
{elj /[]lj | j ≤ n + 1} ↓R

)
i ,

((
⊔c j≤n+1 γ

(lj)
i

)
{elj /[]lj | j ≤ n + 1} ↓R

)
i

)
is well-nested for eln+1 ≡ true and for eln+1 ≡ false. We deduce that the following set is well nested:((

⊔c j≤n β
(lj)
i

)
{elj /[]lj | j ≤ n} ↓R

)
i ,

((
⊔c j≤n γ

(lj)
i

)
{elj /[]lj | j ≤ n} ↓R

)
i

)
Conclusion. Recall that β (l0)i ≡ β (0)i ≡ βi . Hence:({

β ↓R | β ≤
ϵ,l
c
(t , P)

}
,
{
γ ↓R | γ ≤

ϵ,l
l
(t , P)

})
is the couple of sets: ((

⊔c j≤0 β
(lj)
i

)
↓R

)
1≤i≤imax

,
((
⊔c j≤0 γ

(lj)
m

)
} ↓R

)
1≤m≤mmax

)
which is the family of well-nested sets in (13), and is therefore well-nested. □

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:78 Adrien Koutsos

F SPURIOUS CONDITIONS AND PERSISTENT LEAVES

An if-free conditions b is spurious in a term t if, when we normalize t , the condition b disappears.
For example, the condition b is spurious in if b then 0 else 0.

Definition 60. An if-free condition b is said to be spurious in a term t if b ↓R< cond-st(t ↓R).

An if-free term u is persistent in a term t if, when we normalize t , the term u does not disappear.
For example, n0 is persistent in if b then n0 else if b then n1 else n2, but n2 is not.

Definition 61. An if-free terms u is said to be persistent in a term t if u ↓R∈ cond-st(t ↓R).

The notion of spurious set is related to the notion of spurious condition. A set of position S in a
term is a spurious set if we can safely replace in t the terms at positions S by true.

Definition 62. A set of positions S is spurious in a term t if it is non-empty and t[true/x | x ∈
S] =R t[false/x | x ∈ S] =R t . A spurious set is minimal (resp. maximal) if it has not strict spurious
subset (resp. overset), and a spurious set is rooted if there exists p ∈ S such that ∀p ′ ∈ S,p ≤ p ′ (i.e.
is a common ancestor of all positions in S).

Example 22. Let a ≡ eq(A, 0) and b ≡ eq(B, 0) be two conditions. Consider the term t :
if b then if a then if b then T elseU

else V

else if a then T

else if a then V else V

Then the condition b is spurious in t , since b is not a subterm of t ↓R≡ if a then T else V . Moreover
the condition a is a subterm of t ↓R , hence is not spurious. Nonetheless, the set of position S = {220}
is spurious. Indeed we have:

if b then if a then if b then T elseU

else V

else if a then T

else if a 220 then V else V

=R if b then if a then if b then T elseU

else V

else if a then T

else if true 220 then V else V

=R if b then if a then if b then T elseU

else V

else if a then T

else if false 220 then V else V ⋄

First Objective. Let t be a term, and a be a spurious condition in t such that a is a sub-term of t . If
this happens in a proof P ⊢npf t ∼ t ′, we would like to find a proof-cut elimination getting rid of a.
A way of building such a cut elimination is to find a set of positions S which is spurious in both t
and t ′, and such that for every p ∈ S and t |p ≡ a. Then, under some conditions on S , we may be
able to obtain a proof P ′ ⊢npf t{true/S} ∼ t ′{true/S}. If we can repeat this proof cut sufficiently
many times, we may eventually remove all occurrences of a in t .

Our first goal is the following: given a term t and a spurious condition a in t , and given a set of
positions S such that for every p ∈ S and t |p ≡ a, we give sufficient conditions under which S is a
spurious set in t . This is done in Section F.1.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:79

Second Objective. Consider a proof P ⊢npf t ∼ t ′, where t is of the form:

t ≡ C[(βi)i ∈I ⋄ (γj)j ∈J]

where (βi)i ∈I and (γj)j ∈J are S-normalized basic terms and S is the left cca2 trace of P . Remember
that we showed in Corollary 2.(ii) that for every j, j ′ ∈ J :

leave-st(γj ↓R) ∩ leave-st(γj′ ↓R) , ∅ implies that γj ≡ γj′

This followed from the fact that given a leaf u ∈ leave-st(γj ↓R), there exists a unique way of
completing u into a S-normalized basic term. Moreover, we will see later that |γj | is bounded by
|u |. Assume that we can show that, for every j, leave-st(γj ↓R) contains a persistent term in t , i.e.
that leave-st(γj ↓R) ∩ leave-st(t ↓R) is non-empty. Since leave-st(t ↓R) is bounded by the size of the
normal form of t , we just bounded the size of the set {γj | j ∈ J }.
Therefore, a way of bounding the size of the S-normalized basic terms (γj)j ∈J is to show that

they all have a persistent leaf. In other word, we want to prove that we can assume, w.l.o.g., that
for every j:

leave-st(γj ↓R) ∩ leave-st(t ↓R) , ∅
This is a key lemma to show decidability. In Section F.2, we give sufficient conditions for this
to hold.

F.1 Spurious Conditions to Spurious Sets

We give sufficient conditions under which a set of positions S is spurious in a term t .

Lemma 20. Let a, ®a , ®b , ®c be if-free conditions in R-normal form. Let s be the context:

τ [] ≡ B
[
®c ⋄

(
®w , if C[®b ⋄ ®a , []] then u else v

)]
Let t be the term τ [a], and assume that a is spurious in t , and that:

• a < ®a ∪ ®b ∪ {true, false} ∪ cond-st(u ↓R) ∪ cond-st(v ↓R).
• a < ρ where ρ is the set of conditions appearing on the path from the root to if C[®b⋄®a ,a] then u else v .

Then t ≡ τ [a] =R τ [true].

Proof. We start by observing that:

if C[®b ⋄ ®a ,a] then u else v =R if a then if C[®b ⋄ ®a , true] then u else v

else if C[®b ⋄ ®a , false] then u else v

Let Cu [®b u ⋄ ®t u] and Cv [®b v ⋄ ®t v] be the R-normal forms of u and v . Let Cl ,Cr be such that :

if C[®b ⋄ ®a , true] then u else v =R Cl [®b u , ®b v , ®b , ®a ⋄ ®t u , ®t v]

if C[®b ⋄ ®a , false] then u else v =R Cr [®b u , ®b v , ®b , ®a ⋄ ®t u , ®t v]

Since a < cond-st(u ↓R), cond-st(v ↓R) we know that a < ®b u , ®b v . Moreover since a < ®a ∪ ®b we
know that a < ®b u , ®b v , ®b , ®a . Therefore:

a < cond-st(Cl [®b u , ®b v , ®b , ®a ⋄ ®t u , ®t v]) a < cond-st(Cr [®b u , ®b v , ®b , ®a ⋄ ®t u , ®t v])

We get rid in Cl and Cr of all the conditions appearing in ρ. We let ®a l and ®a r be such that:

®a l ⊆ ®b u , ®b v , ®b , ®a \ρ ®a r ⊆ ®b u , ®b v , ®b , ®a \ρ

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:80 Adrien Koutsos

and C ′l , C
′
r such that:

B
[
®c ⋄

(
®w ,Cl [®b u , ®b v , ®b , ®a ⋄ ®t u , ®t v]

)]
=R B

[
®c ⋄

(
®w ,C ′l [®a

l ⋄ ®t u , ®t v]
)]

(15)

B
[
®c ⋄

(
®w ,Cr [®b u , ®b v , ®b , ®a ⋄ ®t u , ®t v]

)]
=R B

[
®c ⋄

(
®w ,C ′r [®a

r ⋄ ®t u , ®t v]
)]

(16)

We know that a < ®a l and a < ®a r.

Case 1. If there exists c0 ∈ ®c such that the path ρ from the root of t to if C[®b ⋄ ®a] then u else v
contains one of the following shapes, where solid edges represent one element of the path ρ, and
dotted edges represent a summary of a part of the path ρ.

c0

c0

(A)
c0

c0

(B)

true

(C)

false

(D)

In these four cases, the result is easy to show, since we can do any rewriting we want. For example,
in case (A), we use the fact that:

if x then y else (if x then v else z) →∗R if x then y else (if x then v′ else z) (for all term v′)

to rewrite (if C[®b ⋄ ®a ,a] then u else v) into the term (if a then if C[®b ⋄ ®a , true] then u else v else).

Case 2. Let s[] be such that t ≡ s[if C[®b ⋄ ®a] then u else v]. If none of the shapes of Case 1 occurs,
then we know that there exists B′ and ®ω such that s[] =R B′

[
®c ⋄

(
®ω , []

)]
and the path ρ ′ from the

root of s to [] is a subset of ρ and does not contain duplicates, true and false. The existence of such
a B′ is proved by induction on the number of duplicate conditions, true and false occurring on ρ ′:
indeed since the shape (A) and (B) (resp. (C) and (D)) are forbidden in ρ, we know that if we have a
duplicate (resp. true or false) then we can always rewrite B such that the hole containing s does
not disappear.

Let ρ ′ = c1, . . . , cn , we take B′ minimal, i.e. only a branch c1, . . . , cn . We give an example of such
an if-context in Figure 14.

Wet let ®ω = w1, . . . ,wn , and we have:

s =R B′ [c1, . . . , cn ⋄w1, . . . ,wn , []]

We let ≻u be a total ordering on if-free condition in R-normal form such that the n + 1 maximum
elements are c1 ≻u · · · ≻ cn ≻u a. For every y, we letWi [®d i ⋄ ®e i] be the R≻u -normal form of wi .
Then:

s =R B′
[
c1, . . . , cn ⋄

(
Wi [®d i ⋄ ®e i]

)
i≤n , []

]
We get rid of any occurrence of c1, . . . , cn in (®d i)i . For every i , we letW ′

i [
®d ′i ⋄ ®e

′
i] be terms in

R-normal form such that ®d ′i ∩ {c j | j ≤ i} = ∅ and:

s =R B′
[
c1, . . . , cn ⋄

(
W ′

i [
®d ′i ⋄ ®e

′
i]
)
i≤n , []

]
ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:81

c1

c2

w2 c3

cn

if C[®b ⋄ ®a] then u

else v

wn

w3

w1

Fig. 14. Example of if-context B′

Using (15) and (16) we get:

t =R B′

[
c1, . . . , cn ⋄

(
W ′

i [
®d ′i ⋄ ®e

′
i]
)
i≤n ,

if a then C ′l [®a
l ⋄ ®t u , ®t v]

else C ′r [®a
r ⋄ ®t u , ®t v]

]
It is then quite easy to show by induction on the length of the reduction sequence that there exists
a sequence 1 ≤ i1 < · · · < ik ≤ n and an if-context B′′ such that:

t ↓R≻u ≡

(
B′

[
c1, . . . , cn ⋄

(
W ′

i [
®d ′i ⋄ ®e

′
i]
)
i≤n ,

if a then C ′l [®a
l ⋄ ®t u , ®t v]

else C ′r [®a
r ⋄ ®t u , ®t v]

])
↓R≻u

≡ B′′

[
ci1 , . . . , cik ⋄

(
W ′

i j [
®d ′i j ⋄ ®e

′
i j]

)
j≤k ,

(
if a then C ′l [®a

l ⋄ ®t u , ®t v]

else C ′r [®a
r ⋄ ®t u , ®t v]

)
↓R≻u

]
We deduce from this that a is spurious in:

if a then C ′l [®a
l ⋄ ®t u , ®t v] else C

′
r [®a

r ⋄ ®t u , ®t v]

Since a will stay the top-most condition in the R-normal form of this term (because of the order ≻u
we chose), and since a , true a , false and a < ®a l, ®a r, there is only one rule that can be applied:
if a then x else x → x . Consequently:

C ′l [®a
l ⋄ ®t u , ®t v] =R C ′r [®a

r ⋄ ®t u , ®t v]

Hence:

t =R B′
[
c1, . . . , cn ⋄

(
W ′

i [
®d ′i ⋄ ®e

′
i]
)
i≤n ,C

′
l [®a

l ⋄ ®t u , ®t v]
]

=R s
[
C ′l [®a

l ⋄ ®t u , ®t v]
]

=R B
[
®c ⋄

(
®w ,C ′l [®a

l ⋄ ®t u , ®t v]
)]

Hence using (15) we get:

t =R B
[
®c ⋄

(
®w ,Cl [®b u , ®b v , ®b , ®a ⋄ ®t u , ®t v]

)]
=R B

[
®c ⋄

(
®w , if C[®b ⋄ ®a , true] then u else v

)]
□

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:82 Adrien Koutsos

F.2 Persistent Terms

Let a be a condition and s[] be a context. The following proposition give sufficient conditions under
which the persistent terms of s[a] are exactly the persistent terms of s[true] and s[false].

Proposition 21. Let a, (®a i , ®b i)i , (®c j , ®t j)j be if-free terms in R-normal form such that for every i ,

a < ®a i ∪ ®b i ∪ ®c j , and let s[] be a context such that:

s[] ≡ B
[(
Ci [®a i , [] ⋄ ®b i , []]

)
i ⋄

(
D j [®c j , [] ⋄ ®t j]

)
j

]
Then leave-st(s[a] ↓R) = leave-st(s[true] ↓R) ∪ leave-st(s[false] ↓R).

Proof. We know that s[a] =R if a then s[true] else s[false]. Let ≻u be a total order on if-free
conditions in R-normal form such that a is minimal. It is straightforward to check that:

s[a] ↓R≻u ≡ (if a then s[true] else s[false]) ↓R≻u

≡

{
(s[true]) ↓R≻u if s[true] =R≻u s[false]

if a then (s[true]) ↓R≻u else (s[false]) ↓R≻u otherwise
Therefore:

leave-st(s[a] ↓R≻u) = leave-st(s[true] ↓R≻u) ∪ leave-st(s[false] ↓R≻u)
The wanted result follows from Proposition 5. □

We show the following technical proposition, that we use later in this section. Given a condition
a and two terms tl and tr , we give sufficient conditions under which a persistent term in tl or tr is
a persistent term in if a then tl else tr .

Proposition 22 (Persistent Term Lifting). Consider the terms:

C[®a ⋄ ®b] tl ≡ Bl
[(
Cl
i [®a

l
i ⋄
®b l
i]
)
i ⋄

(
Dl
j [®c

l
j ⋄ ®t

l
j]
)
j

]
tr ≡ Br

[(
Cr
i [®a

r
i ⋄
®b r
i]

)
i ⋄

(
Dr
j [®c

r
j ⋄ ®t

r
j]
)
j

]
where:

• For every x ∈ {l , r }, i and j, the terms ®a x
i ,
®b x
i , ®c

x
j , ®t

x
j are if-free and in R-normal form.

• ®a , ®b are if-free, in R-normal form and (®a ∪ ®b) ∩ {true, false} = ∅.
• ®b ∩ (

⋃
x ∈{l,r },i ®a

x
i ,
®b x
i) = ∅ and

®b ∩ (
⋃

x ∈{l,r }, j ®c
x
i) = ∅.

• ®a ∩ ®b = ∅.

Then:

leave-st(tl ↓R) ∪ leave-st(tr ↓R) ⊆ leave-st

(
(if C[®a ⋄ ®b] then tl else tr) ↓R

)
Proof. We prove this by induction on | ®a |.

Base Case. If | ®a | = 0 then C[®a ⋄ ®b] ≡ b, where b is if-free. Let ≻u be any total order on if-free
conditions in R-normal form such that b is minimal. We then let Dl [®a l ⋄ ®t l] and Dr [®a r ⋄ ®t r] be the
R≻u -normal form of tl and tr . By Proposition 5, we know that:

leave-st(tl ↓R) = leave-st(tl ↓R≻u) = leave-st
((
Dl [®a l ⋄ ®t l]

)
↓R≻u

)
(17)

Using the fact that (®a li , ®b l
i)i and ®c lj , ®t lj)j are if-free and in R-normal form, it is simple to show by

induction on the length of the reduction that ®a l ⊆ (®a li , ®b l
i)i , (®c

l
j)j . Since b < (

⋃
x ∈{l,r },i ®a

x
i ,
®b x
i) and

b < (
⋃

x ∈{l,r }, j , ®c
x
j), this shows that b < ®a l . Similarly ®a r ⊆ (®a ri , ®b r

i)i , (®c
r
j)j and b < ®a r .

(if b then tl else tr) ↓R≻u ≡
(
if b then Dl [®a l ⋄ ®t l] else Dr [®a r ⋄ ®t r]

)
↓R≻u

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:83

Since b is and if-free condition in R-normal form minimal for ≻u , since Dl [®a l ⋄ ®t l] and Dr [®a r ⋄ ®t r]
are in R≻u -normal form, since b < {true, false} and since b < ®a l ∪ ®a r , there is only one rule that
may be applicable: if b then x else x → x . Therefore:

(if b then tl else tr) ↓R≻u ≡

{
tl ↓R≻u if tl =R≻u tr

if b then tl ↓R≻u else tr ↓R≻u otherwise

Which shows the wanted result.

Inductive Case. Assume that the result holds form, and consider ®a ,a of lengthm + 1. First:

if C[®a ,a ⋄ ®b] then tl else tr =R if a then if C[®a , true ⋄ ®b] then tl else tr

else if C[®a , false ⋄ ®b] then tl else tr

Let sl [] be a context such that sl [a] ≡ tl and a < cond-st(sl [] ↓R). Similarly, let sr [] be such that
sr [a] ≡ tr and a < cond-st(sr [] ↓R). We are going to rewrite the then branch to replace any
occurrence of a by true. Similarly, we rewrite the else branch to replace any occurrence of a by
false.
Moreover, we get rid of true and false in C[®a , true ⋄ ®b] and C[®a , false ⋄ ®b]. Let C ′[®a ′ ⋄ ®b ′] and

C ′′[®a ′′ ⋄ ®b ′′] be such that:

C[®a ⋄ ®b] =R if a then C ′[®a ′ ⋄ ®b ′] else C ′′[®a ′′ ⋄ ®b ′′]

with ®a ′ ∪ ®a ′′ ⊆ ®a \{a} and ®b ′ ∪ ®b ′′ ⊆ ®b \{a}. Then:

if C[®a , true ⋄ ®b] then tl else tr =R if C ′[®a ′ ⋄ ®b ′] then sl [true] else sr [true]

if C[®a , false ⋄ ®b] then tl else tr =R if C ′′[®a ′′ ⋄ ®b ′′] then sl [false] else sr [false]

We start by checking that the induction hypothesis on the red framed term. The first condition is
trivial, we check the other:
• Since ®a ′ ⊆ ®a , ®b ′ ⊆ ®b and (®a ∪®b)∩{true, false} = ∅, we know that (®a ′∪®b ′)∩{true, false} = ∅.
• The term sl [a] is obtained from tl by replacing every occurrence of a by true. Hence, since
true < ®b , ®b ′ ⊆ ®b and:

®b ∩ (
⋃

x ∈{l,r },i ®a
x
i ,
®b x
i) = ∅

®b ∩ (
⋃

x ∈{l,r }, j ®c
x
i) = ∅

We know that the third condition holds.
• Since ®a ′ ⊆ ®a , ®b ′ ⊆ ®b and ®a ∩ ®b = ∅, we know that ®a ′ ∩ ®b ′ = ∅.

By applying the induction hypothesis, we deduce that:

leave-st(sl [true] ↓R) ∪ leave-st(sr [true] ↓R)

⊆ leave-st(if C ′[®a ′ ⋄ ®b ′] then sl [true] else sr [true] ↓R)

Similarly, by applying the induction hypothesis on the rewriting of the blue framed term, we get:

leave-st(sl [false] ↓R) ∪ leave-st(sr [false] ↓R)

⊆ leave-st(if C ′′[®a ′′ ⋄ ®b ′′] then sl [false] else sr [false] ↓R)

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:84 Adrien Koutsos

Finally, we apply again the induction hypothesis (withm = 0) to the term u below:

u ≡ if a then leave-st(if C ′[®a ′ ⋄ ®b ′] then sl [true] else sr [true] ↓R)

else leave-st(if C ′′[®a ′′ ⋄ ®b ′′] then sl [false] else sr [false] ↓R)

We get that:

leave-st(u ↓R) ⊇ leave-st
(
leave-st(if C ′[®a ′ ⋄ ®b ′] then sl [true] else sr [true] ↓R) ↓R

)
∪ leave-st

(
leave-st(if C ′′[®a ′′ ⋄ ®b ′′] then sl [false] else sr [false] ↓R) ↓R

)
By applying Proposition 21 twice, we know that:

leave-st(tl ↓R) ∪ leave-st(tr ↓R) =
leave-st(sl [true] ↓R) ∪ leave-st(sr [true] ↓R) ∪ leave-st(sl [false] ↓R) ∪ leave-st(sr [false] ↓R)

Hence we deduce that:
leave-st(tl ↓R) ∪ leave-st(tr ↓R) ⊆ leave-st(u ↓R) = leave-st(if C[®a ,a ⋄ ®b] then tl else tr ↓R) □

We are now ready to prove the main lemma of this section, which, under some conditions, shows
that all leaf term γ of a term t has a persistent leaf.

Lemma 21. Let s be a term of the form:

s ≡ A
[
®d ⋄

(
Bl

[(
βi,l

)
i ⋄

(
γj,l

)
j

])
l

]
such that:

(i) ®d are if-free and in R-normal form, and for every i, l , cond-st(βi,l ↓R) ∩ leave-st(βj,l ↓R) = ∅.

(ii)
(
®d ∪

⋃
i,l leave-st(βi,l ↓R)

)
∩ {true, false} = ∅.

(iii) For every positions p < p ′ in A[_ ⋄ (Bl)l] such that s |p ≡ ζ and s |p′ ≡ ζ
′
, we have:

leave-st(ζ ↓R) ∩ leave-st(ζ
′ ↓R) = ∅

(iv) For every l , i, j, leave-st(βi,l ↓R) ∩ leave-st(βj,l ↓R) , ∅ implies that βi,l ≡ βj,l .
(v) For every l , the following couple of sets is well-nested:({

βi,l ↓R | i
}
,
{
γj,l ↓R | j

})
then for every l , j, γj,l contains a persistent term in s , i.e. leave-st(γj,l ↓R) ∩ leave-st(s ↓R) , ∅.

Proof. We start by showing that the property holds when ®d = ∅ and A ≡ []. We deal with the
general case afterward.

Part 1. For all i, j, we let Ci [], D j [] be if-contexts and ®a i , ®b i , ®c j , ®t j be if-free terms in R-normal
form such that:
®a i ≡ cond-st(βi ↓R) ®b i ≡ leave-st(βi ↓R) ®c i ≡ cond-st(γj ↓R) ®t i ≡ leave-st(γj ↓R)

βi ↓R ≡ Ci [®a i ⋄ ®b i] γj ↓R ≡ D j [®c j ⋄ ®t j]

We know that:
s =R B

[(
Ci [®a i ⋄ ®b i]

)
i ⋄

(
D j [®c j ⋄ ®t j]

)
j

]
satisfying conditions (i) to (v). We prove the proposition by structural induction on B[].

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:85

Part 1: Base Case. The base case is simple. It suffices to notice that since ®c , ®t are if-free and in
R-normal form:

leave-st(s ↓R) = leave-st(D[®c ⋄ ®t] ↓R) ⊆ ®t

Part 1: Inductive Case. Consider:

s ≡ if C0[®a 0 ⋄ ®b 0] then Bl
[(
Ci [®a i ⋄ ®b i]

)
i ∈I l
⋄

(
D j [®c j ⋄ ®t j]

)
j ∈J l

]
else Br

[(
Ci [®a i ⋄ ®b i]

)
i ∈I r
⋄

(
D j [®c j ⋄ ®t j]

)
j ∈J r

]
Using the well-nested hypothesis, for every j ∈ I l ∪ I r , there exist two if-context C ′j ,C ′′j such that:

Cj [®a j ⋄ ®b j] =R if C0[®a 0 ⋄ ®b 0] then C
′
j [®a
′
j ⋄
®b ′j] else C

′′
j [®a

′′
j ⋄
®b ′′j]

where ®a ′j , ®a ′′j ⊆ ®a j\®b 0 and ®b ′j , ®b ′′j ⊆ ®b j . Similarly, for every j ∈ J l ∪ J r , there exist D ′j ,D ′′j such that:

D j [®c j ⋄ ®t j] =R if C0[®a 0 ⋄ ®b 0] then D ′j [®c
′
j ⋄ ®t

′
j] else C

′′
j [®c
′′
j ⋄ ®t

′′
j]

where ®c ′j , ®c ′′j ⊆ ®a j\®b 0 and ®t ′j , ®t ′′j ⊆ ®t j . Then:

s ≡ if C0[®a 0 ⋄ ®b 0] then Bl
[(
C ′i [®a

′
i ⋄
®b ′i]

)
i ∈I l
⋄

(
D ′j [®c

′
j ⋄ ®t

′
j]

)
j ∈J l

]
strue

else Br
[(
C ′′i [®a

′′
i ⋄
®b ′′i]

)
i ∈I r
⋄

(
D ′′j [®c

′′
j ⋄ ®t

′′
j]

)
j ∈J r

]
sfalse

We want to show that for all j ∈ J l ∪ J r , ∃t ∈ ®t j . t ∈ leave-st(s ↓R). Let j ∈ J l (the proof for j ∈ J r is
similar). We are going to apply the induction hypothesis to strue (for j ∈ J r , we apply the induction
hypothesis to sfalse). Lets check that the premises hold for strue:
• (i) and (ii) trivially hold.
• For (iii), we use the fact that we know that the property holds in s for every positions
ϵ < p < p ′ in if [] then Bl else Br , and the fact that for every i ∈ I l ∪ I r , ®b ′i ⊆ ®b i .
• Checking that (iv) holds is straightforward. Assume that there exists i, j ∈ I l such that
®b ′i ∩
®b ′j , ∅. Since ®b ′i ⊆ ®b i and ®b ′j ⊆ ®b j we know that ®b i ∩ ®b j , ∅. Therefore Ci [®a i ⋄ ®b i] ≡

Cj [®a j ⋄ ®b j]. Hence:

C ′i [®a
′
i ⋄
®b ′i] ≡ C

′
j [®a
′
j ⋄
®b ′j] C ′′i [®a

′′
i ⋄
®b ′′i] ≡ C

′′
j [®a

′′
j ⋄
®b ′′j]

• Using the inductive property of well-nested couples (item (iv)) we know that the following
couple of sets is well-nested:({

C ′i [®a
′
i ⋄
®b ′i] | i ∈ I

l ∪ I r ∪ {0}
}
,
{
D ′j [®c

′
j ⋄ ®t

′
j] | j ∈ J

l ∪ J r
}
j

)
Since, for every (C,D), (C′,D ′), if (C,D) is well-nested and C′ ⊆ C∧D ′ ⊆ D then (C′,D ′)
is well-nested, we know that the following couple of sets is well-nested:({

C ′i [®a
′
i ⋄
®b ′i] | i ∈ I

l ∪ {0}
}
,
{
D ′j [®c

′
j ⋄ ®t

′
j] | j ∈ J

l
}
j

)
We can apply the induction hypothesis to strue, which shows that for all j ∈ J l , there exists t ∈ ®t ′j
such that t ∈ leave-st(strue ↓R). To conclude, we have to lift this to leave-st(s ↓R).

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:86 Adrien Koutsos

Let S = I l ∪ I r ∪ {0} ∪ J l ∪ J r , and S ′ = S\{0}. We apply Proposition 22 to show that t ∈
leave-st(s ↓R). The only difficulty lies in showing that:

®b 0 ∩
(⋃

i ∈S ′ ®a
′
i , ®a
′′
i ,
®b ′i ,
®b ′′i , ®c

′
i , ®c
′′
i

)
= ∅

We know that b0 ∩
(⋃

i ∈S ′ ®a
′
i , ®a
′′
i , ®c

′
i , ®c
′′
i
)
= ∅ (since ®a ′i ⊆ ®a i\®b 0, . . .), so it only remains to show

that:
®b 0 ∩

⋃
i ∈S ′

®b ′i ,
®b ′′i = ∅ (18)

For every i ∈ S ′, we know that ®b ′i ⊆ ®b i and ®b ′′i ⊆ ®b i . Hence, if ®b 0 ∩ ®b
′
i , ∅ or ®b 0 ∩ ®b

′′
i , ∅ then

®b i ∩ ®b 0 , ∅. Since C0[] is at the root of s , we know using (iii) that ®b i ∩ ®b 0 = ∅. Hence (18) holds.

Part 2. For the general case, we just observe that we can take:
B[] ≡ A[([]d)d ∈ ®d ⋄ (Bl [])l]

We only need to check that the property (i)-(v) are verified for B[]. Properties (i)-(iv) are straightfor-
ward. For (v), we only observe that, since ®d are if-free and in R-normal form, if (C,D) is well-nested
then (C ∪ ®d ,D) is well-nested. □

G PROOF CUT ELIMINATION

Consider a proof P ⊢npf t ∼ t ′. Lemma 21 shows that, under some conditions, any normalized
basic term γ ≤ϵ,l

l
(t , P) has a persistent leaf in t , i.e. leave-st(γ ↓R) ∩ leave-st(t ↓R) , ∅. To apply

this lemma, we need to have a proof P satisfying the hypothesis of Lemma 21. We give simplified
version of these conditions below:

(i) for every β , β ′ ≤ϵ,l
c
(t , P), we have cond-st(β ↓R) ∩ leave-st(β ↓R) = ∅.

(ii)
(⋃

β ≤ϵ,l
c
(t,P) leave-st(β ↓R)

)
∩ {true, false} = ∅.

(iii) For every β , β ′ ≤ϵ,l
c
(t , P) and positions p < p ′ in t such that t |p ≡ β and t |p′ ≡ β ′, we have:

leave-st(β ↓R) ∩ leave-st(β ′ ↓R) = ∅

(iv) For every β , β ′ ≤ϵ,l
c
(t , P), if leave-st(β ↓R) ∩ leave-st(β ′ ↓R) , ∅ then β ≡ β .

(v) The following couple of sets is well-nested:({
β ↓R | β ≤

ϵ,l
c
(t , P)

}
,
{
γ ↓R | γ ≤

ϵ,l
l
(t , P)

})
For each property above, we give the proposition or lemma proving that it holds, or we announce
in which section we will prove it.

(i) In other word, this means that every normalized basic terms has disjoint conditions and
leaves. We will prove this in Section G.2.

(ii) For this to hold, we need to prove that, w.l.o.g., we can assume that true and false do not
appear in the leaves of normalized basic terms. We will show this in Section G.1.

(iii) This requires two non-trivial proof cut, which we explain in Section G.3. It relies on Lemma 2.
(iv) This is a consequence of Proposition 17, which we already proved.
(v) We showed that these sets are well-nested in Lemma 19.
The rest of this section is organized as follows: in Section G.1 we deal with (ii), by showing that

we can assume that true and false do not appear in proof in normal proof form; in Section G.2 we
prove that conditions and leaves of basic terms are disjoints, which we need for (i); in Section G.3, we
give examples of proof cut elimination used to obtain (iii); finally, in Section G.4, we use Lemma 21
to prove that we can assume, w.l.o.g., that every leaf term appearing t has a persistent leaf in t .

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:87

G.1 Removing True and False From Basic Terms

In this section, we prove that we can assume, w.l.o.g., that true and false do not appear in the leaves
of normalized basic terms.

Key Observation. Let s be an if-free in R-normal form, s can be rewritten into a complex term u:

u ≡ C
[(
Di [®a i ⋄ ®b i]

)
i
⋄ ®t

]
that is not if-free. Basically, the following proposition shows that as long as the term u does not
contain true and false conditions, the term s will always appear in the right-most and left-most
branches of C . This is actually an invariant preserved by the term rewriting system R without the
rules:

if true then v elsew → w if false then v elsew → w

Proposition 23. For all if-free term s in R-normal form, if s =R C
[(
Di [®a i ⋄ ®b i]

)
i ⋄
®t
]
where:

• ®t ∪
⋃

i (®a i ∪ ®b i) are if-free and in R-normal form.

• For every i such that Di [®a i ⋄ ®b i] is a term appearing on the left-most (resp. right-most) branch

of C , we have that false < ®a i ∪ ®b i (resp. true < ®a i ∪ ®b i).

Then the left-most (resp. right-most) element of ®t is s .

Proof. If suffices to show that the existence of a decomposition satisfying these two properties
is preserved by→R , which is simple. We conclude by observing that since s is if-free, the only
decomposition of s ↓R into C

[(
Di

[
®a i ⋄ ®b i

])
i
⋄ ®t

]
is such that C ≡ []. Hence ®t is a single element

u, and u ≡ s ↓R≡ s . □

We would like to prove that for every b, there exists no derivation of b ∼ true or b ∼ false. Such
derivations would be problematic since true and false are conditions of constant size, but b could be
of any size (and we are trying to bound all conditions appearing in a proof). Also, the else branch of
a true condition can contain anything and is, a priori, not bounded by the proof conclusion. Using
Proposition 23 we proved above, we show that there exists no proof of b ∼ true or false, as long as
b is if-free and the proof is in the fragment A≻.

Proposition (9). Let b an if-free condition in R-normal, with b . false (resp. b . true). Then there

exists no derivation of b ∼ false (resp. b ∼ true) in A≻.

Proof. We prove only that there is no derivation of b ∼ false in A≻ (the proof that there is no
derivation of b ∼ true in A≻ is exactly the same). We prove this by contradiction. Let b an if-free
condition in R-normal form which is not true and false, and let P be such that P ⊢npf b ∼ false. We
choose the condition b such that its proof P is of minimal size.
First the minimality of the derivation implies that for all h ∈ index(P), for all b0 such that

b0 ≤
h

cs
(b, P) or b0 ≤hcs (false, P), b0 ,R false. Let H = cs-pos(P). We now focus on the left-most

branch of the proof.

First Part. Let l ∈ label(P). First we show that for all β ≤ϵ,l
c
(b, P), β ,R false. Assume that this is

not the case, let β =R false and β ′ be such that (β , β ′) ≤ϵ,l
c∼c (b ∼ false, P). If β =R β ′ =R false then

there is an easy proof cut elimination which yields a smaller proof P ′ of b ∼ false.
Hence assume β ′ ,R false. If β =R false then leave-st(β ↓R) = leave-st(false ↓R) = {false}.

Since β is a normalized basic condition (for the cca2 trace S of its branch in P), and since false is a
normalized basic condition, using Proposition 17 we have β ≡ false.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:88 Adrien Koutsos

. . .

(
bhl bhr bh

)
h∈H

βp0

βpn

γ . . .

. . .

. . .

. . .

Fig. 15. Shape of the Term in the Proof of Proposition 9

There exists a derivation of β ∼ β ′ in F(FAs

∗ · Dup∗ · cca2). Since β ≡ false, no rules in FAs are
applied. Therefore the derivation is only an application of cca2, which is not possible. Similarly we
do not have β ,R false and β ′ =R false.

Part 2. Using Proposition 17 we know that β ,R false implies that for all u ∈ leave-st(β ↓R),
u . false. Moreover, for any term w , w ↓R does not contain false in its conditions (or we could
apply if false then x else y → y). Hence for every a ∈ cond-st(β ↓R), a . false.
We let (γ ,γ ′) ≤ϵ,l

l
(b ∼ false, P) be the left-most elements (as shown in Figure 15). For all

a ∈ cond-st(γ ↓R), a . false. Hence if we let u0 ∈ leave-st(γ ↓R) be the left-most leave element of
γ ↓R , then by Proposition 23 we know that u0 ≡ b. Recall that b ,R false.

Similarly, by applying the exact same reasoning to the other side, we know that the left-most
leaf element u ′0 of γ ′ ↓R is false, and by Proposition 17 we get that γ ′ ≡ false. Since there exists a
derivation of γ ∼ γ ′ in F(FAs

∗ · Dup∗ · cca2), no rule in FAs is applied. Therefore the derivation is
only an application of cca2. Contradiction. □

Thanks to this proposition, we can ensure that any proof P of t ∼ t ′ does not contain a CS□ or
BFA application on true or false: if we have a CS□ or BFA application on (true, true) or (false, false)
then there is an easy proof cut elimination, and the previous proposition ensures that there are no
CS□ or BFA applications on (true,b), (b, true), (false,b) or (b, false) (with b ,R false, true).

Proposition 24. For all P ⊢npf t ∼ t ′, there exists P ′ such that P ′ ⊢npf t ∼ t ′ and for all

l ∈ label(P ′),h ∈ index(P ′), x ∈ {l, r} we have:

∀β ∈
(
(≤hx,lc ∪ ≤hxcs)(t , P

′)

)
∪

(
(≤hx,lc ∪ ≤hxcs)(t

′, P ′)
)
, {false, true} ∩ leave-st(β ↓R) = ∅

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:89

Proof. Through simple proof cut eliminations, We can construct a proof P ′ from P such that:

{(true, true), (false, false)} ∩ (≤hx,l
c∼c (t ∼ t

′, P)∪ ≤hx
cs∼cs (t ∼ t

′, P)) = ∅

Then using Proposition 9 we know that for all:

(β, β ′) ∈ (≤hx,l
c∼c (t ∼ t

′, P)∪ ≤hx
cs∼cs (t ∼ t

′, P))

the conditions β and β ′ are such that β ,R false and β ′ ,R false (same with true). Finally if
β ,R false then using Proposition 17 we know that for every u ∈ leave-st(β ↓R), u . false (idem
with true). □

G.2 Basic Terms have Disjoints Conditions and Leaves

We now prove that every normalized basic terms has disjoint conditions and leaves.Let β be a
normalized basic terms. First. we show that every condition term b in cond-st(β ↓R) is the leaf
of another normalized basic term β ′, which is a strict subterm of β . Therefore, if cond-st(β ↓R
) ∩ leave-st(β ↓R) , ∅ then there exists β ′ such that leave-st(β ↓R) ∩ leave-st(β ′ ↓R) , ∅. Using
Proposition 17, we deduce that β ≡ β ′, which contradicts the fact that β ′ is a strict sub-term of β .

First, we define the set of normalized basic conditions appearing in a term t .

Definition 63. For all term t , we let <S
bc
t be the set of S-normalized basic condition appearing in

t , defined inductively by:
• If t is a S-normalized simple term C[®b ⋄ ®u], then:

<S
bc
t = ®b ∪

(
<S
bc

®b
)
∪

(
<S
bc
®u
)

• If t is a S-normalized basic term B[®w , (αi)i , (decj)j], then:

<S
bc
t =

⋃
i

<S
bc
αi ∪

⋃
j

<S
bc

decj

• For every S-encryption oracle call t ≡ {u}r
pk
, then:

<S
bc
t = <S

bc
u

• For every S-decryption oracle call C[®b ⋄ ®u], let s , sk be such that s is if-free and the terms in
®u are of the form 0(dec(s[(αi), (decj)j], sk)) or dec(s[(αi), (decj)j], sk). Then:

<S
bc
t = ®b ∪

(
<S
bc

®b
)
∪

⋃
i

<S
bc
αi ∪

⋃
j

<S
bc

decj

We show that the over-approximated set of conditions cond-st(β) is exactly the over-approximated
set of leaves of the normalized basic conditions that are subterm of β .

Proposition 25. For every term β such that β is a S-normalized basic term, S-normalized simple

term, S-decryption oracle call or S-encryption oracle call:

cond-st(β) =
⋃

u<Sbcβ

leave-st(u)

Proof. We prove this by induction on the order <S
ind

, which, we recall, is the order stemming from
S-normalized basic terms, S-normalized simple terms, S-decryption oracle calls or S-encryption
oracle calls mutually inductive definitions.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:90 Adrien Koutsos

Base Case. If β is minimal for <S
ind

, then we have the following cases:

• S-decryption oracle call: β is of the form C[®b ⋄ ®u], and there exists s, sk such that terms in ®u
are of the form 0(dec(s, sk)) or dec(s, sk), and s is if-free. Moreover by minimality of β the
vector of terms ®b must be empty, since for all b ∈ ®b , b is a S-normalized basic term.
Hence cond-st(β) = ∅. Finally since β is minimal there are no u such that u <S

bc
β .

• S-encryption oracle call case cannot happen, as β would not be minimal.
• S-normalized basic term: β contains no if then else symbol, hence cond-st(β) = ∅. More-
over since β is minimal there are no u such that u <S

bc
β .

• S-normalized simple term case cannot happen, as β would not be minimal.

Inductive Case. Let β be such that for all β ′ , β , if β ′ <S
ind

β then the property holds for β ′.
• S-normalized basic term: β is of the form B[®w , (αi)i , (decj)j]. The result is then immediate
by induction hypothesis and using the definition of cond-st(·) and <S

bc
:

cond-st(β) =
⋃
i

cond-st(αi) ∪
⋃
j

cond-st(deci) (By definition of cond-st(·))

=
⋃
i

⋃
u<S

bc
αi

leave-st(u) ∪
⋃
j

⋃
u<S

bc
decj

leave-st(u) (By induction hypothesis)

=
⋃

u<S
bc
β

leave-st(u) (By definition of <S
bc
)

• S-decryption oracle call: t is of the form C[®д ⋄ ®u], where there exists s, sk such that terms in
®u are of the form 0(dec(s[(αi), (decj)j], sk)) or dec(s[(αi), (decj)j], sk), and s is if-free. Then:

cond-st(β) =
⋃
i

cond-st(αi) ∪
⋃
j

cond-st(deci) ∪ cond-st(®д) ∪ leave-st(®д)

(By definition of cond-st(·))

=
⋃
i

⋃
u<S

bc
αi

leave-st(u) ∪
⋃
j

⋃
u<S

bc
decj

leave-st(u) ∪
⋃

u<S
bc
®д

leave-st(u) ∪ leave-st(®д)

(By induction hypothesis: remark that guards in ®д are S-normalized basic terms s.t. ®д ≤S
bt
β)

=
⋃

u<S
bc
β

leave-st(u) (By definition of <S
bc
)

• S-encryption oracle call: t is of the form {s}r
pk
, then:

cond-st(β) = cond-st(s) (By definition of cond-st(·))

=
⋃
u<S

bc
s

leave-st(u) (By induction hypothesis)

=
⋃

u<S
bc
β

leave-st(u) (By definition of <S
bc
)

• S-normalized simple term: t is of the form C[®b ⋄ ®v]. Then:

cond-st(β) = cond-st(®b) ∪ cond-st(®v) ∪ leave-st(®b) (By definition of cond-st(·))

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:91

=
⋃

u<S
bc

®b

leave-st(u) ∪
⋃

u<S
bc
®v

leave-st(u) ∪ leave-st(®b) (By induction hypothesis)

=
⋃

u<S
bc
β

leave-st(u) (By definition of <S
bc
) □

We can now prove that every normalized basic terms has disjoint conditions and leaves, using
Proposition 17 and the result above.

Proposition 26. Let P ⊢npf t ∼ t ′. Then for all h, l for all β ≤h,lbt (t , P):

cond-st(β) ∩ leave-st(β) = ∅

Proof. Let h, l and β ≤h,l
bt
(t , P) be such that cond-st(β)∩ leave-st(β) , ∅. By Proposition 25 this

means that there exists a SPl -normalized basic term u <Sl
bc
β such that leave-st(u) ∩ leave-st(β) , ∅.

By Proposition 17, u ≡ β . But u <Sl
bc
β implies that u is a strict subterm of β . Absurd. □

G.3 Proof Cuts on Branches

For the hypothesis (iii) of Lemma 21 to hold, we need to make sure that the same condition never
appear twice in the same branch11. Therefore, we need to show that if some normalized basic term
β appears twice in the same branch, then there is a proof cut. We have three possibilities:
• The two occurrences of β are involved in BFA applications.
• The two occurrences of β are involved in CS□ applications.
• One occurrence of β is with an BFA application, the other with a CS□ applications.

The first two cases have already dealt with in Section 8. We deal with the cross case later.
Before continuing, we give the proof of Lemma 11, which we omitted in the body. We recall the

lemma statement below:

Lemma (11). For all a,a′,b, c such that their R-normal form is if-free and a =R a′, if there exists a
proof P such that P ⊢npf a,a′ ∼ b, c , then b =R c .

Proof. Let t ≡ ⟨a , a⟩ and t ′ ≡ ⟨b , c⟩, we know that there exists P ′ such that P ′ ⊢npf t ∼ t ′ since
P ⊢npf a,a′ ∼ b, c . Using Proposition 24, we can assume that for every h ∈ index(P), l , x:

∀β ∈
(
(≤

hx,l
c
∪ ≤

hx,l
cs
)(t , P ′)

)
∪

(
(≤

hx,l
c
∪ ≤

hx,l
cs
)(t ′, P ′)

)
, {false, true} ∩ leave-st(β ↓R) = ∅

Let (γ ,γ ′) ≤ϵ,l
l
(t ∼ t ′, P) be the left-most elements of t and t ′. By Proposition 23 we know that

⟨a , a⟩ ↓R∈ leave-st(γ ↓R) and ⟨b , c⟩ ↓R∈ leave-st(γ ′ ↓R). More precisely we know that ⟨b , c⟩ is
the left-most element of γ ′ ↓R .

Since γ ∼ γ ′ is provable in F(FAs

∗ · Dup∗ · cca2), we know that there exist SPl -normalized basic
terms γ1,γ2 and S′Pl -normalized basic terms γ ′1,γ ′2 such that γ =R ⟨γ1 , γ2⟩, γ ′ =R

〈
γ ′1 , γ

′
2
〉
, and

γ1,γ2 ∼ γ
′
1,γ
′
2 is provable in F(FAs

∗ · Dup∗ · cca2).
Moreover a ∈ leave-st(γ1 ↓R) and a ∈ leave-st(γ2 ↓R), hence leave-st(γ1 ↓R)∩ leave-st(γ2 ↓R) , ∅.

By Proposition 17 we deduce that γ1 ≡ γ2.
Therefore there exists a proof of γ1,γ1 ∼ γ ′1,γ ′2 inF(FAs

∗ ·Dup∗ · cca2). By Lemma 2, γ ′1 ≡ γ ′2 . We
conclude by observing that since ⟨b , c⟩ is the let-most element of γ ′ ↓R , b and c are the left-most
element of, respectively, γ ′1 and γ ′2 . Therefore b ≡ c . □

11Indeed, we recall that Proposition 17 shows that if leave-st(β ↓R) ∩ leave-st(β ′ ↓R) , ∅ then β ≡ β ′.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:92 Adrien Koutsos

G.4 Main Lemma

Definition 64. A directed path
δ
®ρ is a sequence (b0,d0), . . . , (bn ,dn) where b0, . . . ,bn are condi-

tions and d0, . . . ,dn (the directions) are in {then, else}.
Two directed paths δ

®ρ and δ
®ρ ′ have the same directions if:

• they have the same length.
• the sequences of directions d0, . . . ,dn and d ′0, . . . ,d ′n extracted from, resp., δ ®ρ and δ

®ρ ′, are
equal.

Given a directed path δ
®ρ, we let ®ρ stands for the sequence of conditions extracted from δ

®ρ.

Example 23. Let s be the term of Example 6, which we recall below:
if b1 then if b2 then t1 else t2

else t3

Then δ
®ρ = (b1, then), (b2, else) is the directed path corresponding to the branch starting at the root

of s and ending at the term t2. Moreover, ®ρ = b1,b2. ⋄

Definition 65. Let P ⊢npf t ∼ t ′, we know that t is of the form:

t ≡ C

[(
bhl bhr bh

)
h∈H
⋄

(
Dl

[
(β)β ≤ϵ,l

c
(t,P) ⋄ (γ)γ ≤ϵ,l

l
(t,P)

])
l ∈L

]
For all l , we let:
• δ

cs-path
ϵ,l (t , P) be the directed path of condition occurring from the root of t to Dl [] in P .

• δ
cs-path

ϵ,l
∼ (t ∼ t

′, P) be the directed path of pairs of conditions occurring from the root of
(t , t ′) to Dl [] in P .

We extend this to all h ∈ index(P), x ∈ {l, r} by having:
δ
cs-path

hx,l (t , P) = δ
cs-path

ϵ,l (b, extractx(h, P))

and δ
cs-path

hx,l
∼ (t ∼ t

′, P) = δ
cs-path

ϵ,l
∼ (b ∼ b

′, extractx(h, P))

where extractx(h, P) is a proof of b ∼ b ′.

We let the depth of a position h in P to be the number of nested applications of the CS□ rule to h.

Definition 66. sym]if-depthP Let P ⊢npf t ∼ t ′. For every h ∈ index(P), we let if-depthP (h) be the
depth of h in P , defined by:

if-depthP (h) =

0 if h ∈ cs-pos(P)
1 + if-depthP l (h) if ∃д ∈ cs-pos(P) s.t. h ∈ index(P l) where P l = extractl(д, P)

1 + if-depthP r (h) if ∃д ∈ cs-pos(P) s.t. h ∈ index(P r) where P r = extractr(д, P)

Lemma 22. Let P ⊢npf t ∼ t ′. There exists P ′ such that P ′ ⊢npf t ∼ t ′ and for all h ∈ index(P ′) with
h , ϵ , for all x ∈ {l, r}, if we let h = hx and P

h = extractx(h, P ′) be the proof of bh ∼ b ′h then for all

l ∈ label(Ph):

(a) The proof Ph
does not use the {BFA(b,b ′)} rules.

(b) cs-pathh,l (t , P) (resp. cs-pathh,l (t ′, P)) does not contain two occurrences of the same condition.

(c) For all γ ≤h,ll (t , P ′), (bh ↓R) ∈ leave-st(γ ↓R) and for all γ ′ ≤h,ll (t ′, P ′), (b ′h ↓R) ∈
leave-st(γ ′ ↓R).

(d) For all β ≤ϵ,lc (t , P
′), leave-st(β ↓R) ∩ cs-pathϵ,l (t , P) = ∅ (same for t ′).

(e) For all γ ≤ϵ,ll (t , P
′), leave-st(t ↓R) ∩ leave-st(γ ↓R) , ∅ (same for t ′).

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:93

δ
cs-path

h0,l (t , P)

•b

β

δ
®ρ

•
b

FAs

δ
cs-path

h0,l (t ′, P)

•b ′

β ′

δ
®ρ ′

•
b ′

FAs

{CS□(b,b
′)}

{BFA(b,b ′)}

A≻

Fig. 16. Corresponding occurrences of b and b ′ in the proof of Lemma 22

Proof. Using Proposition 24, we know that we have P such that P ⊢npf t ∼ t ′ and for all
l ∈ label(P),h ∈ index(P), x ∈ {l, r} we have:

∀β ∈
(
(≤

hx,l
c
∪ ≤

hx,l
cs
)(t , P)

)
∪

(
(≤

hx,l
c
∪ ≤

hx,l
cs
)(t ′, P)

)
, {false, true} ∩ leave-st(β ↓R) = ∅ (19)

First, we rewrite the proof P so that all CS applications are of the form:
b, (ui)i ∼ b

′, (u ′i)i b, (vi)i ∼ b
′, (v ′i)i

(if b then ui else vi)i ∼ (if b
′
then u ′i else v

′
i)i

CS (20)

We prove by induction on n, starting with the inner-most CS conditions, that there exists P such
that P ⊢npf t ∼ t ′, (19) is true for P and the following properties hold for all h,h′ ∈ index(P):

(i) If if-depthP (h) ≥ n then the extractl(h, P) and extractr(h, P) do not use the {BFA(b,b ′)} rules.
(ii) If if-depthP (h) ≥ n then for all x, l , cs-pathhx,l (t , P) and cs-path

hx,l (t ′, P) do not contain two
occurrences of the same condition.

(iii) If if-depthP (h) ≥ n then for all x, if extractx(h, P) is the proof of b ∼ b ′ then for all l , for all
γ ≤hx,l

l
(t , P), (b ↓R) ∈ leave-st(γ ↓R) and for all γ ′ ≤hx,l

l
(t ′, P), (b ′ ↓R) ∈ leave-st(γ ′ ↓R).

(iv) If if-depthP (h) < n then for all h,h′ ∈ index(P) such that h ≤ h′, if we let h′′ be such
that h′ = h · h′′ and x be such that h′′ ∈ index(extractx(h, P)), then for all x′, for all l ∈
label(extractx′(h

′, P)), we have
δ
cs-path

hx,l (t , P) ⊇ δ
cs-path

h′
x
′,l (t , P)

Let nmax be the maximal if-depth in the proof of t ∼ t ′:

nmax = max
h∈index(P)

if-depthP (h)

Base Case. We are going to show that the invariants hold at nmax + 1. Invariants (i), (ii) and
(iii) are obvious, since there exists no h such that if-depthP (h) ≥ nmax + 1; and invariant (iv) is a
consequence of the rewriting done in (20).

Inductive Case: Assume that the property holds for n + 1 and let us show that it holds for n.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:94 Adrien Koutsos

Step 1. Let l ∈ label(P) and h0 ∈ h-branch(l) such that if-depthP (h0) = n. Let x0 ∈ {l, r} and
h0 = h0x0 . We start by showing that for all l , for all β ≤h0,l

c
(t , P), if there exists b ∈ cs-pathh0,l (t , P)

such that b ∈ leave-st(β ↓R) then there exists (b,b ′) ∈ cs-pathh0,l∼ (t , P) and (β , β ′) ≤
h0,l
c∼c (t ∼ t

′, P)
s.t.:
• b ′ ∈ leave-st(β ′ ↓R).
• There exists a directed path δ

®ρ (resp. δ ®ρ ′) of the conditions occurring from the root of
β ↓R (resp. β ′ ↓R) to a leave b (resp. b ′) such that δ

®ρ ⊆ δ
cs-path

h0,l (t , P) (resp. δ ®ρ ′ ⊆
δ
cs-path

h0,l (t , P)).
This is described in Figure 16.

Let β ≤h0,l
c
(t , P) and b ∈ cs-pathh0,l (t , P) such that b ∈ leave-st(β ↓R). We know that there exists

b ′ and β ′ such that (b,b ′) ∈ cs-pathh0,l∼ (t , P) and (β , β ′) ≤
h0,l
c∼c (t ∼ t

′, P).
Let h ∈ cs-pos(extractx0 (h0, P)) and x be the direction taken in l at h be such that extract(h, P)

is the rule CS□(b,b
′). We know that extractx(h, P) is a proof of a ∼ a′, where a =R b and

a′ =R b ′. As if-depth(h) = n + 1 we know by induction hypothesis (i) that extractx(h, P) does
not uses {BFA(b,b ′)}. Hence the set ≤ϵ,l

l
(a, extractx(h, P)) is the singleton {γl } and the set

≤
ϵ,l
l
(a′, extractx(h, P)) is the singleton {γ ′l }. Let H = index(extractx(h, P)), we have:

a ≡ C
[
(bд)д∈H ⋄ (γla)la

]
a′ ≡ C

[
(b ′д)д∈H ⋄ (γ

′
la)la

]
By induction hypothesis (iii) we know that b ∈ leave-st(γl ↓R) and b ′ ∈ leave-st(γ ′l ↓R). γl and β

are Sl -normalized basic terms, hence using Proposition 17 we know that β ≡ γl . We can extract
from the branch l of P a proof of γl , β ∼ γ ′l , β

′ in F(FAs

∗ · Dup∗ · cca2). Therefore, using Lemma 2,
we get that β ′ ≡ γ ′l . Since b

′ ∈ leave-st(γ ′l ↓R), we deduce that b
′ ∈ leave-st(β ′ ↓R). This concludes

the proof of the first bullet point.
We now prove the second bullet point. By induction hypothesis (iv) we know that:

δ
cs-path

h0,l (t , P) ⊇ δ
cs-path

hx,l (t , P) δ
cs-path

h0,l (t ′, P) ⊇ δ
cs-path

hx,l (t ′, P)

By definition of ®ρ, cond-st(γl ↓R) = cond-st(β ↓R) ⊇ ®ρ. We can do better, and obtained an inclusion
in the directed condition path. First, we know that:

• a ≡ C
[
(bд)д∈H ⋄

(
γla

)
la

]
, a =R b and b is if-free and in R-normal form.

• Invariant (ii) holds, hence δ
cs-path

hx,l (t , P) does not contain two occurrences of the same
condition.
• δ

cs-path
hx,l (t , P) does not contain true and false.

The existence of a decomposition as described above is invariant by (chunks of)→R≻u reductions,
for a well-chosen ordering ≻u . At the end of the reduction, we have b. By looking at the reduction
backward, we see that b is a leaf of γl ↓R≻u , such that the directed path δ

®ρ from the root of γl ↓R≻u
to b is included in the path from the root of a to γl .
We deduce that δ ®ρ ⊆ δ

cs-path
hx,l (t , P). By consequence, δ ®ρ ⊆ δ

cs-path
h0,l (t , P). Similarly we

show that δ ®ρ ′ ⊆ δ
cs-path

h0,l (t ′, P).

Step 2. By doing some proof cut elimination, we can guarantee that for all l , for all β ≤h0,l
c
(t , P):

leave-st(β ↓R) ∩ cs-pathh0,l (t , P) = ∅

Assume this is not the case: using Step 1 we have:
δ
®ρ ⊆ δ

cs-path
h0,l (t , P) δ

®ρ ′ ⊆ δ
cs-path

h0,l (t ′, P)

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:95

Therefore we can rewrite β and β ′ into, respectively, b and b ′ (this is possible because we have an
inclusion between the directed paths, not just the paths). We can then rewrite b and b ′ into true if
we are on the then branch of b and b ′ (i.e. x = l), and false if we are on the else branch (i.e. x = r).
Finally we get rid of true and false using R, and check that the resulting proof verifies (19) and the
induction invariants.

Step 2 b. Then we show that we can assume that (ii) holds through some proof rewriting, while
maintaining invariant (iv).
Let (a,a′), (b,b ′) ≤h0

cs∼cs (t , P) such that a ≡ b and they are on the same branch l . Since they are
on the same branch, we can extract a proof Q ⊢npf a,a ∼ a′,b ′. Moreover a ↓R ,a′ ↓R ,b ′ ↓R are
if-free, therefore by Lemma 11 we have a′ ≡ b ′. We then do our standard proof cut elimination to
get rid of the duplicate. We need to make sure that this preserves invariant (iv): this follows from
the fact that invariant (iv) holds for P at depth n + 1 and that the cut takes place at depth n.

Step 3. We then show that (iii) holds. Let bh0 ,b ′h0 be such that extractx0 (h, P) ⊢npf bh0 ∼ b ′h0 . We
know that:

bh0 ≡ C

[(
bhl bhr bh

)
h∈H h0

⋄

(
Dh0
l

[
(β)

β ≤h0,l
c
(t,P)
⋄ (γ)

γ ≤h0,l
l
(t,P)

])
l ∈Lh0

]
where Hh0 = cs-pos(extractx0 (h0, P)) and Lh0 = label(extractx0 (h0, P)).

To prove that for all l , for all γ ≤h0,l
l
(t , P), we have bh0 ↓R∈ leave-st(γ ↓R), we only need to show

that the hypotheses of Lemma 21 hold for bh0 (then we do the same thing with b ′h0 to show that
for all γ ′ ≤h0,l

l
(t ′, P) we have b ′h0 ↓R∈ leave-st(γ ′ ↓R)):

• (21.i): the only difficulty lies in proving that for all β ≤h0,l
c
(t , P), cond-st(β ↓R)∩ leave-st(β ↓R

) = ∅, which is shown in Proposition 26.
• (21.ii): this is a consequence of the fact that (19) holds for P .
• (21.iii): for pairs in (cs-pathh0,l (t , P))2 this was shown in Step 2 b. For couples of positions in
Dh0
l × D

h0
l we have a proof cut elimination (which we already described in Section G.3): let

p < p ′ be the positions in bh0 of β0, β1 ≤h0,lc
(t , P) on the same branch such that leave-st(β0)∩

leave-st(β1) , ∅. By Proposition 17 we know that β0 ≡ β1. Let β ′0, β ′1 be the conditions at
positions, respectively, p and p ′ in b ′h0 . We know that (β0, β ′0), (β1, β ′1) ≤

h0,l
c
(t ∼ t ′, P). We

can extract from P a proof of:
β0, β0 ∼ β

′
0, β
′
1

in F(FAs

∗ · Dup∗ · cca2), hence using Lemma 2 we get that β ′0 ≡ β ′1. Therefore we can do the
following proof cut elimination: if p ′ is on the then branch of p then we can rewrite β1 and
β ′1 into true in, respectively, bh0 and b ′h0 . We then rewrite the two terms using R to remove
the true conditions. This yields a new proof Q in proof normal form, such that (19) and the
induction invariants hold. We do a similar cut elimination with false if p ′ is in the else of p.
Finally the result proven at Step 2 shows that we do not have cross cases cs-pathh0,l (t , P)×Dh0

l .
• (21.iv): this is a consequence of Corollary 2.(i).
• (21.v): this is a consequence of Lemma 19.

Step 4. We conclude by showing that we can get rid of the {BFA(b,b ′)} applications.
Using Corollary 2.(ii) and the proofQ constructed at Step 3, we know that for allγ ,γ ′ ≤h0,l

l
(t ,Q),

γ ≡ γ ′ (and the same holds for (t ′,Q)). Therefore there is a proof cut elimination that allows us to
remove all {BFA(b,b ′)} applications, by rewriting:

Dl

[
_ ⋄ (γ)

γ ≤h0,l
l
(t,Q)

]
and Dl

[
_ ⋄ (γ ′)

γ ≤h0,l
l
(t ′,Q)

]
ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:96 Adrien Koutsos

into, respectively, γ0 and γ ′0 (where γ0 ≤
h0,l
l
(t ,Q) and γ ′0 ≤

h0,l
l
(t ′,Q)).

Conclusion. To conclude, we can first observe that the properties (a),(b) and (c) are implied by,
respectively, (i), (ii) and (iii) for n = 0. The proof that (d) (resp. (e)) holds is exactly the same than
the one we did at Step 2 (resp. Step 3). □

H BOUNDING THE BASIC TERMS

H.1 α-Bounded Conditions

We are ready to do the final proof cut eliminations, which will yield derivation of bounded size
w.r.t. |t ↓R | + |t ′ ↓R |. To bound the size of cut-free derivations, we are going to bound the size
of all normalized basic terms and case-study conditions appearing in such derivations. To do this,
we first introduce the notion of (t , P)-α-bounded terms, where P ⊢npf t ∼ t ′, and then prove that
(t , P)-α-bounded terms are of bounded size w.r.t. |t ↓R | + |t ′ ↓R |. Basically, a term β in ≤h,l

bt
(t , P)

or cs-pathh,l (t , P) is (t , P)-α-bounded if we are in one of the following case:
• β is a normalized basic term, and β has a leaf term appearing in st(t ↓R). Since β is uniquely
characterized by its leaf terms, this bound β .
• Let β ′ be the term matching β on the right. If β ′ shares a leaf term with st(t ′ ↓R), then, by
the previous observation, β ′ is bounded. Since β and β ′ differ only by the content of their
encryptions, this also bound β .
• If β is a case-study condition (i.e. in cs-path

h,l (t , P)), and if there exists a (t , P)-α-bounded
normalized basic term ε such that β appears in ε’s leaf terms. Indeed, since ε is bounded, it
has finitely many leaf terms, which are of bounded size. Hence β is also of bounded size.
• If β is a normalized basic terms used in the sub-proof of b ∼ b ′, where b and b ′ are (t , P)-α-
bounded case-study conditions, and if b appears in β ’s leaf terms. Again, since β is uniquely
characterized by any of its leaf terms, and since b is bounded, we know that β is bounded.
• Finally, if β is a decryption guard of some decryption oracle call d , where d appears in a
(t , P)-α-bounded normalized basic term ζ . Since ζ is bounded, and since β is a sub-term of ζ ,
the term β is also bounded.

We formally define what is a (t , P)-α-bounded terms.

Definition 67. For all P ⊢npf t ∼ t ′, the set of (t , P)-α-bounded terms is the smallest subset of:{
β | ∃h, l . β ≤h,l

bt
(t , P)

}
∪

{
b | ∃h.b ∈ cs-pathh,l (t , P)}

such that for all h, l , for all β (≤h,l
bt
∪cs-pathh,l) (t , P), β is (t , P)-α-bounded if:

• Base case: h = ϵ and leave-st(β ↓R) ∩ st(t ↓R) , ∅.
• Base case: h = ϵ and there exists β ′ such that:

(β , β ′) (≤ϵ,l
l∼l
∪ ≤ϵ,l

c∼c ∪cs-path
ϵ,l) (t ∼ t ′, P)

and leave-st(β ′ ↓R) ∩ st(t ′ ↓R) , ∅.
• Inductive case, same label: β ∈ cs-pathh,l (t , P) and there exists ε ≤h,l

bt
(t , P) such that ε is

(t , P)-α-bounded and β ∈ leave-st(ε ↓R).
• Inductive case, different labels: β ≤h,l

bt
(t , P), there exists h′ such that h ∈ cs-pos(h′) and

b ∈ cs-pathh
′,l (t , P) such that b is (t , P)-α-bounded and b ∈ leave-st(β ↓R).

• Inductive case, guard: β ≤h,l
bt
(t , P), there exists ε ≤h,l

bt
(t , P) such that:

– ε ≡ B[®w , (αi)i , (decj)j] is (t , P)-α-bounded.
– β is a guard of a SPl -decryption oracle call d ∈ (decj)j .

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:97

We continue our proof cut eliminations, starting from the derivations constructed in Lemma 22.
We let P ⊢npfα t ∼ t ′ be the restriction of ⊢npf to derivations satisfying the properties guaranteed by
Lemma 22 which use only (t , P)-α-bounded terms. Moreover, we require that no basic conditions
appears twice on the same branch.

Definition 68. For all proof P , term t , t ′, we write P ⊢npfα t ∼ t ′ if:
(I) P ⊢npf t ∼ t ′ and the properties (a) to (e) of Lemma 22 hold.
(II) The following sets are sets of, respectively, (t , P)-α-bounded and (t ′, P)-α-bounded terms:{

β | ∃h, l . β ≤h,l
bt
(t , P ′)

}
∪

{
b | ∃h.b ≤h

cs
(t , P ′)

}{
β ′ | ∃h, l . β ′ ≤h,l

bt
(t ′, P ′)

}
∪

{
b ′ | ∃h.b ′ ≤h

cs
(t ′, P ′)

}
(III) For every l ∈ label(ϵ), for every path ®ρ of SPl -normalized basic condition from the root of t

to some leave, ®ρ does not contain any duplicates. The same property must hold for t ′.

We now prove the last proof cut elimination lemma.

Lemma (12). ⊢npfα is complete for ⊢npf.

Proof. Let P be such that P ⊢npf t ∼ t ′, where P is obtained using Lemma 22. Therefore P
satisfies the item (I) of Definition 68. Now, we are going to build from P a proof P ′ of t ∼ t ′ that
satisfies the item (II) and (III) of Definition 68.

We are going to show that, if there exists β in:{
β | ∃h, l . β ≤h,l

bt
(t , P ′)

}
∪

{
b | ∃h.b ≤h

cs
(t , P ′)

}
such that β is not (t , P)-α-bounded, then there is a cut elimination removing β (we describe the cut
elimination used later in the proof). Moreover, the resulting proof will have a smaller number of
basic terms which are not (t , P)-α-bounded, hence we will conclude by induction. First, we want to
pick a term β maximal for a carefully chosen relation.

Order <д . Let <д be the transitive closure of the relation≪д on:⋃
h∈index(P)

{
(β , h) | ∃l .β ≤h,l

bt
(t , P)

}
∪

⋃
h∈index(P)

{
(b, h) | ∃l .b ∈ cs-pathh,l (t , P)}

defined by:

(ζ , h) ≪д (ζ
′, h′) iff

h = h

′ ∧ ζ , ζ ′ ≤h,l
bt
(t , P) ∧ ζ is a guard of a dec. oracle call d ∈ st(ζ ′)

h = h
′ ∧ ζ ∈ cs-pathh,l (t , P) ∧ ζ ′ ≤h,l

bt
(t , P) ∧ ζ ∈ leave-st(ζ ′ ↓R)

h > h
′ ∧ ζ ≤h,l

bt
(t , P) ∧ ζ ′ ∈ cs-pathh

′,l (t , P) ∧ ζ ′ ∈ leave-st(ζ ↓R)

First we show that <д is a strict order. As it is transitive, we just need to show that it is an
antisymmetric relation. For all h, the restriction <hд of <д to:{

(β, h) | ∃l .β ≤h,l
bt
(t , P)

}
∪

{
(b, h) | ∃l .b ∈ cs-pathh,l (t , P)}

is a strict order, as it is included in the embedding relation. To show that <д is a strict order on its
full domain, we simply use the facts that for all h, <hд is a strict order and that when we go from
the domain of <hд to the domain of <h′д , we have h′ > h.
W.l.o.g. we assume that (β , h) is maximal for <д among the set of terms that are not (t , P)-α-

bounded. Consider an arbitrary l such that h ∈ h-branch(l). Since β is not (t , P)-α-bounded, we
know that if β is a guard of some decryption oracle call d ∈ st(ζ) with ζ ≤h,l

bt
(t , P), then ζ is not

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:98 Adrien Koutsos

(t , P)-α-bounded. By maximality of β , it follows that if β ≤h,l
bt
(t , P) then β is not a decryption guard

of any ζ ≤h,l
bt
(t , P).

Case h = ϵ . First we are going to describe what to do for h = ϵ . From Lemma 22.(e), we know
that for every l ∈ label(P), for all γ ≤ϵ,l

l
(t , P), the basic term γ is (t , P)-α-bounded. Therefore

β ̸≤ϵ,l
l
(t , P). Moreover, from Lemma 22.(d) we get that β ≤ϵ,l

c
(t , P) and β ∈ cs-path

ϵ,l (t , P) are
mutually exclusive. Putting everything together, we have three cases:

(i) either β (̸≤ϵ,l
l
∪ ≤

ϵ,l
c
) (t , P) and β < cs-pathϵ,l (t , P).

(ii) or β (̸≤ϵ,l
l
∪ ̸≤

ϵ,l
c
) (t , P) and β ∈ cs-pathϵ,l (t , P).

(iii) β (̸≤ϵ,l
l
∪ ̸≤

ϵ,l
c
) (t , P) and β < cs-pathϵ,l (t , P).

We first focus on case (i). We explain how to deal with (ii) and (iii) later.
• (i), Part 1 Assume that we are in case i). Let β ′ be such that (β, β ′) (≤ϵ,l

c∼c) (t ∼ t
′, P). Since β

is not (t , P)-α-bounded we know that for all u ∈ leave-st(β ↓R), for all u ′ ∈ leave-st(β ′ ↓R), u
and u ′ are spurious in, respectively, t and t ′. We let:

t ≡ C
[
®b cs ⋄Dl

[
(βi)i ∈J ⋄ (γm)m∈M

]
,∆

]
t ′ ≡ C

[
®b ′cs ⋄Dl

[(
β ′i

)
i ∈J ⋄

(
γ ′m

)
m∈M

]
,∆′

]
where, for every i ∈ J , (βi , β ′i) ≤

ϵ,l
c∼c (t ∼ t

′, P), and for everym ∈ M , (γm ,γ ′m) ≤
ϵ,l
l∼l
(t ∼ t ′, P).

Moreover, we assume that for every i ∈ J , the hole []i (which is mapped to βi) appears exactly
once in Dl . We define the set of indices I = {i ∈ J | β ≡ βi }. Using Corollary 2.(i), we know
that:

I = {i ∈ J | leave-st(β ↓R) ∩ leave-st(βi ↓R) , ∅}
We know that we have a proof of (βi)i ∈I ∼ (β ′i)i ∈I in the fragment F(FAs

∗ · Dup∗ · cca2).
Therefore:

∀b,b ′ ∈ {β ′i | i ∈ I },b ≡ b ′ ≡ β ′ (21)
Indeed, if |I | = 1 then this is obvious, and if |I | > 1 we use Lemma 2 (since all the terms on
the left are the same). We let I ′ = {i ∈ J | β ′ ≡ β ′i }. Using the same proof than for I , we know
that I ′ = {i ∈ J | leave-st(β ′ ↓R) ∩ leave-st(β ′i ↓R) , ∅}. We deduce from this that:

∀b,b ′ ∈ {βi | i ∈ I ′},b ≡ b ′ ≡ β (22)

From (21) we get that I ⊆ I ′ and conversely from (22) we get that I ′ ⊆ I . Therefore we have
the equality I = I ′.
• (i), Part 2 For every i < I , using Lemma 17 on β we know that there exists β̃i [] such that:

β̃i [β] ≡ βi and leave-st(β ↓R) ∩ cond-st(β̃i [] ↓R) = ∅

Similarly, for everym ∈ M , there exists γ̃m[] such that:

γ̃m[β] ≡ γm and leave-st(β ↓R) ∩ cond-st(γ̃m[] ↓R) = ∅

Then we have:

t ≡ C
[
®b cs ⋄

(
Dl

[
(βi)i ∈J ⋄ (γm)m∈M

]
,∆

)]
≡ C

[
®b cs ⋄

(
Dl

[(
(β)i ∈I , (β̃i [β])i<I

)
⋄ (γ̃m[β])m∈M

]
,∆

)]
ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:99

Let Cβ [®b β ⋄ ®u β] ≡ β ↓R . We have:

Dl

[(
(β)i ∈I , (β̃i [β])i<I

)
⋄ (γ̃m[β])m∈M

]
=R if Cβ [®b β ⋄ ®u β] then Dl

[(
(true)i ∈I , (β̃i [true])i<I

)
⋄ (γ̃m[true])m∈M

]
else Dl

[(
(false)i ∈I , (β̃i [false])i<I

)
⋄ (γ̃m[false])m∈M

]
Since ®u β = leave-st(β ↓R), for every u ∈ ®u β , i ∈ J and m ∈ M , we know that u <
cond-st(β̃i [] ↓R) and u < cond-st(γ̃m[] ↓R). Let ®ρ be the conditions appearing on the path
from the root of t to Dl [_]. Using Lemma 22.(d), we know that ®u β ∩ ®ρ = ∅. Let (uo)o∈O be
such that ®u ≡ (uo)o∈O . By applying Lemma 20 to all u we know that:

C

®b cs ⋄
©«
if Cβ

[
®b β ⋄ ®u β

]
then Dl

[(
(true)i ∈I , (β̃i [true])i<I

)
⋄ (γ̃i [true])m

]
else Dl

[(
(false)i ∈I , (β̃i [false])i<I

)
⋄ (γ̃i [false])m

] ,∆ª®®¬

=R C

®b cs ⋄
©«
if Cβ

[
®b β ⋄ (true)o

]
then Dl

[(
(true)i ∈I , (β̃i [true])i<I

)
⋄ (γ̃i [true])m

]
else Dl

[(
(false)i ∈I , (β̃i [false])i<I

)
⋄ (γ̃i [false])m

] ,∆ª®®¬

=R C
[
®b cs ⋄

(
Dl

[(
(true)i ∈I , (β̃i [true])i<I

)
⋄ (γ̃i [true])m

]
,∆

)]
(23)

• (i), Part 2.b We do exactly the same thing on the other side: for all i < I we know that there
exists β̃ ′i [] such that:

β̃ ′i [β
′] ≡ β ′i and leave-st(β ′ ↓R) ∩ cond-st(β̃ ′i [] ↓R) = ∅

And, for everym ∈ M , there exists γ̃ ′m[] such that:
γ̃ ′m[β

′] ≡ γ ′m and leave-st(β ′ ↓R) ∩ cond-st(γ̃ ′m[] ↓R) = ∅
Then by the same reasoning we have:

t ′ ≡ C
[
®b ′cs ⋄

(
Dl

[(
β ′i

)
i ⋄

(
γ ′m

)
m∈M

]
,∆′

)]
≡ C

[
®b ′cs ⋄

(
Dl

[(
(β ′)i ∈I , (β̃

′
i [β
′])i<I

)
⋄

(
γ̃ ′m[β

′]
)
m∈M

]
,∆′

)]
=R C

[
®b ′cs ⋄

(
Dl

[(
(true)i ∈I , (β̃

′
i [true])i<I

)
⋄

(
γ̃ ′m[true]

)
m∈M

]
,∆′

)]
(24)

Observe that corresponding sub-terms of (23) and (24) can be matched to corresponding
sub-terms of t and t ′. It is straightforward to build a proof of the equivalence of (23) and (24)
using P , except for the cca2 applications side-conditions. We argue why the side-conditions
carry over from the derivation P later in the proof.
• (ii) and (iii) The case (ii) works similarly to the case (i), except that we use Lemma 11 instead
of Lemma 2. The case (iii) is exactly like the case (i) when taking I = ∅.

Case h , ϵ . In that case, thanks to Lemma 22.(a), we know that β ̸≤h,l
c
(t , P). We have three

cases:
(a) either β ≤h,l

l
(t , P): using Lemma 22.(c), there exists h0,bh such that h ∈ cs-pos(h0), bh ∈

cs-path
h0,l (t , P) and (bh ↓R) ∈ leave-st(β ↓R). Since h ∈ cs-pos(h0) implies that h0 < h, we

know that β <д bh . We then have two cases. Either bh is (t , P)-α-bounded, and then using the
inductive case for different labels of the definition of (t , P)-α-bounded terms, we know that β

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:100 Adrien Koutsos

is (t , P)-abounded. Absurd. Or bh is not (t , P)-α-bounded, which contradicts the maximality
of β among the set of terms which are not (t , P)-abounded. Absurd.

(b) either β ̸≤h,l
l
(t , P) and β ∈ cs-pathh,l (t , P): this case is done exactly like case (ii).

(c) either β ̸≤h,l
l
(t , P) and β < cs-pathh,l (t , P): this case is done exactly like case (iii).

Valid Proof Rewriting. We do the rewritings described above for every h such that (β , h) is
maximal for <д , and for every l such that β ≤h,l

bt
(t , P) or β ∈ cs-path

h,l (t , P), simultaneously. It
remains to check that this is a valid cut elimination. The only difficulty lies in checking that all the
side-conditions of the cca2 axiom hold. This is tedious, but here are the key ingredients:
• β is not a guard, and the encryptions that need to be guarded in a decryption are invariant
by our proof cut elimination. Therefore decryptions that were well-guarded before are still
well-guarded after the cut.
• Wedid the proof rewriting simultaneously for all h such that (β , h) is maximal for <д . Consider
h
′ such that (β, h′) is not maximal for <д : then there exists h such that (β , h) is maximal for
<д and h < h

′. Therefore, the sub-proof at index h′ is removed by the proof rewriting. This
ensure that, for all branch l where a rewriting occurred, we removed all occurrences of β .
Therefore, if an encryption used to contain β then all occurrences of this encryption have
been rewritten in the same way. This guarantees that the freshness condition on encryption
randomness still holds.
• The length constraints on encryption oracle calls still holds thanks to the branch invariance
property of the length predicate EQL(_, _).

Conclusion. This concludes the proof of the second bullet point of the definition ⊢npfα . The third
bullet point is much simpler. We want to show that for all l ∈ label(ϵ), for every path ®ρ of SPl -
normalized basic condition from the root of t to some leave, ®ρ does not contain any duplicates.
We show this by proof cut elimination as follows: let (β , β ′0) ≤

ϵ,l
c∼c (t , P) and (β , β ′1) ≤

ϵ,l
c∼c (t , P),

using Lemma 2 we have β ′0 ≡ β ′1. Since they are on the same branch, one may rewrite the lowest
occurrence of β and β ′0 into their then branch (we could also use the else branch). This yield
a smaller proof, and one can check that all the other properties are invariant of this proof cut
elimination. We directly concludes by induction. □

H.2 Bounding the Number of Nested Basic Conditions

We use the previous lemma to bound the number of basic conditions appearing in a proof P ⊢npfα
t ∼ t ′. Looking at the definition of (t , P)-α-bounded terms, one may try to show that for every
β ∈ (≤h,l

bt
(t , P) ∪ cs-pathh,l (t , P)), if β is (t , P)-α-bounded then there exists u ∈ leave-st(β ↓R) such

that u ∈ st(t ↓R) ∪ st(t ′ ↓R). Since st(t ↓R) ∪ st(t ′ ↓R) is finite, and since a basic term is uniquely
characterized by any of its leaves, this would allow us to bound the number of basic terms appearing
in P ⊢

npf

α t ∼ t ′.
Unfortunately, this is not always the case. Indeed, consider (β , β ′) ≤h,l

c
(t ∼ t ′, P) such that β ′

has a leaf term appearing in t ′, but β shares no leaf term with β ′ nor t :
leave-st(β ↓R) ∩ leave-st(β ′ ↓R) = ∅ leave-st(β ↓R) ∩ st(t ↓R) = ∅

leave-st(β ′ ↓R) ∩ st(t ′ ↓R) , ∅
β ′ is α-bounded since it shares a leaf term with t ′, and using the second case, β is α-bounded too.
But β shares no leaf term with t and t ′.
Still, we can bound β . Since (β, β ′) ≤h,l

c
(t ∼ t ′, P), we observe that β ≡ B[®w , (αi)i , (decj)j] and

β ′ ≡ B[®w , (α ′i)i , (dec
′
j)j]. Using the fact that leave-st(β ′ ↓R)∩st(t ′ ↓R) and that β is a Sl -normalized

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:101

basic term, we know that every leaf u ∈ leave-st(β ↓R) is in st(t ′ ↓R), modulo the content of the

Sl -encryption oracle calls. This motivate the introduction of the notion of leaf frame.

Leaf frame. Let β be a Sl -normalized basic term, and u,v ∈ leave-st(β ↓R) be leaf terms of
β . Then u and v only differ by their encryptions. That is, if one replace all the zero decryptions
0(dec(_, sk)) by dec(_, sk), and all the leaves of encryptions {m}n

pk
by {[]α }n

pk
(where α is the unique

term of El such that α ≡ {_}n
pk
) in u and in v then you get the same context. We formalize this

below, and use it to generalize Proposition 17.

Definition 69. Let P ⊢npfα t ∼ t ′ and l be a branch label in label(P). We define the left leaf frame

l-frame
P
l of β ∈ (≤h,l

bt
(t , P) ∪ cs-pathh,l (t , P)) inductively as follows:

l-frame
P
l (s) ≡

{[]α }

n

pk
if ∃α ≡ {m}n

pk
∈ EPl ∧ s ≡ {_}

n

pk

dec(l-frame
P
l (s), sk) if sk ∈ KP

l ∧ s ≡ 0(dec(s, sk))
l-frame

P
l (v) if s ≡ if b then u else v

f ((l-frame
P
l (ui))i) otherwise

We also let l-frame
P
l (β) be l-frame

P
l (β) where we make every hole variable appear at most once, by

replacing a hole variable []α occurring at position p in β by []α,p .
We define the right leaf frame r-frame

P
l (and its underlined version r-frame

P
l) of β ∈ (≤

h,l
bt

(t ′, P) ∪ cs-pathh,l (t ′, P)), using E ′Pl instead of EPl .

Remark 11. We have two remarks:
• We state some results only for l-frame. The corresponding results for r-frame are obtained
by symmetry.
• The hole variables in l-frame

P
l (β) are annotated by both the position p of the hole and the

encryption α that appears at p in β . By consequence, if two normalized basic terms β and β ′
are such that l-frame

P
l (β) and l-frame

P
l (β
′) share a hole variable []α,p , it means that β and β ′

contain the same encryption α at the same position p. This is crucial, as we want l-frame
P
l to

uniquely characterize normalized basic terms. ⋄

Example 24. For all SPl -decryption oracle call dec guarding dec(s[(αi)i , (decj)j], sk), if for all i ,
αi ≡ {_}ni

pki
then:

l-frame
P
l (dec) ≡ dec

(
s
[(
{[]αi }

ni
pki

)
i ,

(
l-frame

P
l (decj)

)
j

]
, sk

)
We also give an example of l-frame

P
l . Assuming that α0 ≡ {A}n0

pk
and α1 ≡ {B}n1

pk
are encryptions

in EPl :
l-frame

P
l (⟨α0 , ⟨α1 , α0⟩⟩) ≡ ⟨{[]α0,00}

n0
pk
, ⟨{[]α1,100}

n1
pk
, {[]α0,110}

n0
pk
⟩⟩ ⋄

Proposition 27. Let P ⊢npfα t ∼ t ′ and l ∈ label(P). Let b be an if-free term in R-normal form. For

every Sl -normalized basic terms γ , if b ∈ leave-st(γ ↓R) then l-frame
P
l (b) ≡ l-frame

P
l (γ).

Proof. This is by induction on the size of γ . □

Proposition 28. Let P ⊢npfα t ∼ t ′ and l ∈ label(P). For every Sl -normalized basic terms β, β ′, if
l-frame

P
l (β) ≡ l-frame

P
l (β
′) then β ≡ β ′.

Proof. The proof is exactly the same than for Proposition 17. □

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:102 Adrien Koutsos

Proposition 29. Let P ⊢npfα t ∼ t ′ and l ∈ label(P). For all h, if (b,b ′) ≤h,lcs∼cs (t ∼ t
′, P) then there

exists h′ and (γ ,γ ′) (≤h
′,l

c∼c ∪ ≤
h′,l
l∼l) (t ∼ t

′, P) such that b ∈ leave-st(γ ↓R) and b
′ ∈ leave-st(γ ′ ↓R).

Proof. Let h, x be such that h = hx. Let h0 ∈ cs-pos(extractx(h, P)) and x0 be such that x0 is the
direction taken in l at position h0, and such that Q = extractx0 (h0, P) is a proof of b ∼ b ′.

Using the fact that the sub-proofs of CS□ conditions of P do not use the BFA rule, we know that
Q lies in the fragment:

F(CS□ · FAs

∗ · Dup∗ · cca2)
Let (γ ,γ ′) ≤ϵ,l

l∼l
(b ∼ b ′,Q). Using the property (c) of Lemma 22 (which holds thanks to ⊢npfα), we

know that b ∈ leave-st(γ ↓R) and b ∈ leave-st(γ ′ ↓R). □

Proposition 30. Let P ⊢npfα t ∼ t ′ and l ∈ label(P). For all h, if (β , β ′)(≤h,lc∼c ∪ ≤
h,l
l∼l ∪cs-path

h,l
∼)(t ∼

t ′, P) then l-frame
P
l (β) ≡ r-frame

P
l (β
′).

Proof. First we deal with the case (β, β ′) (≤h,l
c∼c ∪ ≤

h,l
l∼l
) (t ∼ t ′, P). We know that we can extract

a proof Q (from P) such that Q ⊢npfα β ∼ β ′ and Q is in the fragment F(FAs

∗ · Dup∗ · cca2). The
result follows from the definitions of l-frame

P
l and r-frame

P
l .

Now we deal with the case (β, β ′)(cs-pathh,l∼)(t ∼ t ′, P). Using Proposition 29 we know that there
exists h′ and (γ ,γ ′) (≤h

′,l
c∼c ∪ ≤

h
′,l

l∼l
) (t ∼ t ′, P) such that β ∈ leave-st(γ ↓R) and β ′ ∈ leave-st(γ ′ ↓R).

Since β is if-free and in R-normal form, we obtain that l-frame
P
l (β) ≡ l-frame

P
l (γ) by applying

Proposition 27. Similarly r-frame
P
l (β
′) ≡ r-frame

P
l (γ
′). Moreover, from the previous case, we get

that l-frame
P
l (γ) ≡ r-frame

P
l (γ
′). Hence l-frame

P
l (β) ≡ r-frame

P
l (β
′). □

Proposition 31. Let P ⊢npfα t ∼ t ′ and l ∈ label(P). For every Sl -normalized basic terms β , β ′,
l-frame

P
l (β) ≡ l-frame

P
l (β
′) if and only if l-frame

P
l (β) ≡ l-frame

P
l (β
′).

Proof. This is obvious, since the hole variable annotations in l-frame
P
l uniquely characterize

both the position of the hole and the encryption appearing at this position. □

Proposition 32. Let P ⊢npfα t ∼ t ′ and l ∈ label(P). For every Sl -normalized basic terms β , β ′ and
substitutions θ ,θ ′, if l-frame

P
l (β)θ ≡ l-frame

P
l (β
′)θ ′ then l-frame

P
l (β) ≡ l-frame

P
l (β
′).

Proof. We prove this by induction on the size of β . The base case is trivial, lets deal with the
inductive case. Let β and β ′ be SPl -normalized basic terms, we know that β ≡ B[®w , (αi)i , (decj)j]
where:
• for every i , αi ≡ {mi }

ni
pki
∈ EPl .

• for every j, decj is a decryption oracle call for dec(sj , skj) in DP
l .

Similarly, we have a decomposition of β ′ into B′[®w ′, (α ′i)i , (dec
′
j)j]. By definition of l-frame

P
l , and

using the fact that fresh(RPl ; ®w), we have:

l-frame
P
l (β) ≡ B[®w , ({[]αi }

ni
pki
)i , dec(l-frame

P
l (sj), skj)]

Similarly:
l-frame

P
l (β
′) ≡ B′[®w ′, ({[]α ′i }

n
′
i

pk
′
i
)i , dec(l-frame

P
l (s
′
j), sk

′
j)]

We have three cases:
• Either β ≡ {m}n

pk
∈ EPl . Then l-frame

P
l (β) ≡ {[]β,0}

n

pk
. By definition of l-frame, and using

the fact that l-frame
P
l (β)θ ≡ l-frame

P
l (β
′)θ ′, we get that β ′ is of the form {m′}n

pk
. We deduce

from the freshness side condition of n thatm′ ≡m.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:103

• Or β ≡ dec where dec is a SPl -decryption oracle call guarding dec(s, sk). Then l-frame
P
l (β) ≡

dec(l-frame
P
l (s), sk)µ, where µ is the substitution that lifts positions of s into positions of

dec(s, sk), i.e. for every α ∈ EPl and position p ∈ pos(s):

µ([]α,p) ≡ []α,0·p

By definition of l-frame, and using the fact that l-frame
P
l (β)θ ≡ l-frame

P
l (β
′)θ ′ and that β ′ is

a SPl -normalized basic term, we get that β ′ is also some dec′ where dec′ is a SPl -decryption
oracle call guarding dec(s ′, sk).
Moreover we have l-frame

P
l (s)µθ ≡ l-frame

P
l (s
′)µθ , and s, s ′ are SPl -normalized basic terms.

Hence by induction hypothesis l-frame
P
l (s) ≡ l-frame

P
l (s
′), which concludes this case.

• Or we are not in one of the two cases above. Then, there exists f ∈ F\if,0 s.t. β ≡ f (u1, . . . ,un)
and β ′ ≡ f (u ′1, . . . ,u

′
n), whereu1, . . . ,un andu ′1, . . . ,u ′n areSPl -normalized basic term. Hence

l-frame
P
l (β) and l-frame

P
l (β
′) both starts with the function symbol f .

Moreover, if we let, for very 1 ≤ i ≤ n, µi be the lifting substitution such that, for every
α ∈ EPl and position p, µi ([]α,p) ≡ []α,i ·p , then:

l-frame
P
l (β) ≡ f (l-frame

P
l (u1)µ1, . . . , l-frame

P
l (un)µn)

l-frame
P
l (β
′) ≡ f (l-frame

P
l (u
′
1)µ1, . . . , l-frame

P
l (u
′
n)µn)

We apply θ to the equations above, and use the fact that l-frame
P
l (β)θ ≡ l-frame

P
l (β
′)θ :

f (l-frame
P
l (u1)µ1θ , . . . , l-frame

P
l (un)µnθ) ≡ l-frame

P
l (β)θ

≡ l-frame
P
l (β
′)θ

≡ f (l-frame
P
l (u
′
1)µ1θ , . . . , l-frame

P
l (u
′
n)µnθ)

Hence, for every 1 ≤ i ≤ n, l-frame
P
l (ui)µiθ ≡ l-frame

P
l (u
′
i)µiθ . By induction hypothesis, we

deduce that l-frame
P
l (ui) ≡ l-frame

P
l (u
′
i). Therefore l-frame

P
l (β) ≡ l-frame

P
l (β
′). □

Definition 70. We let <st be the strict, well-founded, subterm ordering.

Nested Sequences of Basic Conditions. We want to bound the number of nested basic condition
appearing in P ⊢

npf

α t ∼ t ′. Using the contrapositive of Proposition 28, we know that when
β <st β

′ we have l-frame
P
l (β) . l-frame

P
l (β
′). Moreover, using Proposition 31 and Proposition 32,

we know that l-frame
P
l (β) . l-frame

P
l (β
′) implies that l-frame

P
l (β)θ . l-frame

P
l (β
′)θ ′ (for every

substitutions θ ,θ ′).
Therefore, for any sequence of nested SPl -normalized basic conditions:

β1 <st · · · <st βn

and for any substitutions θ1, . . . ,θn , we know that (l-frame
P
l (βi)θi)1≤i≤n is a sequence of pair-wise

distinct terms. Tu use this, we prove that there there exists a sequence of substitutions θ1, . . . ,θn
such that: {

l-frame
P
l (β1)θ1, . . . , l-frame

P
l (βn)θn

}
⊆ B(t , t ′)

where B(t , t ′) is a set of bounded size w.r.t. |t | + |t ′ |. Since the (l-frame
P
l (βi)θi)1≤i≤n are pair-wise

distinct, using a pigeon-hole argument we get that n ≤ |B(t , t ′)|.
We outline the end of this sub-section. First, we define the set of terms B(t , t ′), and show the

existence of the substitutions (θi)i . Then, we bound the size of B(t , t ′). Finally, we bound the
number of nested basic condition n using a pigeon-hole argument.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:104 Adrien Koutsos

Definition 71. Let u be an if-free term. We let ζK (u) be the set of terms obtained from u by
replacing some occurrences of 0(dec(w, sk)) by dec(w, sk) (where sk ∈ K), non-deterministically
stopping at some encryptions. Formally:

ζK (u) =

{dec(v, sk) | w ∈ v ∈ ζK (w)} if u ≡ 0(dec(w, sk)) and sk ∈ K

{u} ∪ {{v}nr
pk(n)
| v ∈ ζK (m)} if u ≡ {m}nr

pk(n)
and sk(n) ∈ K

{ f (v1, . . . ,vn) | ∀i,vi ∈ ζK (ui)} otherwise, where u ≡ f (u1, . . . ,un)

Moreover, given a set of ground terms S, we let guardsK (S) be an over-approximation of the set
of guards of terms in S:

guardsK (S) =
{
eq(s,α) | dec(s, sk(n)) ∈ S ∧ α ≡ {_}_

pk(n)
∈ st(s) ∧ sk(n) ∈ K

}
Definition 72. Let Sk(t) be the set of private keys appearing in t ↓R , i.e. Sk(t) = {sk(n) | sk(n) ∈

st(t ↓R)}. For every term t , we let B(t) be the set:

B(t) =
⋃

K⊆Sk(t)

⋃
u ∈ st(leave-st(t ↓R))
∨u ∈ st(cond-st(t ↓R))

ζK (u) ∪ guardsK (ζK (u))

Moreover, we let B(t , t ′) = B(t) ∪ B(t ′).

Proposition 33. Let P ⊢npfα t ∼ t ′ and l ∈ label(P). Let β be a SPl -normalized basic condition.

Then, for every u ∈ leave-st(β ↓R), there exists θ such that l-frame
P
l (β)θ ∈ ζK (u).

Proof. We show this by induction on |β |.
• If β is an encryption {m}n

pk
∈ EPl , then l-frame

P
l (β) ≡ {[]β,0}

n

pk
and:

leave-st(β ↓R) =
{
{v}n

pk
| v ∈ leave-st(m ↓R)

}
Let u ∈ leave-st(β ↓R), there exists um ∈ leave-st(m ↓R) such that u ≡ {um}n

pk
. Let θ be the

substitution mapping []β,0 to um . Then:

l-frame
P
l (β)θ ≡ {um}

n

pk
≡ u ∈ ζKP

l
(u)

• If β is a decryption oracle call in DP
l for dec(s, sk), the:

leave-st(β ↓R) ⊆ {dec(us , sk) | us ∈ leave-st(s ↓R)} ∪ {0(dec(us , sk)) | us ∈ leave-st(s ↓R)}

Let u ∈ leave-st(β ↓R), there exists us ∈ leave-st(s ↓R) such that u ≡ dec(us , sk) or u ≡
0(dec(us , sk)). Since s is a SPl -normalized basic term, by induction hypothesis we have θ such
that l-frame

P
l (s)θ ∈ ζKP

l
(us). Moreover:

l-frame
P
l (β) ≡ dec(l-frame

P
l (s)µ, sk)

where µ is a renaming of hole variables. Let θ ′ = µ−1θ , then:

l-frame
P
l (β)θ

′ ≡ dec(l-frame
P
l (s)µµ

−1θ , sk) ≡ dec(l-frame
P
l (s)θ , sk) ∈ ζKP

l
(u)

• Otherwise, β ≡ f (β1, . . . , βn) where, for every 1 ≤ i ≤ n, βi is a SPl -normalized basic term.
Then, using the fact that β is a SPl -normalized basic term, we check that:

leave-st(β ↓R) ⊆ { f (v1, . . . ,vn) | ∀i,vi ∈ leave-st(βi ↓R)}

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:105

Letu ∈ leave-st(β ↓R), there existsv1, . . . ,vn such that for every 1 ≤ i ≤ nvi ∈ leave-st(βi ↓R
) and u ≡ f (v1, . . . ,vn). By induction hypothesis, there exists θ1, . . . ,θn such that for every
1 ≤ i ≤ n:

l-frame
P
l (βi)θi ∈ ζKP

l
(vi)

For very 1 ≤ i ≤ n, let µi be the lifting substitution such that, for every α ∈ EPl and position
p, µi ([]α,p) ≡ []α,i ·p . Then:

l-frame
P
l (β) ≡ f (l-frame

P
l (β1)µ1, . . . , l-frame

P
l (βn)µn)

Observe that the substitutions (µiθi)1≤i≤n have disjoint domains. Let θ = µ1θ1 . . . µnθn . Then:

l-frame
P
l (β)θ ≡ f (l-frame

P
l (β1)µ1θ1, . . . , l-frame

P
l (βn)µnθn)

We know that f cannot be the function symbol 0(_) (since FA cannot be applied on 0(_)). It
follows that:

f (l-frame
P
l (β1)µ1θ1, . . . , l-frame

P
l (βn)µnθn) ∈ ζKP

l
(u) □

We lift the previous result to α-bounded conditions.

Lemma 23. Let P ⊢npfα t ∼ t ′, l a branch label in label(P), h a proof index and β ∈ (≤h,lbt (t , P) ∪

cs-pathh,l (t , P)). If β is (t , P)-α -bounded then there exists a substitution θ s.t. l-frame
P
l (β)θ ∈ B(t , t

′).

Proof. We prove this by induction on the well-founded order underlying the inductive definition
of (t , P)-α-bounded terms.
• Base case: Assume h = ϵ and leave-st(β ↓R) ∩ st(t ↓R) , ∅. Let u ∈ leave-st(β ↓R) ∩ st(t ↓R),
we have u in R-normal form and if-free, therefore u ∈ st(leave-st(t ↓R) ∪ cond-st(t ↓R
)). Moreover, by Proposition 33, there exists θ such that l-frame

P
l (β)θ ∈ ζKP

l
(u). Hence

l-frame
P
l (β)θ ∈ B(t , t

′).
• Base case: Assume h = ϵ and there exists β ′ such that:

(β , β ′) (≤ϵ,l
l∼l
∪ ≤ϵ,l

c∼c ∪ ≤
ϵ
cs∼cs) (t ∼ t

′, P) and leave-st(β ′ ↓R) ∩ st(t ′ ↓R) , ∅

By Proposition 30 we know that l-frame
P
l (β) ≡ r-frame

P
l (β
′). By Proposition 31, we deduce

that l-frame
P
l (β) ≡ r-frame

P
l (β
′). From the previous case we know that there exists θ such

that r-frame
P
l (β
′)θ ∈ B(t ′). Therefore l-frame

P
l (β)θ ∈ B(t

′).
• Inductive case, same label: Assume β ∈ cs-pathh,l (t , P) and that there exists ε ≤h,l

bt
(t , P)

such that ε is (t , P)-α-bounded and β ∈ leave-st(ε ↓R). By induction hypothesis we have θ
such that l-frame

P
l (ε)θ ∈ B(t , t

′). We know that β is if-free and in R-normal form and that ε is
aSPl -normalized basic term. Therefore, by Proposition 27, we have l-frame

P
l (β) ≡ l-frame

P
l (ε).

Hence, using Proposition 31, l-frame
P
l (β)θ ∈ B(t , t

′).
• Inductive case, different labels: Similar to the previous case.
• Inductive case, guard: If there exists ε ≤h,l

bt
(t , P) such that:

– ε ≡ B[®w , (αi)i , (decj)j] is (t , P)-α-bounded.
– β is a guard of a SPl -decryption oracle call d ∈ (decj)j .
By induction hypothesis there exists θ such that l-frame

P
l (ε)θ ∈ B(t , t

′). Moreover let (pki)i
and (ni)i be such that ∀i,αi ≡ {_}ni

pki
. Then:

l-frame
P
l (ε) ≡ B

[
®w ,

(
{[]αi }

ni
pki

)
i ,

(
l-frame

P
l (decj)

)
j

]
ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:106 Adrien Koutsos

Therefore there exists a renaming of hole variables µ such that l-frame
P
l (d)µθ ∈ st(l-frame

P
l (ε)θ).

Since B(t , t ′) is closed under st, this implies that:

l-frame
P
l (d)µθ ∈ B(t , t

′)

d is of the form dec(s, sk) where sk ∈ K . Since members of guardsK (_) are of the form
eq(_, _), we know that there exists some u ∈ st(leave-st(t ↓R) ∪ cond-st(t ↓R)) such that
l-frame

P
l (d)µθ ∈ ζK (u). Since β is a guard of d , β is of the form eq(s,α) where α is an

encryption under key pk (corresponding to sk) and randomness n appearing directly in s . It
follows that:

l-frame
P
l (d) ≡ dec(l-frame

P
l (s), sk) l-frame

P
l (β) ≡ eq(l-frame

P
l (s), {[]α }

n

pk
)

Since α appears directly in s , and since l-frame
P
l (d)µθ ∈ ζK (u), there exists θ

′ such that:

l-frame
P
l (β)θ

′ ∈ guardsK (ζK (u)) ⊆ B(t , t
′) □

We now bound the size of B(t).

Proposition 34. For every term t , for every u ∈ B(t), we have |u | ≤ |t ↓R |. Moreover:

|B(t)| ≤ |t ↓R |
2.2 |t ↓R |

Proof. An over-approximation of the set of terms ζK (u) is obtained from u by choosing a subset
of positions of u where decryptions over keys in K occur, and removing 0 before the subterms
at these positions (if there is one). Hence each element of ζK (u) is of size at most |u |. Moreover,
for every u ∈ st(leave-st(t ↓R) ∪ cond-st(t ↓R)), we have u ∈ st(t ↓R), and therefore |u | ≤ |t ↓R |.
Therefore the set ζK (u) contains terms of size at most |t ↓R |.

Let dec(s, sk) ∈ ζK (u), then |dec(s, sk)| = |s | + 3 and for every α appearing in s:

|eq(s,α)| = |s | + |α | + 1 ≤ 2|s | + 1 ≤ 2|dec(s, sk)| ≤ 2|t ↓R |

Hence the set guardsK (ζK (u)) contains terms of size at most 2|t ↓R |. We deduce that for every
v ∈ B(t), |v | ≤ 2|t ↓R |. Moreover, by upper-bounding the positions of dec(s, sk) where an
encryption might be, there are at most |s | − 1 ≤ |t ↓R | − 1 such α , independently of the set of keys
K . It follows that: ��� ⋃

K⊆Sk(t)

guardsK (ζK (u))
��� ≤ |ζK (u)|.(|t ↓R | − 1)

Independently of the set of keys K chosen, we have at most |st(t ↓R)| ≤ |t ↓R | choices for u, and
the set

⋃
K⊆Sk(t) ζK (u) contains at most 2 |u | ≤ 2 |t ↓R | elements (we choose the positions where we

remove 0s). Hence:��� ⋃
K⊆Sk(t)

ζK (u) ∪ guardsK (ζK (u))
��� ≤ ��� ⋃

K⊆Sk(t)

ζK (u)
��� + ��� ⋃

K⊆Sk(t)

guardsK (ζK (u))
���

≤ |ζK (u)| + (|t ↓R | − 1).|ζK (u)| ≤ |t ↓R |.2 |t ↓R |

By consequence:
|B(t)| ≤ |t ↓R |.|t ↓R |.2 |t ↓R | ≤ |t ↓R |2.2 |t ↓R | □

Finally, we apply a pigeon-hole argument to bound the number of nested basic terms.

Lemma 24. Let P ⊢npfα t ∼ t ′. Let l be a branch label in label(P), h a proof index. Let (βi)i≤n such

that for all i , βi ≤
h,l
bt (t , P). If β1 <st · · · <st βn then n ≤ |B(t , t ′)|.

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:107

Proof. For every i , j, we know, using Proposition 28, that l-frame
P
l (βi) . l-frame

P
l (βj). By

Proposition 31, we deduce that l-frame
P
l (βi) . l-frame

P
l (βj). Since P ⊢

npf

α t ∼ t ′, we know that
for every i , βi is (t , P)-α-bounded. Using Lemma 23, we deduce that for every i , there exists a
substitution θi such that:

l-frame
P
l (βi)θi ∈ B(t , t

′)

Using the contrapositive of Proposition 32, we have that for every i , j:

l-frame
P
l (βi)θi . l-frame

P
l (βj)θ j

Therefore, by a pigeon-hole argument, n ≤ |B(t , t ′)|. □

H.3 Candidate Sequences

Let P ⊢npfα t ∼ t ′. For all n ≤ |B(t , t ′)|, we are going to define the set Un of normalized basic
terms that may appear in P using n nested basic terms. We then show that these sets are finite and
recursive, and give an upper-bound on their size which does not depend on n. This allows us to
conclude by showing that the existence of a proof using our (complete) strategy is decidable.

Definition 73. An α-context C is a context such that all holes appear below the encryption
function symbol, with proper randomness and encryption key. More precisely, for every position
p ∈ pos(C), if C |p ≡ [] then p = p ′ · 0 and there exist two nonces n, nr such that C |p′ ≡ {[]}nr

pk(n)
.

Moreover, we require that every hole appears at most once.

Remark 12. For every β ≤h,l
bt
(t , P), the context l-frame

P
l (β) is an α-context. ⋄

Let t and t ′ be two ground terms. We now define what is a valid candidate sequence (Un ,An)n∈N
for t , t ′. Basically,Un corresponds to basic terms at nested depth n that could appear, on the left, in
a proof of ⊢npfα t ∼ t ′, while An is the set of left encryptions oracle calls built using basic terms in
Un−1.

Definition 74. Let t , t ′ be two terms. A sequence of pairs of sets of ground terms (Un ,An)n∈N is
a valid candidate sequence for t , t ′ if:
• U0 = B(t , t

′) and A0 = ∅.
• For n ≥ 0, An+1 can be any set of terms that satisfies the following constraints (with the
convention thatA−1 = ∅):An+1 containsAn , and for all α ∈ An+1\An , α ≡ {D[®b ⋄ ®u]}nr

pk(np)

where:
– ®b ∪ ®u are inUn−1 and there exists {_}nr_ ∈ st(t ↓R) ∪ st(t ′ ↓R).
– for every branch ®ρ ⊆ ®b of D[®b ⋄ ®u], ®ρ does not contain duplicates.
– An does not contain any terms of the form {_}nr_ .
• For n > 0, we letUn+1 is the set of term defined fromUn and An as follows:Un+1 contains
Un , plus any element that can be obtained through the following construction:
– Take a α-context C such that there exists θ with Cθ ∈ B(t , t ′).
– Let []1, . . . , []a be the variables of C , and let α1, . . . ,αa be encryptions in An . For all
1 ≤ k ≤ a, let si be such that {si }__ ≡ αi ∈ An .

– Let v0 ≡ C[(si)1≤i≤a]. Then let v be the term obtained from v0 as follows: take positions
p1, · · · ,po ∈ pos(C) such that for all 1 ≤ i ≤ o, C |pi ≡ dec(_, ski) (where ski is a valid
private key, i.e. of the form sk(ni)); for every 1 ≤ i ≤ o, replace inv0 the subterm dec(s, sk) at
position p by D[®д ⋄ ®w], where ®д are terms inUn of the form eq(s,α) (with α ≡ {_}nα_ ∈ An
and α directly appears in s) and ∀w ∈ ®w ,w ≡ dec(s, sk) orw ≡ 0(dec(s, sk)).

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:108 Adrien Koutsos

Proposition 35. Let P ⊢npfα t ∼ t ′. For l ∈ label(P), there exists a valid candidate sequence

(Un ,An)n∈N for t , t ′ such that:⋃
h

≤
h,l
bt (t , P) ⊆

⋃
n< |B(t,t ′) |

Un and

⋃
h

cs-pathh,l (t , P) ⊆
⋃

n< |B(t,t ′) |

leave-st (Un ↓R)

Proof. First, we show that there exists a valid candidate sequence such that the inclusion holds
when taking the union over N on the right, and s.t. for every n,An contains only valid encryptions
in EPl , i.e.:

S =
⋃
h

≤
h,l
bt
(t , P) ⊆

⋃
n<+∞

Un and
⋃
n∈N

An ⊆ E
P
l (25)

Before starting the construction of the valid candidate sequence, we make some observations: if one
fixes (An)n∈N, there is at most one sequence (Un)n∈N such that (Un ,An)n∈N is a valid candidate
sequence.
Moreover this sequence is non-decreasing in (An)n∈N. More precisely, if (Un ,An)n∈N and
(U ′n ,A

′
n)n∈N are valid candidate sequences such that for every n, An ⊆ A

′
n , then for every n,

Un ⊆ U
′
n .

We now describe a procedure that recursively construct S′ ⊆ S and a valid candidate sequence
(Un ,An)n∈N such that S′ is a subset of

⋃
n≤+∞Un (eventually, we will show that S′ = S).

Moreover we require (An)n∈N to be minimal in the following sense: if α ≡ C[®b ⋄ ®u] is inAn+1\An

then there exists v ∈ ®b ∪ ®u such that v ∈ Un\Un−1 (in other words, we add new encryptions in
An as soon as we can).
Initially we take An = ∅ for every n, (Un)n∈N such that (Un ,An)n∈N is a valid candidate

sequence and S′ = ∅. While S′ , S, we pick an element β in S\S′ such that β is minimal for <st
in S\S′. Then we add β to S′ and update (An)n∈N as follows:

Case 1. If β is minimal for <st in S, we have β of the form B[®w , (αi)i ∈I , (decj)j ∈J]. By minimality
of β , we have I = ∅ and for all j ∈ J , decj has no encryptions in EPl , and by consequence no guards.
It follows that β is if-free and in R-normal form, hence l-frame

P
l (β) ≡ β . By consequence, using

Lemma 23, we get that β ∈ B(t , t ′) = U0 (sinceU0 does not depends on the sets (An)n∈N).

Case 2. Let β such that for all β ′ <st β , β ′ ∈ S′. Since S′ ⊆ ∪n∈NUn , and since {β ′ | β ′ <st β} is
finite, there exists nm such that:

{β ′ | β ′ <st β} ∩
(
≤
h,l
bt
(t , P) ∪ cs-pathh,l (t , P)

)
⊆

⋃
0≤n≤nm

Un

From Lemma 23 we have a substitution θ such that:
l-frame

P
l (β)θ ∈ B(t , t

′)

We then just need to show that we can obtain β from l-frame
P
l (β) using the procedure defining

Unm+1:
• For all encryption α ≡ {m}n

pk
∈ st(β) ∩ EPl , we know thatm ≡ C[®b ⋄ ®u] where ®b , ®u <st β .

Hence ®b , ®u are in ∪0≤n≤nmUn . We then have two cases:
– either∪n∈NAn already contains an encryption α ′with randomness n. Since∪n∈NAn ⊆ E

P
l ,

and using the side-condition of the cca2 application, we know that α ≡ α ′ ∈ ∪n∈NAn . By
minimality of the (An)n∈N we know that α ∈ Anm+1.

– or ∪n∈NAn does not contain an encryption with randomness n. Then we simply add α to
An′ , where n′ ≤ nm + 1 is the smallest possible: we know that there exists such a n′ since
adding α to An yields, after completion of the (Un)n∈N, a valid candidate sequence (one

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:109

can check that for all branch ®ρ of C[®b ⋄ ®u], ®ρ does not contain duplicates, using the third
bullet point of the definition of ⊢npfα).

Then we replace in l-frame
P
l (β) the holes []α , _ by {C[®b ⋄ ®u]}

n

pk
. This produce a term v0.

• Finally we also replace inv0 every occurrence of dec(_, sk) or 0(dec(_, sk)) in st(l-frame
P
l (β))

by the corresponding SPl -decryption oracle call, which is possible since the guards ®д of this
decryption oracle calls are such that ®д <st β , hence are in ∪0≤n≤nmUn .

Conclusion. We show that when S = S′ we have:

S ∩
⋃

n<+∞

Un = S ∩
⋃

n< |B(t,t ′) |

Un (26)

Assume that S ∩ U|B(t,t ′) |−1 ⊊ S ∩ U|B(t,t ′) | , take β ∈ S ∩ (U|B(t,t ′) |\U|B(t,t ′) |−1). We know
that β ≡ B[®w , (αi)i , (decj)j] and that there is an encryption α in (αi)i or in the encryptions of
the (decj)j such that α ∈ A |B(t,t ′) |−1\A |B(t,t ′) |−2 (otherwise β would be in S ∩ U|B(t,t ′) |−1). Let
α ≡ {C[®b ⋄ ®u]}n

pk
, by minimality of the (An)n∈N we know that there is some v ∈ ®b ∪ ®u such that

v ∈ U|B(t,t ′) |−1\U|B(t,t ′) |−2. Since β is in S and since v is a SPl -normalized basic term appearing in
β we know that v ∈ S. Let β0 ≡ β , β1 ≡ v , we have v ∈ S ∩ (U|B(t,t ′) |−1\U|B(t,t ′) |−2). By induction
we can build a sequence of terms βn , for n ∈ {0, . . . , |B(t , t ′)|} such that for all 0 ≤ n ≤ |B(t , t ′)|,
βn ∈ S ∩ (U|B(t,t ′) |−i\U|B(t,t ′) |−(i+1)) and βn+1 <st βn (with the conventionU−1 = ∅). We built a
sequence of terms inS, strictly ordered by <st and of length |B(t , t ′)|+1. This contradicts Lemma 24.
Absurd.

To finish, it remains to show that:⋃
h

cs-path
h,l (t , P) ⊆

⋃
n< |B(t,t ′) |

leave-st (Un ↓R)

Let b in
⋃

h
cs-path

h,l (t , P). Using Proposition 29 we know that there exists γ ≤h
′,l

bt
(t , P) such that

b ∈ leave-st(γ ↓R). Since γ ∈
⋃

n< |B(t,t ′) |Un ↓R , we have b ∈
⋃

n< |B(t,t ′) | leave-st (Un ↓R). □

Proposition 36. For all terms u, let Cu be the set of α-contexts:

Cu = {C | ∃θ .Cθ ≡ u ∧ every hole appears at most once}

and Cαu be Cu quotiented by the α-renaming of holes relation. Then |Cαu | ≤ 2 |u | .

Proof. The set of contexts Cαu can be injected in the subsets of positions of u as follows: for
every context C , associate to C the set of positions of u such that C |p is a hole. This is invariant
by α-renaming and uniquely characterizes C modulo hole renaming. It follows that there are less
element of Cαu than subsets of pos(u), i.e. 2 |pos(u) | = 2 |u | . □

Proposition 37. Let t and t ′ be two ground terms, N = |t ↓R | + |t
′ ↓R |. For every valid candidate

sequence (Un ,An)n∈N and n ∈ N:

|An | ≤ N |Un | ≤ N 2.23.N

Proof. For every n, An contains only terms of the form α ≡ {m}nr
pk
, where {_}nr_ ∈ st(t ↓R

) ∪ st(t ′ ↓R). Moreover,An cannot contain two encryptions using the same randomness. Therefore
|An | ≤ N .
For every n, the only leeway we have while constructing the terms in Un is in the choice of

the α-context C , as the content of the encryptions is determined by An−1, and the guards that are

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:110 Adrien Koutsos

added are determined byUn−1. The α-context C is picked in the following set:⋃
u ∈B(t,t ′)

Cαu

which, using Proposition 34 and Proposition 36, we can bound by:��� ⋃
u ∈B(t,t ′)

Cαu

��� ≤
∑

u ∈B(t,t ′)

��Cαu �� ≤
∑

u ∈B(t,t ′)

22.N ≤ N 2.2N .22.N = N 2.23.N □

Proposition 38. Let t , t ′ be two ground terms and N = |t ↓R | + |t
′ ↓R |. For every valid candidate

sequence (Un ,An)n∈N and n ∈ N:

∀u ∈
⋃

n< |B(t,t ′) |

Un , |u | ≤ 2Q (N) . 24.N

Where Q(X) is a polynomial of degree 4.

Proof. Even though there are at most |B(t , t ′)|.N 2.23.N distinct basic terms appearing in branch
l at proof index h, these terms may be much larger. LetUn (resp. An) be an upper bound on the size
of a term inUn (resp. An). Then for every 0 ≤ n < |B(t , t ′)| and α ∈ An+1\An , α is of the form
{C[®b ⋄ ®u]}n

pk
, where ®b , ®u are inUn and C is such that no term appears twice on the same branch.

Recall that we call branch the ordered list of inner conditions, which does not include the final leaf.
If follows that C is of depth at most |Un | + 1, and therefore has at most 2 |Un |+2 − 1 condition and
leaf terms. To bound |C[®b ⋄ ®u]|, we need to bound the size of each of its internal and leaf terms,
which we do usingUn . We get:��C[®b ⋄ ®u]�� ≤ |C | + |C | .Un ≤ 2.|C | .Un ≤ 2 |Un |+3 .Un

sinceUn is greater than 1 (terms can not be of size 0). Therefore |α | ≤ 4 + 2 |Un |+3 .Un . Using the
bound from Proposition 37, we can take:

An = 4 + 2N 2 .23.N +3 .Un

Now let u ≡ C[(αi)i ∈I , (decj)j ∈J] inUn+1\Un . We know that ∀i ∈ I , |αi | ≤ An . There are at most
|C | hole occurrences in C , hence |I | ≤ |C | and |J | ≤ |C |. To bound |u |, we also need to bound
the size of the decryption guards. There are at most N guards for each decryption (since only
element of An may be guarded, and |An | ≤ N), and each guard is inUn , so of size bounded by
Un . Moreover, guarded decryptions have at most N + 1 leaf, where each life is of size at most
|C[(αi)i ∈I , ([])j ∈J]| + 1 ≤ |C | + |I |.An + 1. Hence every decryption’s size is upper-bounded by:

N + N .Un + (N + 1).(|C | + |I |.An + 1)

Finally |C | is such that there there exists θ such that Cθ ∈ B(t , t ′), hence |C | ≤ 2.N using Proposi-
tion 34. Hence, assumingUn ≥ N (which will be the case):��C[(αi)i ∈I , (decj)j ∈J]�� ≤ |C | + |I |.An + |J |.(N + N .Un + (N + 1).(|C | + |I |.An + 1))

≤ 2N + 2N .An + 2N .(N + N .Un + (N + 1).(2N + 2N .An + 1))

Seen as a multi-variate polynomial in N , An andUn , we have only monomials N , N .An , N 2, N 2.Un ,
N 3 and N 3.An . Hence there exists a constant L such that:

u ≤ L.N 3(An +Un) ≤ L.N 3(4 + 2N 2 .23.N +3.Un +Un)

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:111

Hence there exists some polynomial Q0 of degree two such that u ≤ 2Q0(N).23N .Un . We letU0 = N ,
andUn+1 = 2Q0(N).23N .Un . Then:

U |B(t,t ′) |−1 ≤ 2 |B(t,t ′) |.Q0(N).23N .Un ≤ 2N 2 .2N .Q0(N).23N .Un ≤ 2N 2 .Q0(N).24N .Un

Hence we have a polynomial Q(N) = N 2.Q0(N), which is of degree four. □

Corollary 3. Let P ⊢npfα t ∼ t ′ and N = |B(t , t ′)|. For l ∈ label(P) and for all proof index h:

∀u ∈
(
≤
h,l
bt (t , P) ∪ cs-path

h,l (t , P)
)
, |u | ≤ 2Q (N) . 24.N

Proof. Direct consequence of Proposition 35 and Proposition 38. □

To conclude, we only need to bound the number of nested CS□ conditions.

Proposition 39. Let P ⊢npfα t ∼ t ′ and (hi)1≤i≤n be a sequence of indices of P such that for every

1 ≤ i < n, hi+1 ∈ cs-posP (hi) and h1 = ϵ . Then n ≤ |B(t , t
′)| + 1. Moreover |label(P)| ≤ 2 |B(t,t ′) | .

Proof. Let l ∈ label(P) be such that hn ∈ h-branch(l). The proof consists in building an
increasing sequence of SPl -normalized basic terms β1 <st · · · <st βm from (hi)1≤i≤n of length
m ≥ n. We then concludes using Lemma 24.

If hn , ϵ , then hn is of the form hn
xn
. We know that extractxn (hn , P) is a proof of bn ∼ b ′n inACS□ .

Moreover bn ↓R is in cs-path
hn−1,l (t , P) and is (t , P)-α-bounded. Be definition of (t , P)-α-bounded

terms, we know that there exists (βn, j)1≤j≤kn (with kn ≥ 1) such that:
• for all 1 ≤ j ≤ kn , βn, j ≤hn−1,l

bt
(t , P).

• bn ↓R∈ leave-st(βn,1 ↓R).
• βn,kn ≤

hn−1,l
l

(t , P).
• for all 1 ≤ j < kn , βn, j is a guard of a decryption in βn, j+1, and therefore βn, j <st βn, j+1.

If hn−1 , ϵ , then since βn,kn ≤
hn−1,l
l

(t , P) is (t , P)-α-bounded, and since for any β ≤hn−1,l
bt

(t , P),
βn, j is not a guard of β , we know that we are in the inductive case with different labels of the
definition of (t , P)-α-bounded terms. Therefore there exists bn−1 ∈ cs-path

hn−2,l (t , P) such that
bn−1 ∈ leave-st(βn,kn).

We then iterate this process until we reach ϵ , building sequences (βi, j)1<i≤n,1≤j≤ki and (bi)1<i≤n .
Since for all i , bi−1 ∈ leave-st(βi,ki ↓R) and bi−1 ∈ leave-st(βi−1,1 ↓R)we know, using Proposition 17,
that βi,ki ≡ βi−1,1. Therefore we have:

βn,1 <st · · · <st βn,kn ≡ βn−1,1 <st · · · <st βn−1,kn−1 · · · <st β3,k3 ≡ β2,1 <st · · · <st β2,k2

Moreover, for all i we have ki ≥ 1, therefore we built an increasing sequence of SPl -normalized
basic terms of length at least n − 1. It follows, using Lemma 24, that n − 1 ≤ |B(t , t ′)|.

To upper-bound |label(P)|, we only need to observe that we cannot have two CS□ applications on
the same condition in a given branch. Consider the binary tree associated to the CS□ applications
in P , labelled by the corresponding CS□ conditions (say, on the left). Then this tree is of depth at
most |B(t , t ′)|, and therefore has at most 2 |B(t,t ′) | leaves. □

Theorem (Main Result). The following problem is decidable in 3-NExpTime:
Input: A ground formula ®u ∼ ®v .
Question: Is Ax ∧ ®u ≁ ®v unsatisfiable?

Proof. Let ®u = u1, . . . ,un , ®v = v1, . . . ,vn and:

t ≡ ⟨u1 , ⟨. . . , ⟨un−1 , un⟩⟩⟩ t ′ ≡ ⟨v1 , ⟨. . . , ⟨vn−1 , vn⟩⟩⟩

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

3:112 Adrien Koutsos

Using the FA⟨_ , _⟩ axiom, we know that if ®u ∼ ®v is derivable then t ∼ t ′ is derivable. Conversely,
we show that t ∼ t ′ is derivable then ®u ∼ ®v is derivable. For every 3 ≤ i ≤ n, let ρi [] be the i-th
projection defined using π1 and π2 by:

∀n > i ≥ 1, ρi ≡ π1(π i−12 ([])) ρn[] ≡ π
n−1
2 ([])

Then:
t ∼ t ′

(ρi [t])1≤i≤n ∼ (ρi [t
′])1≤i≤n

FA
∗

®u ∼ ®v
R

Hence t ∼ t ′ is derivable iff ®u ∼ ®v is derivable. Moreover, the corresponding proof of ®u ∼ ®v is
of polynomial size in the size of the proof of t ∼ t ′. Therefore w.l.o.g. we can focus on the case
| ®u | = | ®v | = 1.
Let N = |st(t ↓R)| + |st(t ′ ↓R)|. Using Proposition 39, we have bounded the number of branches

of the proof tree (by 2N 2 .2N), and the number of nested CS□ conditions. For every branch, we non-
deterministically guesses a set of α-bounded basic terms that can appear in a proof P of P ⊢npfα t ∼ t ′

using the valid candidate sequence algorithm (in polynomial time in O(N .23.N .2Q (N).24.N), using
Proposition 37 and Proposition 38). Then the procedure guesses the rule applications, and checks
that the candidate derivation is a valid proof. This is done in polynomial time in the size of the
candidate derivation. Remark that to check whether the leaves are valid cca2 instances we use the
polynomial-time algorithm describe in Proposition 11. Finally, since |t ↓R | is at most exponential
with respect to |t |, this yields a 3-NExpTime decision procedure that shows the decidability of our
problem. □

H.4 The Pure Fragment

Proof of Lemma 13. Consider a proof P ⊢npfα t ∼ t ′ that only uses Reflα . For every h, l , for
every γ ≤h,l

bt
(t , P), γ is a normalized basic term. Since we are in the pure fragment, γ contains no

encryptions and decryptions. Consequently, γ is if-free and in R-normal form.

Proof cut. First, we simplify the proof P . We look at the following case in Definition 67. Let h, l ,
and β (≤h,l

bt
∪cs-pathh,l) (t , P) such that:

Inductive case, different labels: β ≤h,l
bt
(t , P), there exists h

′ such that h ∈ cs-pos(h′) and
b ∈ cs-pathh

′,l (t , P) such that b is (t , P)-α-bounded and b ∈ leave-st(β ↓R).
Since β is if-free and in R-normal form, leave-st(β ↓R) = {β}, hence β ≡ b. As this holds for both

the then and else branch of the case-study onb, we have a proof-cut elimination: simply use the proof
used for β . Therefore, we can consider a proof of t ∼ t ′ where for every (b,b ′) cs-pathh,l∼ (t ∼ t ′, P),
the proof of b ∼ b ′ extracted from P does not use CS□. Hence P can be taken in the fragment with
no boxed CS conditions:

F(R · CS∗ · {BFA(b,b ′)}∗ · FAs

∗ · Dup∗ · Reflα) (27)

Remark that if u ∼ v is provable in F({BFA(b,b ′)}∗ · FAs

∗ · Dup∗ · Reflα), then u and v are
alpha-equal.

Conclusion. We prove by induction on the α-bounded inductive predicate that for every h, l , and
(β , β ′) (≤h,l

l∼l
∪ ≤

h,l
c∼c ∪cs-path

h,l
∼) (t , P), β or β ′ is a member of st(t ↓R) ∪ st(t ′ ↓R), and β contains

only names in st(t) ∪ st(t ′).
We look at all possible cases in Definition 67. Let h, l , and β (≤h,l

bt
∪cs-pathh,l) (t , P).

• Base case: Since β is if-free and in R-normal form, leave-st(β ↓R) = {β}, hence β ∈ st(t ↓R).

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

Decidability of a Sound Set of Inference Rules for Computational Indistinguishability 3:113

• Base case: There exists β ′ such that:

(β , β ′) (≤ϵ,l
l∼l
∪ ≤ϵ,l

c∼c ∪cs-path
ϵ,l
∼) (t ∼ t

′, P)

and leave-st(β ′ ↓R) ∩ st(t ′ ↓R) , ∅. We deduce that β ′ ∈ st(t ′ ↓R).
• Inductive case, same label: if β ∈ cs-pathh,l (t , P) and there exists ε ≤h,l

bt
(t , P) such that ε

is (t , P)-α-bounded and β ∈ leave-st(ε ↓R).
From (27), we now that h = ϵ . Since ε is if-free and in R-normal form, leave-st(ε ↓R) = {ε}.
Hence β ≡ ε . We conclude by induction hypothesis and Lemma 2.
• Inductive case, different labels: cannot happen because P is in the fragment (27).
• Inductive case, guard: since we are in the pure fragment, this case cannot happen.

Finally, we ensure that no condition appears twice on the same branch using Lemma 2 and the
usual proof cut elimination. □

ACM Trans. Comput. Logic, Vol. 22, No. 1, Article 3. Publication date: December 2021.

	Abstract
	1 Introduction
	2 The Logic
	2.1 Syntax

	3 Axioms
	3.1 Equality and Structural Axioms
	3.2 Cryptographic Assumptions
	3.3 Transitivity
	3.4 Comments and Examples
	3.5 Comparison with Other Axiomatizations

	4 The Term Rewriting System R
	5 Main Result and Difficulties
	6 Commutations and Cut Eliminations
	6.1 Rule Commutations
	6.2 The Freeze Strategy

	7 Proof Form and Key Properties
	7.1 Shape of the Terms
	7.2 Key Properties

	8 Bounding the Proof and Decision Procedure
	8.1 Decision Procedure
	8.2 The Pure Case

	9 Conclusion
	Acknowledgments
	References
	A Local Confluence of R
	B The CCA2 Axioms
	B.1 Closure Under Restr
	B.2 Length in the CCA2 Axioms

	C Shape of the Terms
	C.1 Definitions
	C.2 Eager Reduction for Afas

	D Proof Form
	D.1 Early Proof Form
	D.2 Shape of the Terms
	D.3 Proof Form and Normalized Proof Form
	D.4 Restriction to Proofs in Normalized Proof Form

	E Properties of Normalized Basic Terms
	E.1 Basic Term Extraction
	E.2 Well-Nested Sets

	F Spurious Conditions and Persistent Leaves
	F.1 Spurious Conditions to Spurious Sets
	F.2 Persistent Terms

	G Proof Cut Elimination
	G.1 Removing True and False From Basic Terms
	G.2 Basic Terms have Disjoints Conditions and Leaves
	G.3 Proof Cuts on Branches
	G.4 Main Lemma

	H Bounding the Basic Terms
	H.1 alpha-Bounded Conditions
	H.2 Bounding the Number of Nested Basic Conditions
	H.3 Candidate Sequences
	H.4 The Pure Fragment

