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A B S T R A C T 

Imaging the cosmic 21 cm signal will map out the first billion years of our Universe. The resulting 3D lightcone (LC) will encode 
the properties of the unseen first galaxies and physical cosmology. Here, we build on previous work using neural networks (NNs) 
to infer astrophysical parameters directly from 21 cm LC images. We introduce recurrent neural networks (RNNs), capable of 
efficiently characterizing the evolution along the redshift axis of 21 cm LC images. Using a large database of simulated cosmic 
21 cm LCs, we compare the relative performance in parameter estimation of different network architectures. These including 

two types of RNNs, which differ in their complexity, as well as a more traditional convolutional neural network (CNN). For the 
ideal case of no instrumental effects, our simplest and easiest to train RNN performs the best, with a mean squared parameter 
estimation error (MSE) that is lower by a factor of � 2 compared with the other architectures studied here, and a factor of � 8 

lower than the previously-studied CNN. We also corrupt the cosmic signal by adding noise expected from a 1000 h integration 

with the Square Kilometre Array, as well as excising a foreground-contaminated ‘horizon wedge’. Parameter prediction errors 
increase when the NNs are trained on these contaminated LC images, though reco v ery is still good even in the most pessimistic 
case (with R 

2 � 0.5 −0.95). Ho we ver, we find no notable differences in performance between network architectures on the 
contaminated images. We argue this is due to the size of our data set, highlighting the need for larger data sets and/or better data 
augmentation in order to maximize the potential of NNs in 21 cm parameter estimation. 

Key words: cosmology: theory – cosmology: observations – dark ages, reionization, first stars – early Universe – galaxies: high- 
redshift – methods: data analysis. 
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 I N T RO D U C T I O N  

omography using the hyperfine transition of HI is set to revolution-
ze our studies of the Cosmic Dawn (CD) and subsequent Epoch of
eionization (EoR). Although current radio telescopes are aiming for
 statistical detection, the upcoming Square Kilometre Array (SKA) 1 

ill ev entually pro vide a 3D image of the first billion years of our
niverse. This image encodes the properties of the first generations
f galaxies, whose UV and X-ray radiation fields imprint multiscale
atterns in the 21 cm signal (see a recent re vie w in Mesinger 
019 ). 
How can we best interpret these patterns to learn about astro-

hysics and cosmology? Bayesian inference has recently become
stablished in the field, either by directly forward-modelling the
1 cm lightcone (e.g. Greig & Mesinger 2017 , 2018 ; Park et al.
019 ; Greig et al. 2021 ) or through the use of emulators of the
1 cm power spectrum (e.g. Kern et al. 2017 ; Schmit & Pritchard
018 ; Jennings et al. 2019 ; Ghara et al. 2020 ; Mondal et al. 2020 ).
o we ver, the question of most constraining summary statistic to use
 E-mail: david.prelogovic@sns.it 
 ht tps://www.skat elescope.org 
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Pub
hen comparing theory to data is as-yet unsettled. The huge data
olumes and the fact that we do not know the initial seed of the
niverse necessitate some form of compression of 21 cm images.
o we ver, the fact that the images are notably non-Gaussian (e.g.

ee fig. 1 in Mellema et al. 2015 ) means that there is additional
nformation contained in the phases of wave-modes that is ignored in
he commonly-used power-spectrum statistic. Indeed several studies
ave shown that non-Gaussian and morphological statistics contain
omplimentary information, and can impro v e parameter inference
hen combined with the power spectrum (e.g. Gazagnes, Koopmans
 Wilkinson 2021 ; Watkinson, Greig & Mesinger 2021 ). 
So what is the ‘optimal’ statistic for constraining astrophysics and

osmology from 21 cm images? Several candidate statistics (e.g.
himabukuro et al. 2015 , 2017 ; Majumdar et al. 2018 ; Giri et al.
018a , 2019 ; Gorce & Pritchard 2019 ; Watkinson et al. 2019 , 2021 ;
azagnes et al. 2021 ) hav e been inv estigated in the literature, but

hese inv estigations hav e not performed a systematic treatment of
he ‘optimality’ of the various statistics. Indeed without a strong
 priori physical moti v ation, an optimal statistics is unlikely to be
ound. 

An alternative approach is provided by deep learning techniques,
pecifically neural networks (NNs). By minimizing a loss function
the prediction error), NN can adaptively find a summary statistic
© 2021 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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Observational Pipeline

Regressor (NN)

Astrophysical and Cosmological 
parameters

Figure 1. Generic pipeline for parameter estimation with NNs. A data base 
of cosmic signal lightcones is processed through an observational pipeline, 
including noise and systematics. The resulting data base of 21 cm images 
is fed into a regressor (neural network), trained to predict a ‘best guess’ for 
astrophysical and cosmological parameters. 
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hat provides the most accurate parameter recovery. This comes with 
he downside that the resulting compression is difficult to interpret 
hysically, and thus the performance strongly depends on having a 
arge, representative data base for training. 

NNs are rapidly becoming popular in the 21 cm community, 
eco v ering the underlying astrophysics and cosmology from 21 cm 

mages. Gillet et al. ( 2019 ) introduced NN to the field, using
D Convolutional Neural Networks (CNNs; LeCun et al. 1989 ) 
n idealized lightcone images. Although they did not consider 
nstrumental effects, the data base of Gillet et al. ( 2019 ) spanned the
argest variation in the cosmic signal, as they considered both EoR
nd X-ray heating parameters. La Plante & Ntampaka ( 2019 ) used a
imilar 2D CNN architecture to predict EoR timing and duration 
fter removing foreground-contaminated modes. Kwon, Hong & 

ark ( 2020 ) predicted the mean neutral fraction during the EoR from
D slices contaminated with Gaussian SKA noise. Better realism 

f SKA1-Low telescope effects was then used with 2D CNNs to 
onstrain cosmology and astrophysics (Hassan, Andrianomena & 

oughty 2020 ) and the neutral fraction (Mangena, Hassan & Santos 
020 ). Prediction uncertainties were introduced by Hort ́ua, Malago 
 Volpi ( 2020 ), using Bayesian Neural Networks to constrain cosmo- 

ogical and reionization parameters, ho we ver without instrumental 
ffects. Zhao et al. ( 2021 ), on the other hand, used likelihood free
ayesian inference to retrieve posteriors of two idealized reionization 
arameters. In addition to these regression studies, CNN-based 
Nets were used to identify ionized regions during the EoR and 

emo v e fore ground contamination from mock 21 cm images (e.g.
akinen et al. 2021 ; Bianco et al. 2021 ; Gagnon-Hartman et al.

021 ). 
Ho we ver, the importance of the network architecture is often 

nderappreciated. The abo v e studies use CNNs to process 21 cm
mages, since they are capable of picking up correlations over a 
ange of scales. Indeed, CNNs are very popular in computer vision,
uch as object detection, image semantic segmentation, and facial 
ecognition. Ho we v er, EoR/CD radio images hav e rather unusual
roperties: they are three-dimensional and anisotropic . Foreground 
nd instrument systematics leave different imprints in the sky-plane 
nd the frequency axis. More fundamentally, the lightcones of the 
osmic signal have redshift evolution along the frequency axis, 
ntroducing strong correlations between neighbouring frequency 
ins. 
In this work, we introduce long short-term memory (LSTM; 

ochreiter & Schmidhuber 1997 ) recurrent neural networks (RNNs) 
or parameter estimation from 21 cm images. RNNs efficiently 
ncode local correlations in sequential data that would otherwise 
equire deeper (and thus more complex) network layers (for details, 
ee Appendix A). As such, RNNs have become very popular in 
pplications with temporal evolution between images/frames (e.g. 
anguage, audio, video; see the re vie w in Schmidt 2019 ). Here, we
xploit the directional differences in 21 cm lightcones by coupling 
traditional’ 2D CNNs for the sky-plane with recurrent layers for 
he frequency dimension that encodes space–time evolution. We 
ompare the performance of different architectures, including RNNs 
nd a variant of 3D CNNs, in parameter estimation from 21 cm
ightcones with varying degrees of signal contamination: (i) the 
osmic signal only; (ii) signal + telescope noise; (iii) signal + 

elescope noise + foreground wedge excision. 
This paper is organized as follows. In Section 2, we discuss how

1 cm data sets are generated. The moti v ation behind dif ferent
etwork architectures is discussed in Section 3. The training pro- 
edure and performance are presented in Section 4. In Section 5, we
uantify the parameter reco v ery for different architectures and levels 
f signal contamination. Finally, concluding remarks are presented 
n Section 6. Additional details on LSTM structure and architectures 
sed can be found in Appendices Sections A and B, respectively.
ll quantities are quoted in co-moving units assuming � CDM 

osmology: ( �� 

, �M 

, �b , n , σ 8 , H 0 ) = (0.69, 0.31, 0.048, 0.97,
.81, 68 km s −1 Mpc −1 ), consistent with the results from Planck
ollaboration et al. ( 2020 ). 

 DATA  BA SES  O F  M O C K  2 1  C M  IMAG ES  

ig. 1 shows the sketch of our procedure for creating a data base
f mock 21 cm lightcones. We sample astrophysical parameters 
nd cosmological initial seeds to compute 3D lightcones of the 
osmological 21 cm signal (Section 2.1). Each lightcone is then 
assed through an observational pipeline (Section 2.2), including 
he following steps: (i) mean removal; (ii) addition of thermal 
oise; and (iii) removal of the foreground wedge. As a result,
e generate three databases, corresponding to steps (i), (i) + (ii),

nd (i) + (ii) + (iii). These are then used to train an NN to predict
strophysical parameters. Below we describe each of these steps in 
urn. 

.1 Cosmological 21 cm signal 

he cosmological 21 cm signal is defined as the brightness temper-
ture offset with respect to the CMB, δT b ≡ T b − T γ . It can be
xpressed as (e.g. Furlanetto, Oh & Briggs 2006 ): 

δT b ( ν) = 

T S − T γ

1 + z 

(
1 − e −τν0 

)
≈ 27 x HI ( 1 + δnl ) 

(
H 

d v r / d r + H 

)(
1 − T γ

T S 

)
×

(
1 + z 

10 

0 . 15 

�M 

h 

2 

)1 / 2 (
�b h 

2 

0 . 023 

)
[mK] . 

(1) 

ere, T S is the gas spin temperature, defining the 21 cm level
opulation as n 1 / n 0 = 3exp ( − 0.068K/ T S ), τν0 is the optical depth
t the 21 cm frequency ν0 , 1 + δnl ( x , z) ≡ ρ/ ̄ρ is the overdensity,
 ( z) the Hubble parameter and d v r /d r the comoving gradient of the

ine of sight component of the comoving velocity. All quantities are
 v aluated at redshift z = ν0 / ν − 1. 

We use the data base of cosmic 21 cm signals from Gillet
t al. ( 2019 ), consisting of 10 000 lightcone images with a box
MNRAS 509, 3852–3867 (2022) 
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ize of 300 Mpc and spatial resolution of 1.5 Mpc, simulated us-
ng the public, semi-numerical code 21cmFASTv2 2 (Mesinger &
urlanetto 2007 ; Mesinger, Furlanetto & Cen 2011 ). For a given
et of astrophysical parameters and choice of cosmological initial
eed, the code generates a 3D lightcone of δT b ( x , y , ν), where
he first two dimensions correspond to on-sky coordinates, while
he third corresponds to the frequency (redshift) dimension (see
ig. 1 ). This calculation involves generating the initial density and
elocity fields, which are then evolved using Lagrangian Perturbation
heory (e.g. Zel’Dovich 1970 ). The spatially dependent source field

s computed from the evolved density using conditional halo mass
unctions (e.g. Barkana & Loeb 2004 ). For a given set of galaxy
arameters, the inhomogenous reionization field is obtained by
omparing the cumulative number of ionizing photons to the number
f recombinations (e.g. Sobacchi & Mesinger 2014 ) in regions of
ecreasing radii (e.g. Furlanetto, Zaldarriaga & Hernquist 2004 ).
hotons with long mean free paths, such as the soft UV and X-rays,
re instead tracked by integrating the local emissivity back along the
ightcone, for each simulation cell. Soft UV photons are attenuated
sing ‘picket-fence’ IGM absorption by the Lyman lines, while X-
ay photons are attenuated by the partially ionized hydrogen and
elium in the neutral component of the two-phased IGM. For more
etails on these calculations, interested readers are encouraged to see
Mesinger & Furlanetto 2007 ; Mesinger et al. 2011 ). 

The data base of Gillet et al. ( 2019 ) varies four astrophysical
arameters (in addition to co-varying the random seed), chosen to
ave both a clear physical meaning as well as driving the largest
xpected variation in the signal: 

(i) ζ ∈ [10, 250], the UV ionizing efficiency of galaxies. It mainly
ontrols the timing of the EoR, where higher values ionize the
niverse earlier. It can be expanded as 

= 30 
f esc 

0 . 1 

f ∗
0 . 05 

N γ / b 

4000 

1 . 5 

1 + n rec 
, (2) 

here the RHS corresponds to the following population-averaged
uantities: f esc is the fraction of ionizing photons escaping the host
alaxy into the IGM, f ∗ is the fraction of galactic gas in stars, N γ /b 

umber of photons per baryon produced in stars, and n rec is the
verage number of times a hydrogen atom recombines during the
oR. We use a constant ζ in order to allow direct comparison with
revious work, though we note that 21cmFASTv2 allows ζ to scale
ith halo mass. 
(ii) T vir ∈ [10 4 , 10 6 ] K, the minimum virial temperature of haloes

osting efficiently star-forming galaxies. Smaller haloes have sup-
ressed star formation due to inefficient cooling and/or feedback.
 vir controls timing of all of astrophysical epochs. Moreo v er, it also

mpacts the characteristic scales of the heated/ionized regions, since
t parametrizes the typical bias of the rele v ant galaxy population. 

(iii) L X < 2keV / SFR ∈ [10 38 , 10 42 ] erg s −1 M 

−1 
� yr, the soft-band

with energies < 2keV) X-ray luminosity per unit star formation
ate (SFR). X-rays are responsible for heating the neutral IGM pre-
eionization, and the resulting temperature fluctuations could drive
he largest variance in the 21 cm signal (e.g. Mesinger , Ewall-W ice
 Hewitt 2014 ). L X < 2keV /SFR controls the timing of the epoch of

eating (EoH) and correspondingly the o v erlap between the other
strophysical epochs of EoR and Lyman alpha coupling. Because
f the cross terms in these fields, the level of o v erlap impacts the
ariance and dynamic range of the 21 cm signal. 
 https:// github.com/andreimesinger/ 21 cmFAST 
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(iv) E 0 ∈ [0 . 1 , 1 . 5] keV , the minimum energy of X-ray photons
scaping the host galaxy. Photons of lower energies are absorbed
n the ISM of the host galaxies, and thus do not contribute to the
oH. Because E 0 determines the typical mean free path of X-ray
hotons, it influences the timing and morphology of EoH, i.e. how
omogeneously the IGM is heated. 

Data sets are generated by sampling from flat distributions o v er
he quoted ranges. T vir and L X < 2keV /SFR are sampled in log space,
hile ζ and E 0 are sampled in linear space. 
We stress that it is important to model all of the astrophysical

pochs for robust inference from 21 cm images. In particular, it is
ommon for machine learning studies to focus only on the EoR,
nder the assumption that T S � T γ is valid during the EoR [c.f.
quation (1); though see Gillet et al. 2019 ; Hort ́ua et al. 2020 who
elf-consistently compute the temperature]. Ho we ver, recent studies
ave pointed out that T S � T γ is unlikely to be true during most
f reionization. The observed galaxy UV luminosity functions (LF)
mply a decreasing star formation efficiency with halo mass (e.g.

irocha, Furlanetto & Sun 2017 ; Park et al. 2020 ), that in turn
uggests a later epoch of heating than initial estimates. Although too
implistic to fully describe high- z galaxies, the parametrization we
se in this proof-of-concept study does contain ‘tuning knobs’ for
he relative timings and morphologies of all astrophysical epochs
robed by the cosmic 21 cm signal. 

.2 Simple obser v ational pipeline 

tarting from the data base of cosmic 21 cm lightcones described in
he previous section, we add instrumental effects with the following
hree steps: 

(i) Mean removal : Remo v e the mean of the signal for each
requency slice 

(ii) Instrumental noise : Compute the uv co v erage and sample a
ealization of the instrumental noise for a 1000 h measurement with
KA1-low 

(iii) Wedg e remo val : Remo v e from the image all Fourier modes
esiding in a foreground-contaminated ‘wedge’. 

The first step is simply the result of measuring the signal with an
nterferometer, thus losing the global signal (we label it as δ ˜ T b ). The
ast two steps are further detailed below. 

.2.1 Instrumental noise 

or our archetypal 21 cm interferometer we use SKA1-low, whose
esign is optimized for high signal-to-noise (S/N) images (Dewdney
t al. 2013 ). The uv co v erage and instrumental noise are calculated
sing tools21cm 3 (Giri, Mellema & Ghara 2018b ; Giri, Mellema
 Jensen 2020 ). We assume a tracked scan of t daily = 6 h d −1 ,

 int = 10 s integration time, and a total t obs = 1000 h measurement.
or computational convenience, we fix the uv grid to the Fourier
ual grid of the lightcone and use a box-car as a gridding kernel.
ith this approximation, the thermal noise is computed for each

requency slice based on the total time spent in each uv cell-by-all
aselines throughout the 1000 h measurement (accounting for Earth’s
otation): 

uv = 

T sys · �beam 

/�pix √ 

2 �ν t int 
· 1 √ 

N uv · t obs /t daily 
[mK] , (3) 
 ht tps://github.com/sambit-giri/t ools21cm 

https://github.com/andreimesinger/21 cmFAST
https://github.com/sambit-giri/tools21cm
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Figure 2. Daily uv co v erage at different redshifts (frequencies). The red circle denotes the maximum baselines considered when computing the noise (2 km ). 
N uv represents the number of measurements in a given uv cell, for t obs = 6 h, t int = 10 s. 

Figure 3. Telescope noise in mK at a pix el lev el as a function of redshift for 
our fiducial 1000h SKA observation. The two curves correspond to pixels of 
side-lengths 1.5 and 6 Mpc . 
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here the first factor on the RHS corresponds to the noise o v er a
ourier-cell from a single baseline, expressed in temperature units 
e.g. Parsons et al. 2012 ), and the second factor accounts for multiple
easurements of a given uv cell: N uv integration times per night 

or t obs / t daily nights. Thus, total observation time is discretized in
isibility snapshots t int apart. The ef fecti ve beam solid angle, �beam 

∼
2 /A eff ≈ 0 . 004( ν/ 150 MHz ) −2 sr encodes the collecting area of the

nstrument, while the pixel solid angle accounts for the fact that the
oise is inherently an angle-integrated quantity. T sys for the SKA is
iven by 

 sys = 60 
( ν

300 MHz 

)−2 . 55 
[K] . (4) 

A realization of the observed, gridded visibilities including thermal 
oise is computed as δ ˜ T b ( u , ν) obs = δ ˜ T b ( u , ν) cosmo + N ( μ = 0 , σ =
uv ), where δ ˜ T b ( u , ν) cosmo is the simulated brightness temperature 
ourier-transformed in the sky-plane (using the Discrete Fourier 
ransform convention in which no length-normalization is applied), 
nd N is a random variable drawn from a zero-mean Gaussian 
istribution with variance σ 2 

uv . 
In Fig. 2 , we show the uv co v erage for a daily, 6 h observation,

t different redshifts. When computing the thermal noise in equa- 
ion (3), we use only the core stations: baselines shorter than 2 km ,
arked with a red circle, that provide most of the S/N. We addition-

lly only consider cells with N uv ≥ 15, roughly amounting to one 
ull day of observation. F or simplicity, our frequenc y bins match the
ative resolution of the cosmological simulation, �ν( z) = 1 . 5 Mpc . 
In Fig. 3 , we show the calculated thermal noise as a function of

edshift, at two different spatial scales. Assuming the intrinsic signal 
as an rms of order 10s of mK on these scales, we expect good
ignal-to-noise images up to z � 10 and noise-dominated images 
rom z � 15. 

.2.2 Wedg e remo val 

 ore grounds represent one of the largest obstacles to detecting the
1 cm signal. Efforts generally focus on mitigating the foregrounds 
r discarding the Fourier modes expected to be dominated by fore-
rounds (see e.g. Kerrigan et al. 2018 ; Chapman & Jeli ́c 2019 ). Here,
e take the latter, conserv ati v e approach: e xcising a fore ground-
ominated ‘wedge’ (in 2D cylindrical k -space) from the 21 cm
ightcone. 

An approximate relation for the contaminated wedge region (e.g. 
orales et al. 2012 ; Vedantham, Udaya Shankar & Subrahmanyan 

012 ; Trott, Wayth & Tingay 2012 ; Parsons et al. 2014 ; Liu, Parsons
 Trott 2014a , b ; Murray & Trott 2018 ) can be derived based on a

aseline’s response to a foreground point-source: 

 ‖ ≤ κ( k ⊥ 

, z) ≡ | k ⊥ 

| E( z) 

1 + z 

∫ z 

0 

d z ′ 

E( z ′ ) 
· sin θ + b, (5) 

here E( z) = 

√ 

�m 

(1 + z) 3 + �� 

, and k ⊥ 

are line-of-sight scales. 
ere, the additive term b captures the fact that at low- k ⊥ 

, the width
f the foregrounds in Fourier space is constant, and set by an applied
frequency-taper’. We discuss this in more detail below . Finally , θ
epresents the zenith-angle of the point source. Since point-sources 
o v er the sk y, θ is defined by the viewing angle of the telescope.
stimates of θ can range from the full-width at half-maximum 

f the telescope beam as an optimistic choice to the full horizon
s a pessimistic choice (cf. Pober et al. 2014 ). We again make a
onserv ati ve choice and assume the horizon limit, θ = π /2. Setting
ll Fourier modes that obey relation 5 to zero in principle remo v es all
oregrounds (while at the same time removing some of the cosmic
ignal), and is known as ‘wedge removal’. 

The wedge definition (equation 5) is inherently redshift- 
ependent, and thus cannot be applied to the Fourier-transform of 
n entire lightcone, as the redshift evolves along the lightcone. To
onsistently define the wedge as a function of redshift, we implement
 rolling procedure. For each redshift slice at comoving distance r ‖ ,
e 

(i) take the part of the lightcone in range r ‖ ± � r /2, where �r =
50 Mpc , 
(ii) multiply by Blackman–Harris (BH) taper function in the line- 

f-sight direction, 
MNRAS 509, 3852–3867 (2022) 
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Figure 4. (a) Slices through the frequency axis of an example 3D lightcone, following successive contamination of the signal. From top to bottom: Cosmological 
Signal , Mean Removal , Mean Removal + SKA noise , Mean Removal + SKA noise + Horizon Cut . (b) Slices trough the sky-plane at z = 8, corresponding to the ex- 
ample in (a). From left to right: Mean Remo val, Mean Remo val + SKA noise, Mean Removal + SKA noise + Optimistic Wedge ( θ = 50 ◦), Mean Removal + SKA 

noise + Horizon Cut ( θ = 90 ◦). Steps in our observational pipeline. We generate a data base following each of the abo v e three steps: Mean Removal , + SKA Noise , 
and + Horizon Cut . In panel (a), we show slices along the frequency plane, while in panel (b) we show slices in the sky-plane. In panel (b), we also include a more 
optimistic wedge contamination. Astrophysical parameters of the particular example are ζ = 150, T vir = 10 5 . 7 K, L X / SFR = 10 40 erg s −1 M 

−1 
� yr , E 0 = 1 . 2 keV . 
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(iii) Fourier-transform to 3D k -space and apply wedge removal, 
(iv) transform back to real space and save values for the central

lice only. 4 

Here, the BH taper is employed to reduce artificial ringing
n Fourier space, which would otherwise occur when applying a
imple box-car window function (i.e. just selecting a ‘chunk’ of
he lightcone) on a non-periodic boundary (e.g. Choudhuri et al.
016 ; Trott et al. 2016 ). Such structure is inimical to the removal of
oregrounds via the wedge, as the wedge relation (equation 5) itself
epends on a highly compact Fourier Transform of the foregrounds
 If M( r ) is the measured data, described rolling procedure amounts to 

 

∗( r ⊥ , r ′ ‖ ) = 

˜ F r 
{
W ( k , r ′ ‖ ) · F r 

{
B N ( r ‖ − r ′ ‖ ) · M( r ) 

}} ∣∣∣
r ′ ‖ 

, 

where F r and ˜ F r are Fourier and inverse Fourier transforms, W is the wedge 
indow function computed from equation (5), B N is the Blackman-Harris of 

ize N = �r/ 1 . 5 Mpc centred around r ′ ‖ . 

s  

�  

t

2

U  

S  

o  

t
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 v er the line of sight. High- k || ringing due to the window function
eaks foreground power outside the wedge, reducing this leakage. 

Ho we ver, applying the BH taper is not without trade-offs. While it
educes Fourier-space sidelobes out to high- k || , it increases the width
f the main foreground lobe at low- k || . This results in the buffer
 , which does not evolve with perpendicular scale, but represents
he minimum k || at any perpendicular scale for which the data is
oreground-free. This parameter increases for more compact taper
unctions (in frequency space), and similarly for smaller ‘chunks’
f the lightcone (i.e. ∝ � r −1 ). We define b as the width in Fourier
pace where the dynamic range of the taper is 10 −10 . We found that
r = 750 Mpc optimizes between these trade-offs, but the results of

his paper are not highly sensitive to the choice of it. 

.2.3 Data set preparation 

sing the 10 000 cosmological lightcone simulations described in
ection 2.1, we generate three data bases, one for each step in the
bservational pipeline outlined in Section 2.2. From hereon, we refer
o these three data bases as 
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Figure 5. CNN architecture sketch. Parallel lightcones denote multiple filters 
and subsequent convolutional and pooling layers are depicted in blue. More 
details are found in Appendix B. 
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(i) Mean removal 
(ii) + SKA noise 
(iii) + Horizon cut . 

Each data base is randomly split as 80 per cent: 
0 per cent:10 per cent into training:validation:test sets. In Fig. 4 , we
how an example 3D lightcone image [with cuts along the frequency 
 4 a) and sk y-plane ax es ( 4 b)] resulting after each step of the signal
ontamination. Removing the mean and adding SKA noise does 
ot remo v e the large-scale features from the cosmological signal. 
o we v er, remo ving the modes from the wedge does contaminate the

mage in a way that is difficult to decipher by eye. Below we quantify
ow well the NN reco v ers astrophysical parameters following each 
tage of contamination. Note that the wedge removal step could 
e considered pessimistic; current instruments like LOFAR and 
WA are constantly improving foreground mitigation within the 
edge (Li et al. 2018 ; Barry et al. 2019 ; Mertens et al. 2020 ; Hothi

t al. 2021 ). Moreo v er, NNs could be trained to add the missing,
oreground-contaminated modes (Gagnon-Hartman et al. 2021 ). For 
 comparison, we calculate the wedge excision in a more optimistic 
ase (see Fig. 4 b, where θ = 50 ◦ is consistent with Mertens et al.
020 ), ho we ver we do not use it in the training of NNs. 
For data augmentation, each lightcone is separated into 4 smaller 

ky-plane patches and 10 realizations of noise are calculated per 
ightcone (see e.g. Perez & Wang 2017 ; Shorten & Khoshgoftaar 
019 ). For computational efficiency, we downsample the 3D images 
y a factor of 4 (to voxels of 6 Mpc), noting that this is below the
xpected SKA1-low resolution. Finally, to improve the stability in 
raining, we normalize both the lightcone images and the parameter 
anges to zero-mean and unit-variance (e.g. LeCun et al. 2012 ). 

 N E T WO R K  A R C H I T E C T U R E S  

ere, we describe the different network architectures we use for 
arameter estimation. These are based on combinations of convolu- 
ional and recurrent operations, guided by our specific usage case. 
amely, the cosmic 21 cm signal contains spatially correlated infor- 
ation in the sky-plane and spatio-temporally correlated information 

cross frequency bins. These correlations, intrinsic to the cosmic 
ignal, are ho we ver weakened with increased data contamination 
rom observational pipelines. 

With this in mind, we construct three NN architectures – all using
primarily) 2D convolutions to encode local sky-plane correlations 
nd either recurrent or 1D convolutional operations to encode 
nformation along the frequency dimension. Although CNNs can 
ncode correlations in both sky and frequency planes, they treat the 
ata as a stationary image. On the other hand, RNNs are designed
o encode a sequence of data by ‘rolling o v er’ it and reusing the
ame weights on each step (see Appendix A for more details). 
ne RNN layer then ef fecti vely becomes an NN with the depth

qual to the length of a sequence – able to encode highly non-
inear data by having comparably fewer weights. This design allows 
NNs, and especially Long Short Term Memory RNNs (Hochreiter 
 Schmidhuber 1997 ), to efficiently and quickly find a stable local
inimum of the loss function when training. 5 As a result, RNNs

ecame famous in audio/video encoding (e.g. Shi et al. 2015 ; Zhao,
 Global minima of loss functions are almost impossible to find given 
he high dimensionality of the parameter space of deep network weights; 
o we ver, local minima can result in satisfactory, comparable performance 
e.g. Choromanska et al. 2015 ). 

w

s
r
p

i & Lu 2019 ) and natural language processing (e.g. Aharoni, Rattner
 Permuter 2017 ). Here, we introduce them to the field of 21 cm. 
Below, we briefly sketch the specific CNN and RNN architectures 

e use in this study. Detailed descriptions, including the number of
ayers, filters, etc., can be found in Appendix B. 

.1 CNN 

ig. 5 shows a sketch of our CNN architecture. The convolutional part
onsists of iterative con volutional (‘Con v’) and pooling (‘MaxPool’) 
ayers, and is followed by fully connected (FC) layers. The final
utput is the prediction of the four astrophysical parameters we use
n this study. ‘Neurons’ are shown with circles, where dash–dotted 
ircles depict dropout at the first FC layer. Convolutions locally 
orrelate voxels of the lightcone and pooling layers downsample it 
y keeping only the strongest acti v ations. 
In the first convolutional + pooling layer, we use 3D kernels.

ubsequently, we iterate successive layers of 2D convolutions in 
he sky-plane and 1D convolutions across frequency bins. Two such 
ayers combined ef fecti vely make a 3D convolutional layer, ho we ver
ith a reduced number of weights. 
One advantage of CNN architectures is that they are comparably 

imple, capable of being trained using more modest computational 
esources. Our CNNs on average require 0.13 GPUh (NVIDIA P100) 
er epoch of training, and 20 ms per e x ecution once trained. 
MNRAS 509, 3852–3867 (2022) 

art/stab3215_f5.eps


3858 D. Prelo go vic et al. 

Figure 6. ConvRNN architecture sketch. F or le gibility, multiple fil- 
ters/channels are omitted from the sketch. Curly arrows represent acti v ations 
passing sequentially in the LSTM layer. Consecutive layers are depicted in 
blue. More details are found in Appendix B. 
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Table 1. Hyperparameter space explored with a grid search. Training was 
performed using a reduced number of epochs for various hyperparameter 
combinations. The final choices are indicated in red. For more details on the 
network architectures, see Appendix B. 

Batch size 20 , 100 

Initial learning rate 10 −2 , 10 −3 , 10 −4 , 10 −5 

Dropout 0.2 , 0,5 
Batch normalization True , False 
Optimizer RMSprop , SGD , Adamax , Adam , Nadam 
Acti v ation function relu , leakyrelu(0.1) , elu , selu 
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.2 ConvRNN 

ig. 6 shows a sketch of our ConvRNN architecture. The input
ightcones are passed through a series of convolutional Long Short
erm Memory (ConvLSTM; Shi et al. 2015 ) layers, which combine
D convolutions in the sky-plane with recurrent LSTMs in the
requency dimension. As for the CNN, the dimensionality is reduced
ollowing each convolution with a MaxPool layer. The ConvLSTM
 MaxPool layers are then followed by pure LSTM and finally FC

ayers, leading to the parameter predictions. 
Despite their efficient performance, a notable drawback is the

equirement of substantial computational resources. Our ConvRNNs
n average require 2 GPUh (NVIDIA P100) per epoch of training,
nd 6 s per e x ecution once trained. This is a factor of 15 larger in
he training time compared with the CNN described abo v e. Because
f these substantial computational resources, we also implement a
slimmed-down’ RNN that we refer to as ‘SummaryRNN’ below. 

.2.1 SummaryRNN 

he main computational bottleneck of the ConvRNN is the convolu-
ional back propagation through time (e.g. Werbos 1990 ). Therefore,
e also construct a ‘SummaryRNN’, in which we remo v e all
NRAS 509, 3852–3867 (2022) 
ecurrent operations from the convolutions, replacing the ConvLSTM
ayers in Fig. 6 with pure 2D sky-plane convolutions. Thus, the Sum-

aryRNN first ‘summarizes’ the lightcones using sequential sky-
lane convolutions, and only passes these (downsampled) summaries
nto a stack of LSTM and FC layers. The SummaryRNN architecture
k etch w ould ef fecti vely be identical to the ConvRNN in Fig. 6 , but
ithout the curved arrows (representing recurrent operation) in the
pper row. 
Although the resulting SummaryRNN loses some information

ompared with the ConvRNN, it can train considerably faster.
pecifically, our SummaryRNNs take 0.1 GPU/h (NVIDIA P100)
er epoch, and 45 ms to e x ecute. This is a factor of 20 impro v ement
n training time compared with ConvRNN. 

 T R A I N I N G  

.1 General network set-up 

e make use of several standard techniques to impro v e the stability
nd generalization of the NN training, including optimal initialization
f the network, batch normalization and dropout. For each choice of
cti v ation function, we use the corresponding optimal initialization
chemes identified in Lecun, Bengio & Hinton ( 2015 ) and He
t al. ( 2015 ) on the basis of keeping the variance of the weights
onstant during the training. The acti v ation function is applied
o all hidden layers of the network. Ho we ver for LSTMs, we
eep the internal structure and acti v ations unchanged (for details
ee Fig. A1 ). Dropout (Sri v astav a et al. 2014 ) is applied only
nce, in the widest part of every NN. The performance of the
etwork is e v aluated by calculating the mean square error (MSE)
etween the true and predicted values of the parameters. The
eights are updated with back-propagation using a fixed batch

ize (Rumelhart, Hinton & Williams 1986 ). Batch normalization
s applied immediately before any tensor transformation, with an
xception of a few layers at the very end (Ioffe & Szegedy
015 ). 
We perform a grid search of standard NN hyperparameter combi-

ations, listed in Table 1 . For this, we train each NN o v er a reduced
umber of epochs (100) and use the resulting MSE loss to identify the
est hyperparameters. This required ≈500 trainings per architecture
nd data base. Hyperparameters marked with red in Table 1 are
referred by all combinations of NN architectures and data bases.
n general, the performance was extremely sensitive to the initial
earning rate. We notice better performance for lower batch size and
ropout, while still allowing the final network to generalize well (as
e shall see in the next section). Turning on batch normalization
ade the training more stable, while we saw no difference between

art/stab3215_f6.eps
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Figure 7. Training and validation losses for the final NN architectures. CNN, ConvRNN, and SummaryRNN architectures are depicted in orange, purple, and 
blue, respectively. The panels correspond to our three data bases, from left to right in increasing levels of signal contamination. Con vRNN con v erges e xtremely 
quickly and we train it for 200 epochs only (dashed lines denote the final loss after 200 epochs). The other NNs were trained for 1000 epochs. 
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cosmic signal. We see that the validation loss keeps decreasing as more noise 
realizations are included. This is suggestive that our final NN performance is 
limited by our data augmentation (data base size). 
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dam and Nadam optimizers, and between relu and leakyrelu 6 

cti v ations. Final architectures are then trained until convergence (for
 detailed specification, we refer the reader to Appendix B). 

The training was done in parallel on 10 NVIDIA P100 GPUs 
ith the ring-Allreduce update scheme. For this, we used 
ensorFlow 7 (Abadi et al. 2015 ) as a main framework and 
orovod 8 (Sergeev & Del Balso 2018 ) as a parallelization library. 
hen training on multiple GPUs, a copy of an NN is held on each

evice and the final loss is an average across all individual losses.
hus, with the constant batch size (bs) per device, the effective batch
ize grows with the number of GPUs ( N GPU ) as bs eff = N GPU · bs. To
ope with this, in the first 10 epochs we linearly scale the learning-
ate lr → lr · N GPU [so-called warmup, see Goyal et al. ( 2017 ) for
etails]. 
Finally, for a consistent comparison, we fixed the learning rate 

cheduler – reducing it by a factor of 10 on 50 per cent and 
5 per cent of the training. 

.2 Training performance 

n Fig. 7 , we show the training and validation losses for our three
etwork architectures. The panels correspond to our three data bases: 
i) Mean removal ; (ii) + SKA noise ; and (iii) + Horizon cut , from
eft to right. For the Mean removal data base, we see that both RNNs
utperform the CNN. This is evidenced mainly by their validation 
osses being lo wer. Furthermore, the dif ference between the training 
nd validation losses is much smaller for the two RNNs than for the
NN, demonstrating that the RNNs are able to generalize better and 
re less prone to o v erfitting. 

We see that the final validation losses of ConvRNN and Summa- 
yRNN are comparable for the Mean removal data base. Ho we ver, the 
onvRNN (which includes recurrent layers also in the convolutional 

teps) is much more stable in training. It rapidly and with very
ittle stochasticity finds a local minimum in the loss function, after 
nly 100 epochs; SummaryRNN requires 500 epochs to approach a 
omparable loss and the training is noisier initially (note the effect of
R reduction at 50 per cent and 75 per cent of the training). Ho we ver,
ven accounting for ∼5 times more training epochs, SummaryRNN 

till is less computationally intensive compared to ConvRNN (a 
actor of 4 fewer GPUh in total training time). 
 Here we use leakyrelu(0.1) = 

{
0 . 1 x x < 0 
x x ≥ 0 

. 

 ht tps://github.com/t ensorflow/tensorflow 

 https://github.com/hor ovod/hor ovod 

5

I
n  

t  

i  
From the middle and right-hand panels of Fig. 7 , we see that with
igher contamination, the performance worsens and the differences 
n the final validation losses between the architectures disappear. The 
act that the different architectures are reaching the same validation 
oss is strongly suggestive that we are reaching the intrinsic limits of
ur data sets. 
To explore this point further, we vary the number of noise

ealizations per cosmic signal in the + SKA noise database, re-
raining the SummaryRNN each time. In Fig. 8 , we show the training
nd validation losses using 1, 2, and 10 noise realizations per cosmic
ignal (our fiducial data base corresponds to 10). We note a significant
ecrease in the validation loss going from 1 to 2 noise realizations per
osmic signal. Ho we v er, although the impro v ement is smaller, the
nal validation loss keeps decreasing e ven do wn to 10 realizations.
his supports the claim abo v e that our results are limited by our
ata augmentation, especially for the + SKA Noise and + Horizon
ut data bases. In future work, we will increase the size of the data
ases, sampling more cosmic signals and contamination realizations, 
uantifying if we reach convergence. 

 PARAMETER  R E C OV E RY  

n this section, we demonstrate the performance of the trained 
etworks in parameter reco v ery on the test sets. We begin by showing
he predicted versus true distributions, P ( p , t ), for the SummaryRNN
n Fig. 9 . The rows correspond to our four astrophysical parameters,
MNRAS 509, 3852–3867 (2022) 
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Figure 9. Histograms of True versus Predicted, P ( p , t ), for our SummaryRNN architecture and all data bases. From left to right, columns represent: Mean 
Removal , + SKA noise , + Horizon Cut data sets. Rows correspond to our four astrophysical parameters (defined in the text). Each panel is bordered by the mean 
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2 coefficients are marked in upper-left corners. Some labels are omitted to a v oid 
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hile the columns correspond to the three different data bases. 
tandard R 

2 scores are reported in the panels. On the top and side
f each 2D distribution, we show the mean and ±1 σ of the 1D
onditional distributions, P ( t − p | p ) and P ( p − t | t ), respectively. 

Focusing on the Mean Removal results, we reco v er the same
ualitative trends discussed in Gillet et al. ( 2019 ), who used the
ame database of cosmic signals. The best reco v ery is obtained for
he minimum virial temperature for star-forming galaxies, T vir , with 
n R 

2 = 0.9995 and no notable biases. This is because T vir impacts
he timing of all astrophysical epochs, as well as the characteristic 
cales of structures. Thus the cosmic signal is very sensitive to 
 vir , facilitating good reco v ery. The ionizing efficiency and X-ray

uminosity parameters, ζ and L X /SFR, are also predicted very well. 
hese impact the timing of the EoR and the EoH, respectively. The
inimum X-ray energy escaping the host galaxy, E 0 , is reco v ered
ell for values below E 0 < 1 keV. Since the interaction cross-

ection for X-rays is a strong function of energy, photons with higher
nergies are inefficient at ionizing / heating the IGM and do not
eave a strong imprint in the 21 cm signal. As we approach E 0 →
.5 keV, corresponding to photons with mean free paths comparable 
o the Hubble length, the network prediction becomes understandably 
andomized (pulling towards the mean of the range). Indeed, all 
istributions show a characteristic ‘S’ shape, as a consequence of the 
harp boundary on the parameter ranges. 

As could be expected from the validation loss curves in the 
revious section, the SummaryRNN predictions on the test sets 
otably worsen with increasing signal contamination (going from 

eft to right in Fig. 9 ). Including SKA noise 9 only decreases the R 

2 

cores by a few per cent. The wedge excision has a more dramatic
ffect, especially on the ζ and E 0 parameter predictions that drop to 
 

2 = 0.80 and 0.53, respectively. 
After showing all of the predicted versus true distributions for the 

ummaryRNN architecture, we now compare the parameter reco v ery 
rom all three of our architectures, using their P ( t | p ). 10 In Fig. 10 , we
racket ±1 σ (rms) of the P ( t − p | p ) distributions for all architectures
identical to P ( t | p ), only shifted for easier visualization), with upper
nd lower curves of matching colours. Columns represent different 
atabases and rows different astrophysical parameters. In the case of 
nbiased errors, P ( t − p | p ) would be a zero-mean distribution. 
As expected from the validation loss curves, the two RNNs per- 

orm the best on the Mean Removal test data. Overall, SummaryRNN 

erforms the best, likely outperforming ConvRNN due to the longer 
raining (the number of training epochs for ConvRNN was five times
ess than for SummaryRNN, due to its substantial computational 
equirements, as discussed abo v e). Specifically, SummaryRNN has 

SE on average a factor of ∼2 lower than the CNN for all param-
ters. Here, the MSE is calculated for each parameter individually, 
v eraging o v er all test samples. F or detailed numerical values for all
rchitectures and parameters, see Table 2 . 
 We remind the reader that our noise calculation is done in uv space, and 
ncludes the effects of the finite beam. 
0 Although P ( p | t ) is a common performance metric in the literature, it is 
ess meaningful than P ( t | p ). In practice, we will have an observation that 
hen fed into a trained network will give a ‘best guess’ parameter vector, 
p . So the rele v ant uncertainty is the probability of the ‘true’ parameters 
f the Uni verse, gi ven this network prediction, P ( θ t | θ p ). Unfortunately, our 
oint estimate networks do not allow for a direct calculation of the Bayesian 
osterior; ho we ver, the closest approximation we can make with the data at 
and are the ‘marginalized’ distributions of P ( t | p ) from the test set, where t 
nd p are components of θ t and θ p , respectively. 

V  

C
i  

i

J

1

(
e
u

In these Mean Removal panels of Fig. 10 , we also show in grey
he corresponding limits from the CNN presented in Gillet et al.
 2019 ). Training on the same data base of cosmic signals, Gillet
t al. ( 2019 ) considered a shallower CNN than we use here, and did
ot include any signal contamination (not even mean removal). Our 
eeper networks result in a factor of ∼2 −8 smaller variance in P ( t | p )
calculated as an average across all test samples), despite having a
actor of four times poorer resolution and having remo v ed the mean
f the cosmic signal. 
For the + SKA Noise test data base, the prediction errors are

arger for all parameters, and there are little differences between 
etwork performances (suggestive that we are limited by the data 
et size, as discussed previously). Some of the qualitative trends are
nderstandable on physical grounds. As noted previously, for high 
alues of E 0 that do not impact the signal the network predictions are
lmost randomly distributed across the whole range, resulting in the 
e gativ e bias seen in the figure beyond E 0 � 1.2 keV. Furthermore,
or lo w v alues of T vir , the first galaxies form at very high redshifts,
hifting all astrophysical epochs of the 21 cm signal to frequencies
ith higher thermal noise. This explains the (modest) increase in 

he prediction error at T vir � 10 4.3 K. The fact that the increase is
elatively modest suggests all networks have learned to ‘marginalize 
 v er’ the noise reasonably well even with only 10 noise realizations
er cosmic signal. 

For the + Horizon Cut test data base, the prediction errors increase
ignificantly for all architectures. This is not surprising given that 
ur pessimistic wedge removal throws away a significant amount 
f information (c.f. Fig. 4 ). Unlike for the thermal noise that is
ncorrelated with the cosmic signal, we cannot augment our + 

orizon Cut data base without running more samples of the cosmic
ignal. As a result, all networks are unable to generalize and perform
uch worse than with the other data bases. In future work, we will

nvestigate how well NNs can train to marginalize o v er simulated
oregrounds, rather than adopting the simple foreground-a v oidance 
pproach as we do here (for a foreground-cleaning example, see La
lante & Ntampaka 2019 ). 

.1 What features are guiding the network predictions? 

ne major drawback of machine learning is that deep neural networks 
re often treated as ‘black boxes’. As such, it is important to check
f the trained NN is using reasonable features in the images to make
redictions, and is not o v erfitting by focusing on unphysical artefacts
articular to a data set (e.g. Lapuschkin et al. 2019 ). For this reason,
eature identification tools such as saliency mapping and attention 
echanisms are becoming increasingly popular (e.g. Zeiler & Fergus 

013 ; Selvaraju et al. 2016 ; Chang et al. 2018 ; Vaswani et al. 2017 ;
amachandran et al. 2019 ). 
Here, we use a simple saliency mapping technique (Simonyan, 

edaldi & Zisserman 2013 ) to visualise the features used by our
NN. 11 Specifically, we calculate a gradient saliency map, construct- 

ng a Jacobian matrix of the NN prediction with respect to the input
mage: 

 0 = 

〈
∂ θ p 

∂d 

∣∣∣
d 0 

〉
, (6) 
1 Unfortunately, RNN visualization requires more complicated techniques 
Karpathy, Johnson & Fei-Fei 2015 ; Ramanishka et al. 2017 ; Adel Bargal 
t al. 2018 ) that are not straightforward to adapt to our usage case. We thus 
se the CNN feature maps as a ‘sanity check’ in this section. 

MNRAS 509, 3852–3867 (2022) 



3862 D. Prelo go vic et al. 

50 100 150 200
−40

−20

0

20

40

ζ

Mean Removal

Gillet 2018.

ConvRNN

SummaryRNN

CNN

4.5 5.0 5.5
−0.2

−0.1

0.0

0.1

lo
g 1

0(
T

vi
r
/K

)

39 40 41
−0.4

−0.2

0.0

0.2

0.4

lo
g 1

0(
L

X
/S

F
R
/e

rg
s−

1
M

−1
yr

)

200 500 800 1100 1400

−400

−200

0

200

400

E
0
/e

V

50 100 150 200
p

+ SKA Noise

4.5 5.0 5.5
p

39 40 41
p

200 500 800 1100 1400
p

50 100 150 200

t
−

p

+ Horizon Cut

4.5 5.0 5.5

t
−

p

39 40 41

t
−

p

200 500 800 1100 1400

t
−

p

Figure 10. Prediction errors for all architectures. The lower and upper set of corresponding curves bracket ±1 σ of the P ( t − p | p ) distributions. Columns 
represent different test data bases, and rows different astrophysical parameters. 

Table 2. MSE of all considered models and parameters. All values are 
expressed in parameter units squared (e.g. E 0 in eV 

2 ). ConvRNN, Sum- 
maryRNN, and CNN are marked with purple, blue, and orange, respectively. 

Mean rem. + SKA noise + Hor. cut 

ζ 65 207 921 
31 175 925 
71 144 879 

log 10 ( T vir ) 58 × 10 −5 260 × 10 −5 1175 × 10 −5 

16 × 10 −5 198 × 10 −5 981 × 10 −5 

35 × 10 −5 125 × 10 −5 749 × 10 −5 

log 10 ( L X /SFR) 15 × 10 −3 24 × 10 −3 77 × 10 −3 

9 × 10 −3 22 × 10 −3 68 × 10 −3 

12 × 10 −3 17 × 10 −3 64 × 10 −3 

E 0 25 × 10 3 30 × 10 3 77 × 10 3 

22 × 10 3 28 × 10 3 82 × 10 3 

28 × 10 3 30 × 10 3 81 × 10 3 
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here θ p is the NN parameter prediction vector in which each
omponent corresponds to an astrophysical parameter, d is the
ata vector in which each component corresponds to a given pixel
f the 3D lightcone image, d 0 is a given input image for which
e e v aluate the saliency map, and the averaging is performed
 v er all possible 150 × 150 Mpc sky-plane cuts out of the initial
00 × 300 Mpc lightcone. Besides giving us a consistent way to
isualize a saliency map for the whole simulation v olume, a veraging
mooths-out fluctuations in the gradients (for details about gradient
moothing, see Smilkov et al. 2017 ). Intuitively, the gradient ∂ θ p /∂d
orresponds to the change in the NN parameter prediction from a
ix el-by-pix el perturbation in the input image. 
In Fig. 11 , we use a sample input from our Mean Removal test

et to illustrate the feature identification of our CNN. For simplicity,
e only show 2D slices through the 3D lightcones. The top panel

orresponds to the cosmic signal, the second panel to the input
mage, and the bottom four are the (normalized) gradient saliency

aps for each parameter. These gradient saliency maps are also
ommonly referred to as ‘heat maps’, since brighter colours (larger

art/stab3215_f10.eps
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Figure 11. Gradient saliency maps for a sample image from the Mean Removal test set, constructed with our trained CNN. The top panel corresponds to 
the cosmic signal, the second panel to the input image, and the bottom four are the gradient saliency maps for the indicated parameter (normalized to have 
unit variance). For visualization purposes, we only show 2D slices through the 3D lightcones. The brighter colours (larger gradients) highlight the regions of 
the image that are important for each parameter prediction. For each parameter, the network correctly focuses on the rele v ant astrophysical epoch(s) of the 
21 cm signal (denoted with arrows in the top panel). For reference, the cosmic signal used in this example corresponds to the following parameters: ζ = 44, 
T vir = 10 4 . 7 K, L X / SFR = 10 40 erg s −1 M 

−1 
� yr , E 0 = 0 . 6 keV . 
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radients) highlight the regions of the image that are important for
ach parameter prediction. 

Unlike everyday images, our lightcones do not have ‘objects’ 
cats, dogs, boats) that w ould mak e feature identification from heat
aps straightforward. Ho we v er, we can still dra w some general

onclusions from Fig. 11 , by noting that the network has learned
o correctly focus on the astrophysical epoch(s) rele v ant to each
arameter (see the discussion of parameters in Section 2.1). For 
xample, the minimum virial temperature for star-forming galaxies, 
 vir , impacts when galaxies form. Thus, it drives the timing of all
strophysical epochs: EoR, EoH, Wouthuysen-Field (WF) coupling 
roughly demarcated with arrows for this example in the top panel 
f Fig. 11 ). Indeed, the gradient saliency map shows that the T vir 

rediction is sensitive to the whole redshift range of the input 
mage. Conversely, the ionizing efficiency, ζ , is mostly rele v ant for
he timing of the EoR: the NN correctly focuses on this epoch,
dditionally using the HI patches remaining during the late stages 
 z ∼ 7 for this model) for its prediction. Likewise, the X-ray
eating parameters, L X /SFR and E 0 , are most sensitive to the EoH.
hile L X /SFR mostly regulates the relative timing of the EoH, E 0 

arametrizes the hardness of the emerging X-ray spectra and thus 
rives the relative sizes of the heated regions. Indeed, we see in the
eat maps that E 0 is more sensitive to changes in the large, heated
GM structures. 

We conclude therefore that the qualitative trends shown in Fig. 11 
rovide a good sanity check that our NN has learned physically 
ele v ant information and is not o v erfitting. Dra wing more quanti-
 n  
ative insights from gradient saliency maps is dif ficult, gi ven that
hey only show parameter sensitivity to uncorrelated, pix el-by-pix el 
erturbations. Saliency maps using different basis sets (e.g. wavelets, 
uperpixels) might be more useful for physically meaningful feature 
dentification from 21 cm lightcones. We defer this to future work. 

 C O N C L U S I O N S  

pcoming images of the cosmic 21 cm signal will provide a
hysics-rich data, encoding both galaxy properties as well as 
hysical cosmology (e.g. see the recent re vie w in Mesinger 2019 ).
ptimally extracting information from these lightcone images 

s challenging, since there is no obvious a priori , physically
oti v ated optimal summary statistic. Since they are non-Gaussian, 

he common approach of compressing the images into a power 
pectrum could waste valuable information. 

Here, we build on previous work (Gillet et al. 2019 ; La Plante
 Ntampaka 2019 ; Kwon et al. 2020 ; Hort ́ua et al. 2020 ; Mangena

t al. 2020 ) training NNs to predict astrophysical parameters directly
rom 21 cm images. We introduce RNNs to this field. RNNs are
esigned to characterize temporal evolution by passing through an 
mage sequence with the same set of weights – allowing them to
fficiently find local minima in the loss function (see Appendix A
or more details). 

To compare the performances of RNNs and traditional CNNs, we 
onstruct three data sets with increasing levels of signal contami- 
ation (c.f. Fig. 4 ): (i) Mean Removal , (ii) + SKA Noise , (iii) +
MNRAS 509, 3852–3867 (2022) 
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orizon Cut . We train our NN architectures on all three databases
sing MSE minimization of the parameter predictions. We vary four
strophysical parameters to generate the underlying cosmic 21 cm
ignal, capturing the UV and X-ray properties of the first galaxies.
hese parameters were chosen as they are the most physically
oti v ated ‘tuning knobs’ driving a large variation in possible signals.
We find the RNNs outperform CNNs on images with minimal

ignal contamination (our Mean Removal data base). The mean
quare prediction errors for the best RNN architecture, SummaryRNN
ere a factor of ∼2 lower than for a CNN of comparable depth, and
p to a factor of ∼8 lower than the previous results applying a
hallower CNN on the same database of cosmic signals (Gillet et al.
019 ). It is important to note that these correspond to the prediction
rrors of point-estimate NNs. In future work, we will imply Bayesian
echniques to obtain the full posterior o v er our parameter space (e.g.
ort ́ua, Malago & Volpi 2020 ; Zhao et al. 2021 ). 
Using gradient saliency maps, we confirm that our NNs are

dentifying physically rele v ant features when trained. The networks
ocus on the correct astrophysical epoch(s) that are rele v ant for each
arameter. 
When trained on the signal contaminated images ( + SKA Noise

nd + Horizon Cut ), parameter prediction becomes less accurate.
o we ver, e ven in the most pessimistic case, parameters are predicted
ith reasonable accuracy (with R 

2 ranging from 0.53 to 0.97).
ll architectures perform comparably on the contaminated images,
hich is likely due to the limited size of our data sets. Moreo v er,
ur foreground a v oidance technique w as f airly conserv ati ve; better
alibration and foreground removal can improve parameter estima-
ion. In future work, we will explore these trends further, quantifying
he data set size needed for accurate parameter estimation, given
if ferent le vels of image contamination. 
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Figure A1. LSTM cell, showing the updating of a cell’s states C t and H t for 
one time-step. Upper exiting arrow outputs H t used for another LSTM layer 
if needed. 
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12 For easier notation, we assume that ψ acts element-wise on its input. 
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PPEN D IX  A :  C O N VO L U T I O NA L  A N D  LSTM  

AY E R S  

ere, we briefly present the general structure of convolutional 
Conv), Long Short Term Memory (LSTM) layers, as well as the 
ombination of the two (ConvLSTM). 
Let’s start from a fully connected (FC) layer, for which we can
rite a vector transformation as 

 n = ψ( W 

n −1 
n · X n −1 + B n ) . (A1) 

ere, n represents a layer index, X n − 1 and X n are the input and output
ectors, W 

n −1 
n and B n the weight matrix and the bias vector, and ψ 

s the acti v ation function. 12 It is easy to see from equation (A1) that
very neuron takes the full input vector into account, hence the name
f a FC layer. 
Ho we ver for an input containing spatially correlated data, it is more

fficient to make a transformation which is in some sense local. The
se of convolutions is the simplest choice. Each layer is represented
y c n convolutional filters and every ‘channel’ represents the output 
f one convolution. For the i th channel ( X n ) i , we can write 

 X n ) i = ψ 

( ∑ 

k 

( W 

n −1 
n ) ki ∗ ( X n −1 ) k + ( B n ) i 

) 

, (A2) 

r in simplified notation: X n = ψ( W 

n 
n −1 ∗ X 

n −1 + B n ). The summa-
ion k is performed o v er c n − 1 channels. In such way, the output
 n ( d ) depends locally on X n − 1 around d , where locality is defined

y a convolutional filter. For an intuitive and visual explanation of
ifferent convolutional operations, see the re vie w by Dumoulin &
isin ( 2016 ). 
Finally, let’s consider the case of input X , where one of the

imensions (axis) can be considered as time (or in general a
equence). To incorporate that fact directly into layer design, we 
ould compute for example 1D convolutions with respect to the 
ime axis, where correlations are learned on a domain of the actual
onvolution (for a non-trivial example see van den Oord et al. 2016 ).
o we ver, we could also imagine encoding such information in an

terative manner. If we start with some ‘hidden state’ H t − 1 , the
peration 

 t = ψ( H t−1 , X t ; W , B) (A3) 

 ould tak e the input X t and with already encoded information in
 t − 1 , update it into H t . Such operations are the basis of RNNs. 
Below we describe the specific choice of recurrent layers we use

n our architectures: LSTM and ConvLSTM. Both are built on the
eneral concepts mentioned abo v e. 
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Table B1. Best CNN model. The input tensor consists of frequency, two 
spatial sky-plane components and ‘channels’ dimensions, respectively. 

Layer type Layer shape Tensor shape Params 

Input (526, 25, 25, 1) 0 
3D Conv (8, 8, 8) (519, 18, 18, 128) 65 664 
3D MaxPool (2, 2, 4) (129, 9, 9, 128) 0 
Batch Norm (129, 9, 9, 128) 256 
2D Conv (4, 4, 1) (129, 6, 6, 128) 262 272 
2D MaxPool (2, 2, 1) (129, 3, 3, 128) 0 
Batch Norm (129, 3, 3, 128) 256 
1D Conv (1, 1, 4) (126, 3, 3, 128) 65 664 
1D MaxPool (1, 1, 2) (63, 3, 3, 128) 0 
Batch Norm (63, 3, 3, 128) 256 
2D Conv (3, 3, 1) (63, 1, 1, 128) 147 584 
Batch Norm (63, 1, 1, 128) 256 
1D Conv (1, 1, 4) (60, 1, 1, 128) 65 664 
1D MaxPool (1, 1, 2) (30, 1, 1, 128) 0 
Batch Norm (30, 1, 1, 128) 256 
1D Conv (1, 1, 4) (27, 1, 1, 128) 65 664 
1D MaxPool (1, 1, 2) (13, 1, 1, 128) 0 
Batch Norm (13, 1, 1, 128) 256 
1D Conv (1, 1, 4) (10, 1, 1, 128) 65 664 
1D MaxPool (1, 1, 2) (5, 1, 1, 128) 0 
Batch Norm – (5, 1, 1, 128) 256 
Flatten – (640) 0 
Dropout – (640) 0 
FC 512 (512) 328 192 
Batch Norm – (512) 1 024 
FC 256 (256) 131 328 
Batch Norm – (256) 512 
FC 64 (64) 16 448 
FC 8 (16) 1040 
FC 4 (4) 68 

Total 1218 580 

Table B2. Best ConvRNN model. The input tensor consists of frequency, 
two spatial sky-plane components, and ‘channels’ dimensions, respectively. 
‘TD’ labels time distributed layer, meaning it is shared between frequencies. 

Layer type Layer shape Tensor shape Params 

Input (526, 25, 25, 1) 0 
2D ConvLSTM (8, 8) (526, 18, 18, 32) 270 464 
2D MaxPool (TD) (2, 2) (526, 9, 9, 32) 0 
Batch Norm (526, 9, 9, 32) 64 
2D ConvLSTM (4, 4) (526, 6, 6, 64) 393 472 
2D MaxPool (TD) (2, 2) (526, 3, 3, 64) 0 
Batch Norm – (526, 3, 3, 64) 128 
Flatten (TD) – (526, 576) 0 
Dropout (TD) – (526, 1576) 0 
LSTM 128 (526, 128) 361 472 
Batch Norm – (526, 128) 256 
LSTM 128 (526, 128) 132 096 
Batch Norm – (526, 128) 256 
LSTM 64 (526, 64) 49 664 
Batch Norm – (526, 64) 128 
LSTM 64 (526, 64) 33 280 
Batch Norm – (526, 64) 128 
LSTM 

13 32 (32) 12 544 
Batch Norm – (32) 64 
FC 32 (32) 1056 
FC 16 (16) 528 
FC 8 (8) 136 
FC 4 (4) 36 

Total 1255 772 

13 Keeping only the final hidden state at the end. 
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1 LSTM 

ong Short Term Memory cells (Hochreiter & Schmidhuber 1997 )
olv e sev eral problems occurring in simple RNN structures. In
articular, the problem of vanishing/exploding gradients is solved
y separating short (fast) and long (slow) correlations in the data.
n Fig. A1 , we show a diagram of a LSTM cell, with the following
ccompanying equations: 

F t = σ ( W 

F 
X · X t + W 

F 
H 

· H t−1 + B 

F ) , (A4) 

I t = σ ( W 

I 
X · X t + W 

I 
H 

· H t−1 + B 

I ) , ˜ C t = th ( W 

C 
X · X t + W 

C 
H 

· H t−1 + B 

C ) , 

O t = σ ( W 

O 

X · X t + W 

O 

H 

· H t−1 + B 

O ) , 

C t = F t × C t−1 + I t × ˜ C t , 

H t = O t × th ( C t ) , 

here C t , H t represent the cell’s slow and fast hidden states,
espectively, and W 

i 
X , W 

i 
H 

, B 

i are trained weights and biases. The
perator × stands for element-wise product. The intuitive motivation
ehind the ‘helping gates’ used in LSTM cells are roughly as follows:

F t – forget gate; determines what parts of state C should be
orgotten - for 0 completely reject previous information, for 1 leave
t untouched, 

I t – input gate; analogous to F t , determines what new information
hould be added to the state C , ˜ C t – candidates gate; determines possible new information to be
dded to C , 

O t – output gate; determines what values of the updated state C
hould be passed to the state H . 

Interested readers can refer to Jozefowicz, Zaremba & Sutskever
 2015 ) for an investigation of alternate designs. 

Finally, we can stack multiple LSTMs to ‘deepen’ the network
y remembering fast hidden states H t for the whole sequence and
assing it as an input to the next LSTM cell (the connection is denoted
y the upward arrow in Fig. A1 ). 

2 ConvLSTM 

n the case of temporal and spatially correlated data, we might require
onvolutional LSTM layers (Shi et al. 2015 ). Convolutional LSTM
ayers have an identical structure to the generic LSTM discussed
bo v e, with the change of weight matrices representing convolutions
 v er spatial dimensions. We can therefore write 

F t = σ ( W 

F 
X ∗ X t + W 

F 
H 

∗ H t−1 + B 

F ) , 

I t = σ ( W 

I 
X ∗ X t + W 

I 
H 

∗ H t−1 + B 

I ) , ˜ C t = th ( W 

C 
X ∗ X t + W 

C 
H 

∗ H t−1 + B 

C ) , 

O t = σ ( W 

O 

X ∗ X t + W 

O 

H 

∗ H t−1 + B 

O ) . 

(A5) 

pdates of the cell’s states follow same equations as before. We note
hat in this research we are not using ‘peephole connections’ (e.g.
hi et al. 2015 ). 

PPENDIX  B:  DETA ILED  A R C H I T E C T U R E S  

ere, we present the detailed structure of all of the three NNs we
se in this work. CNN, ConvRNN, and SummaryRNN architectures
re summarized in Tables B1 , B2 , and B3 , respectively. ‘Layer
hape’ describes a kernel size (for Conv, MaxPool and ConvLSTM

ayers) or a number of neurons (for LSTM and FC layers). ‘Tensor
hape’ denotes tensor dimensions after a particular layer. The input

ensor consists of frequency, two spatial sky-plane components, and
channels’ dimensions, respectively. 

NRAS 509, 3852–3867 (2022) 
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Table B3. Best SummaryRNN model. The input tensor consists of frequency, 
two spatial sky-plane components, and ‘channels’ dimensions, respectively. 
‘TD’ labels time distributed layer. 

Layer type Layer shape Tensor shape Params 

Input (526, 25, 25, 1) 0 
2D Conv (TD) (8, 8) (526, 18, 18, 64) 4160 
2D MaxPool (TD) (2, 2) (526, 9, 9, 64) 0 
Batch Norm (526, 9, 9, 64) 128 
2D Conv (TD) (4, 4) (526, 6, 6, 128) 131 200 
2D MaxPool (TD) (2, 2) (526, 3, 3, 128) 0 
Batch Norm (526, 3, 3, 128) 256 
Flatten (TD) (526, 1152) 0 
Dropout (TD) (526, 1152) 0 
FC (TD) 14 128 (526, 128) 147 584 
Batch Norm (526, 128) 256 
LSTM 128 (526, 128) 132 096 
Batch Norm (526, 128) 256 
LSTM 128 (526, 64) 49 664 
Batch Norm (526, 64) 128 
LSTM 64 (526, 64) 33 280 
Batch Norm (526, 64) 128 
LSTM 

13 32 (32) 12 544 
Batch Norm (32) 64 
FC 32 (32) 1056 
FC 16 (16) 528 
FC 8 (8) 136 
FC 4 (4) 36 

Total 513 500 

14 Final layer of the 2D compression, i.e. summary space. 
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