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This article presents a methodology for checking the existence of the azeotrope and
computing its composition, density, and pressure at a given temperature by integrat-
ing chemical engineering insights with molecular simulation principles. Liquid-vapor
equilibrium points are computed by molecular simulations using the Gibbs ensemble
Monte Carlo (GEMC) method at constant volume. The appearance of the azeo-
tropic point is marked by a shift of the equilibrium constant from one side of the unity
to the other. After each GEMC simulation, an identity change move is derived in the
grand canonical ensemble to progress towards the azeotrope along the equilibrium
curve. The effectiveness of the proposed methodology is successfully tested for several
binary Lennard-Jones mixtures reported in the literature.
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Introduction

Phase equilibrium is a key physicochemical property for assessing the design
feasibility of major separation processes driven by phase chemical potential differ-
ences, such as liquid-liquid extraction or distillation. For the case of distillation,
for example, the prediction of the azeotrope and its composition is indispensable
for proper design and operation of the separation unit (Widagdo and Seider,
1996; Kiva et al., 2003, Rodriguez-Donis et al., 2002, 2009a, 2009b). Towards this
end, either the experimental data (Gmehling et al., 1994) or model predictions can
be utilized. Among predictive models, the following approaches are widely reported
in the literature:

. Homotopy continuation (Fidkowski et al., 1993; Eckert and Kubicek, 1996;
Wasylkiewicz et al., 1999) or global optimization methods (Harding et al.,
1997) attempt exhaustive azeotrope searches.

. Simpler methods based on successive phase equilibrium calculations coupled to
phase stability assessment have also been implemented (Teja and Rowlinson,
1973; Chapman and Goodwin, 1993).

Address correspondence to M. K. Hadj-Kali, Chemical Engineering Department, King
Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia. E-mail: mhadjkali@ksu.edu.sa



. Residue curve exploration that ends at singular points of a multicomponent
system is another way of finding azeotropes. These, together with the pure compo-
nent vertexes, are singular points (Kiva et al., 2003; Doherty and Perkins, 1979;
Gerbaud et al., 2006).

Many thermodynamic models with binary interaction parameters have been proposed
to predict the phase behavior of nonideal mixtures. Their accuracy, however, depends
on the mixture type and operating conditions (Missen, 2005, 2006). Moreover, in many
emerging fields like ionic liquids, molecules of biological interest are poorly represented
with existing models owing to the dependence of the models on temperature, pressure,
and specific binary interaction parameters. Note that binary interaction parameters are
regressed from experimental data: For a n-component mixture, n(nÿ 1)=2 parameter
pairs are required, a challenge when experimental data are missing.

By the 1980s, the molecular simulation technique emerged by providing an accu-
rate set of tools to exactly evaluate bulk thermodynamic properties of systems. It has
since then established itself as a central element of research in chemical engineering
thermodynamics to investigate energetic interaction-based phenomena (Allen and
Tildesley, 2000; Frenkel and Smit, 2002). Molecular simulation basically samples
the configuration of a molecular system using two different methods, namely the
molecular dynamics (MD) and the Monte Carlo (MC) (De Pablo and Escobedo,
2002). Each method has some strengths as well as limitations (Bopp et al., 2008).
The resulting molecular system can represent a homogeneous continuum when
periodic boundary conditions are used (Allen and Tildesley, 2000). Following are
different methodologies reported in the literature for azeotropic calculations:

. Azeotropy was observed for the first time in the work of Fincham et al. (1986,
1987) who performed MD calculations to study the mixture CO2=C2H6 described
with a diatomic Lennard-Jones model (Scalise et al., 1989).

. Direct computation of azeotropes has also been done successfully using the Gibbs
Duhem integration (GDI) method (Kofke, 1993). This method uses the Clapeyron
equation to provide the coexistence information but does not require particle
exchange moves to ensure chemical potential equilibrium (Pandit andKofke, 1999).

. Histogram-reweighting Monte Carlo simulation in the grand canonical ensemble
was recently employed by Pottof and Bernard-Brunel (2009). In their work, the
azetropic coordinate of the binary mixture (ethaneþ perfluoroethane) was
described by transferable united-atom force fields based on Mie potentials (a gen-
eralization of the classical Lennard-Jones 12-6 potential with a variant repulsive
exponent). The agreement with experimental data was satisfactory only when
binary interaction parameters were introduced. Earlier, using the same method
but without fitting the binary interaction parameters, Stubbs et al. (2004) overes-
timated the azeotropic pressure of an acetone-hexane mixture, while the azeotropic
composition was correctly estimated.

. More recently, azeotrope location was accurately predicted without any empirical
binary interaction parameters or readjustment for acetone-hexane and propanal-
pentane binary mixtures using Monte Carlo simulations in the bubble point
pseudo-ensemble (Ferrando et al., 2010).

. However, the common route to finding azeotrope remains a posteriori identifi-
cation of the vapor-liquid equilibrium (VLE) data, as in the recent compilation
of 267 binary mixture VLE calculations by molecular simulation with the grand
equilibrium method (Vrabec et al., 2009).



. The Gibbs ensemble Monte Carlo (GEMC) method proposed by Panagiotopoulos
(Panagiotopoulos, 1987; Panagiotopoulos et al., 1988) for computing the phase
equilibria has also been used to locate the azeotrope by Li et al. (2010), who studied
the shift of the azeotropic point for binary Lennard-Jones mixtures confined in a
slit-like pore.

However, even with the GEMC method, which has now become an integral part of
several commercial simulation packages, azeotrope composition calculation is done
a posteriori, for example, from a graphical vapor molar fraction y-liquid molar frac-
tion x representation. Therefore, there is a need for a method suitable to assess
a priori and directly the existence of an azeotrope and compute its composition,
temperature, and pressure.

In order to promote molecular simulation tools for computing properties of
interest in chemical engineering (Theodorou, 2010), an alternative approach to
compute azeotropes by molecular simulation is presented here. This is based on the
GEMC method coupled with a particular Monte Carlo move, called the swap move,
which allows changing the identity of one particle by another present in the system.
The idea was previously applied by Teja and Rowlinson (1973), who calculated
homogeneous azeotropes of binary mixtures using an equation of state. Their
approach was to fix temperature and vary composition and volume until thermodyn-
amic equilibrium conditions were satisfied. In the method proposed here, the swap
move is used to initialize successive GEMC simulations at imposed global volume
in an iterative process, until the azeotrope conditions are matched. Within the
process, equilibrium constant properties for azeotropic mixtures are exploited. For
model validation, the popular Lennard-Jones model fluid is used. The proposed
methodology could nevertheless be adapted to a more realistic force field as well.

The article first briefly presents both the Gibbs ensemble Monte Carlo (GEMC)
and the grand canonical (GC) ensemble. The Monte Carlo swap move is introduced
next. Properties of azeotropic binary conditions are then reviewed. The efficacy of
the proposed methodology is tested against five different Lennard-Jones mixtures.
Results show good agreement with previously reported simulation studies. The
detailed algorithm of our method is presented in the appendix.

Gibbs Ensemble Monte Carlo (GEMC)

The Gibbs ensemble Monte Carlo method developed by Panagiotopoulos in 1987
enables direct simulations of phase equilibrium in fluids (Panagiotopoulos, 1987;
Panagiotopoulos et al., 1988). Gibbs ensemble simulations are performed in the
NVT statistical ensemble on two separate microscopic regions, each within periodic
boundary conditions. The thermodynamic requirement for phase coexistence is that
each region should be in internal equilibrium, and that temperature, pressure, and
the chemical potential of all components should be the same in both regions.

System temperature T in Monte Carlo simulations is set constant. The remaining
three conditions are satisfied by performing three types of Monte Carlo moves: (i)
displacement of particles within each region, while keeping the total number of par-
ticles N constant, to satisfy internal equilibrium; (ii) fluctuations in the volume of the
two regions, while keeping the total volume V constant, to satisfy equality of pres-
sures; and (iii) transfers of particles between regions to satisfy equality of chemical
potentials of all components. The acceptance of each move is done according to



the metropolis algorithm, enabling determination of probability densities that satisfy
the microscopic reversibility of the system (Allen and Tildesley, 2000; Frenkel and
Smit, 2002; Panagiotopoulos et al., 1988).

When applied to real fluids, the method has been frequently used in combination
with the configurational bias sampling technique to improve the sampling of system
configurations and compute phase diagrams of a large number of fluids (Frenkel and
Smit, 2002).

The Swap Move

Among the usual statistical thermodynamic ensembles, the grand canonical (GC)
ensemble (mVT) sets constant the chemical potential of each compound present in the
system along with the volume and the temperature. This enables changing the number
of particles (N) in the system during the simulation. As a result, the classical trial moves
for this ensemble are: (i) displacement, (ii) insertion, and (iii) removal of particles.

In order to optimize the simulation time and move easily from one configuration to
another without changing the position of particles in the system, the insertion and
removal trial moves are replaced by just one move named the ‘‘swap move’’: particles
are neither created nor destroyed; only the identity of different particles is shifted. The
total number of particles is kept constant, but the composition of the system is modified.

This idea was first introduced by both Panagiotopoulos et al. (1988) to perform
the exchange moves between boxes in the GEMC method and Kofke and Glandt
(1988) in their comprehensive work about molecular simulation of multicomponent
equilibria in the semi-grand canonical ensemble. It has also been employed
by Cracknell et al. (1993) and Lachet et al. (1997) for simulating the adsorption of
different mixtures.

In a metropolis algorithm, the swap move from a particle of type (B) into a
particle of type (A) is accepted with probability:

pswap ¼ min 1;
NB

NA þ 1

� �

�
qA

qB

� �

� exp ÿb DE þ lB ÿ lAð Þð Þð Þ

� �

ð1Þ

where qi is the molecular partition function of particles of type (i), b ¼ 1
kT

is the
Boltzmann coefficient with T the absolute temperature and k the Boltzmann con-
stant, DE is the energy difference between the old and the new system configuration,
and li is the chemical potential of particle of type (i).

We can notice that this move is the combination of the insertion and destruction
moves in the GC Monte Carlo ensemble and that its probability acceptance is the
product of the corresponding insertion and destruction probabilities.

Indeed, insertion of a particle of type (A) in the GC ensemble is characterized by
the acceptance probability (McQuarrie, 1976):

pinsertion ¼ min 1;
qA

NA þ 1

� �

� exp ÿb DE ÿ lAð Þð Þ

� �

ð2Þ

While the removal of a particle of type B, in this instance, is accepted with a
probability:

pdestruction ¼ min 1;
NB

qB

� �

� exp ÿb DE þ lBð Þð Þ

� �

ð3Þ



So, it is obvious from Equations (1)–(3) that:

pswap ¼ pinsertion � pdestruction ð4Þ

Azeotrope Properties

Azeotrope occurrence expresses a nonideal thermodynamic behavior of the mixture.
Such behavior translates into a positive (minimum boiling temperature azeotrope) or
a negative (maximum boiling temperature azeotrope) deviation from Raoult’s law.
This law describes the liquid-vapor equilibrium relation between an ideal liquid
phase composition and a perfect gas phase composition (see Figure 1; Shulgin
et al. (2001)). The azeotropic condition states that compositions of the vapor phase

Figure 1. Schematic representation for the phase boundary of a binary mixture A-B.



and of the overall liquid phases are equal. If more than one liquid phase is
concerned, the azeotrope is called heterogeneous, a case that is not dealt with in this
article. In addition to composition equality, two other thermodynamic conditions
occur: (i) phase equilibrium (equality of temperature, pressure, and chemical poten-
tial) and (ii) mole fractions of the components in each phase must sum to unity and
must be positive.

Phase equilibrium between two phases can be expressed for a binary mixture
A-B with the introduction of the equilibrium constant KA, which is defined as the
ratio of the liquid phase composition x and vapor phase composition y:

yA ¼ KA � xA ð5Þ

yA ¼ 1ÿ yB and xA ¼ 1ÿ xB ð6Þ

Assuming, as in Figure 1, that component A is more volatile than B, one notices
that:

. At the azeotropic point KA¼ 1.

. Before the azeotropic point composition KA> 1 for a minimum boiling tempera-
ture azeotrope and KA< 1 for a maximum boiling temperature azeotrope.

. After the azeotropic point composition KA< 1 for a minimum boiling temperature
azeotrope and KA> 1 for a maximum boiling temperature azeotrope.

This thermodynamic insight is exploited below for a quick check whether a mixture
displays an azeotrope or not:

. If [KA> 1 near xA » 0] and [KA< 1 near xA » 1] then there exists a minimum
boiling temperature azeotrope.

. If [KA< 1 near xA » 0] and [KA> 1 near xA » 1] then there exists a maximum
boiling temperature azeotrope.

. If [KA> 1 or KA< 1] for the whole xA molar fraction range, then no azeotrope
exists.

Such a test is not valid for the rare cases of double azeotropy (Shulgin et al., 2001).

Model Validation

Computational Details

The method proposed in this work is detailed in the appendix. Five Lennard-Jones
fluid mixtures taken from earlier work of both Panagiotopoulos et al. (1988) and
Pandit and Kofke (1999) was tested. The corresponding parameters are given in
Table I, along with their a priori azeotropic features that we intend to check.

A typical simulation involves a total number of N¼ 800 particles. The two initial
boxes contain respectively 390 particles of type A with 10 particles of type B (which
corresponds to Z0

H ¼ 0.975) and 10 particles of type A with 390 particles of type B
(Z0

L ¼ 0.025).
The initial configuration in each box is a face-centered cubic lattice with initial

densities giving rise to a vapor-liquid equilibrium. The choice of suitable initial den-
sities is done by a small number of short exploratory calculations of the coexisting
phases when no information is available on the phase behavior of the fluid. The



usual long-range correction is considered in calculating the energy described by a
usual Lennard-Jones 6–12 potential (Allen and Tildesley, 2000) with a cutoff equal
to the half box length.

Three types of Monte Carlo moves were performed during the GEMC simula-
tions: (i) random displacement of particles within each region, (ii) an equal and
opposite change in the volume of the two regions, and (iii) random transfers of par-
ticles between regions. The typical occurrences for the various types of moves were
taken equal to 49.75% for translations, 0.50% for volume changes, and 49.75% for
transfers.

After an equilibration period of approximately 106 steps, properties of the two
regions converge to stable values quite different from the initial conditions. More
than 5� 106 configurations were generated for each simulation run, and control
plots were used to check satisfactory convergence.

First Step: Fast Azeotrope Search

Table II displays results for the first step=quick check of azeotrope existence.
Subscript numbers follow the notation for uncertainty values used in molecular

Table II. Results of the first step to check the existence of homogeneous azeotropes
for the mixtures studied

1st Step q�liq q�vap P�
liq P�

vap xA yA KA

Mixture I
T� ¼ 1.10

Z0
L

0.421217 0.030716 0.030123 0.03117 0.02281 0.057025 >1

Z0
H

0.632619 0.055715 0.047730 0.045610 0.97802 0.960511 <1

Mixture II
T� ¼ 1.15

Z0
L

1.302047 0.150371 0.128577 0.123035 0.02914 0.01418 <1

Z0
H

0.614828 0.07537 0.057635 0.06075 0.97832 0.97073 <1

Mixture III
T� ¼ 1.15

Z0
L

0.596620 0.068917 0.058230 0.05909 0.01473 0.063920 >1

Z0
H

0.596332 0.072925 0.067028 0.060612 0.98532 0.938816 <1

Mixture IV
T� ¼ 0.75

Z0
L

1.146674 0.202549 0.119841 0.103916 0.05088 0.00401 <1

Z0
H

0.603833 0.065214 0.058647 0.05598 0.98481 0.935111 <1

Mixture V
T� ¼ 1.10

Z0
L

0.635625 0.048510 0.041430 0.04157 0.98004 0.961111 <1

Z0
H

0.629821 0.32387 0.020643 0.013125 0.02056 0.02895 >1

Z0
H ¼ 0.025 and Z0

L ¼ 0.975.
Subscript numbers follow the notation for uncertainty values (for example, 0.421217 means

0.4212� 0.0017).
� ¼ reduced units (Frenkel and Smit, 2002).

Table I. Lennard-Jones mixtures’ potential parameters

Mixture e11 e12 e22 r11 r12 r22 Azeotrope

I 1.000 0.900 1.000 1.000 1.050 1.150 Yes
II 1.000 1.000 1.000 1.000 0.885 0.769 No
III 1.000 0.750 1.000 1.000 1.000 1.000 Yes
IV 1.000 0.773 0.597 1.000 0.884 0.768 No
V 1.000 0.900 1.000 1.000 1.050 1.000 Yes



simulation (0.421217¼ 0.4212� 0.0017). Among the five mixtures, the first, third,
and fifth exhibit homogeneous azeotropes in perfect agreement with the literature
(Table I). As indicated by their Lennard-Jones parameters in Table I, the third
and fifth mixtures are both symmetric and their azeotropic coordinates should be
found during the second step at x¼ y¼ 0.50. Afterwards, step 2 is applied only to
the third mixture (mixture III). In addition, a previous study of Pandit and Kofke
(1999) has shown that the mixture I azeotrope point lies around x¼ y¼ 0.70.

In Table II, for mixture III, the densities and pressure match for both ZH and ZL,
whereas this is not the case for mixture V, which is symmetric like mixture III. But this
trend is merely fortuitous because even though the initial compositions of ZH and ZL

are symmetric with respect to the pure components, the Gibbs Ensemble Monte Carlo
simulations are not expected to give necessary rise to the same phase split as observed
for mixture III.

The pressure is determined by applying the virial equation. As can be seen in
Table II (and later in Tables III and IV), the pressures of the vapor and liquid regions
at equilibrium generally agree to within their corresponding standard deviations,
which reflects the convergence of simulations. Nevertheless, as already observed in
the literature (Panagiotopoulos, 1987), the vapor box pressure fluctuates less than
the liquid box where high densities submit particles to larger constraints, especially
when transferring a particle from the low density box to the high density box. As a
consequence, the standard errors for the pressure on the vapor region are significantly
lower and can thus be more conveniently identified as the equilibrium pressure at the
corresponding temperature.

However, the observation that the equilibrium conditions have been fulfilled
within the statistical error is not always sufficient. It is suitable, therefore, to use
graphical analysis to examine the data variation during each simulation.

Finally, the equilibrium molar fractions xA and yA bracket the initial feed
composition as in any flash calculation that leads to phase equilibrium.

Second Step: Azeotrope Composition Localization

Tables III and IV give the simulation details for all points generated along the
exploration process using the second step iterative methodology. For mixture I,
the results are reported on the equilibrium curve (see Figure 2) along with those
obtained by Pandit and Kofke (1999). They show the consistency of the proposed
methodology.

As seen in Figure 2, the methodology based on the proposed search algorithm
takes advantage of chemical engineering insights provided by the equilibrium con-
stant values to reach the vicinity of the azeotrope in a few steps. Figure 2 also shows
that the azeotrope is approached at the fourth iteration and that the three following
iterations only narrow the composition window until the phase compositions are
identical within statistical uncertainty (0.700913 for the liquid and 0.700861 for the
vapor). The azeotrope composition is thus found to be 0.7016, in very good agreement
with the azeotrope composition of 0.7045 found by Pandit and Kofke (1999), assumed
here as the average composition between the reported compositions of the two phases
(0.6982 for the liquid and 0.7094 for the vapor).

For mixture III, Panagiotopoulos et al. (1988) did not perform any simulation
near the azeotrope and drew a ‘‘guiding dashed line’’ that reached an azeotrope press-
ure P� ¼ 0.1030. Our computations (Table IV) show that the azeotrope composition



Table III. Simulation results for mixture I

Mixture I q�liq q�vap P�
liq P�

vap xA yA KA

Z¼ 0 0.420411 0.032511 0.02926 1 1 1

Z¼ 1 0.643113 0.05308 0.04424 1 1 1

Z0
L ¼ 0.025 0.421217 0.030716 0.030123 0.03117 0.02281 0.057025 >1

Z0
H ¼ 0.975 0.632619 0.055715 0.047730 0.045610 0.97802 0.960511 <1

Z1
0.2120

Z0
L ¼ 0.025 0.447313 0.047917 0.042620 0.03898 0.19824 0.334257 >1

Z0
H ¼ 0.975

Z2
0.8386

Z1
L ¼ 0.212 0.581531 0.059612 0.051457 0.04847 0.841516 0.819870 <1

Z1
H ¼ 0.975

Z3
0.6386

Z2
L ¼ 0.212 0.524310 0.057317 0.050620 0.04858 0.63039 0.667848 >1

Z2
H ¼ 0.837

Z4
0.7163

Z3
L ¼ 0.639 0.546933 0.060325 0.053429 0.048711 0.721412 0.714156 <1

Z3
H ¼ 0.837

Z5
0.6441

Z4
L ¼ 0.639 0.529710 0.592813 0.050217 0.04857 0.65269 0.681346 >1

Z4
H ¼ 0.716

Z6
0.6489

Z5
L ¼ 0.644 0.528438 0.060518 0.049955 0.04869 0.652112 0.698358 >1

Z5
H ¼ 0.716

Z7
0.7032

Z6
L ¼ 0.649 0.543312 0.060620 0.050618 0.048910 0.700913 0.700861 �1

Z6
H ¼ 0.716

Subscript numbers follow the notation for uncertainty values (for example, 0.420411 means 0.4204� 0.0011).



Table IV. Simulation results for mixture III

Mixture III q�liq q�vap P�
liq P�

vap xA yA KA

Z¼ 1 0.607019 0.070326 0.058213 1 1 1

ZL¼ 0.025 0.596620 0.068917 0.058230 0.05909 0.01473 0.063920 >1

ZH¼ 0.975 0.596332 0.072925 0.067028 0.060612 0.98532 0.938816 <1

Z1
0.2250

Z1
L ¼ 0.025 0.535158 0.121346 0.089940 0.087315 0.161838 0.325145 >1

Z1
H ¼ 0.975

Z2
0.4250

Z2
L ¼ 0.225 0.413065 0.158444 0.104521 0.10487 0.409552 0.445347 >1

Z2
H ¼ 0.975

Z3
0.9298

Z3
L ¼ 0.425 0.583120 0.080015 0.062035 0.06648 0.95496 0.843630 <1

Z3
H ¼ 0.975

Z4
0.8239

Z4
L ¼ 0.425 0.552830 0.11166 0.083729 0.08362 0.877716 0.724228 <1

Z4
H ¼ 0.929

Z5
0.6423

Z5
L ¼ 0.425 0.436380 0.133831 0.097419 0.095911 0.677036 0.584755 <1

Z5
H ¼ 0.824

Z6
0.5361

Z6
L ¼ 0.425 0.340770 0.169132 0.105631 0.104310 0.547754 0.515561 <1

Z6
H ¼ 0.642

Z7
0.4893

Z7
L ¼ 0.425 0.3438137 0.168167 0.110425 0.103811 0.467964 0.503665 >1

Z7
H ¼ 0.536

Z8
0.5175

Z8
L ¼ 0.489 0.4014136 0.177131 0.109328 0.10449 0.522854 0.512939 <1

Z8
H ¼ 0.536

Z9
0.5111

Z9
L ¼ 0.489 0.3981140 0.181636 0.110018 0.10438 0.506886 0.505050 �1

Z9
H ¼ 0.517

Z10
0.4998

Z10
L ¼ 0.489 0.265844 0.181959 0.109913 0.106412 0.505132 0.508663 �1

Z10
H ¼ 0.511

Subscript numbers follow the notation for uncertainty values (for example, 0.607019 means 0.6070� 0.0019).



is correctly found at x¼ 0.5075. The equilibrium pressure of the azeotrope
(P¼ 0.106412) is higher than the guessed value by Panagiotopoulos et al. (1988).
Comparison between our results and those published in the literature is summarized
in Table V for mixture I and mixture III. The relative error is calculated for the
property X (either the pressure or composition) as:

Error %ð Þ ¼
XThis work

cal ÿ X
previous
cal

�

�

�

�

�

�

XThis work
cal

ð7Þ

The accuracy of our results could be improved by increasing the number of particles
or by increasing the number of MC simulation steps.

Conclusions

A molecular simulation based–method was proposed for finding the azeotrope and
computing its composition, pressure, and density at an initially given temperature.

Table V. Comparison between our results and previous works

Composition Pressure

This
work

Previous
work

Error
(%)

This
work

Previous
work

Error
(%)

Mixture I 0.7008 0.7038a 0.43 0.0489 0.0498a 1.84
Mixture III 0.5068 0.5000b 1.35 0.1064 0.1030b 3.20

aPandit and Kofke (1999).
bPanagiotopoulos et al. (1988).

Figure 2. Liquid-vapor coexistence curve for mixture I at T¼ 1.10; our results (circles and

squares for liquid and vapor phases respectively) are compared to constant pressure Gibbs

simulations obtained by Pandit and Kofke (1999) (triangles). (Figure provided in color online.)



These properties are usually computed by chemical engineers using macro-
scopic thermodynamic models like equations of state or activity coefficient
models.

In this study, these macroscopic models are replaced by a set of molecular simu-
lations in the Gibbs ensemble at constant volume combined to swap Monte Carlo
moves, developed within the grand canonical ensemble formalism. The swap move
enables changing the identity of particles in the simulation boxes and thus progres-
sing towards the azeotrope along the equilibrium curve.

The proposed methodology combines chemical engineering insights together
with molecular simulation principles. First, it checks for azeotrope existence by
exploiting the variation of the equilibrium constant at each extremity of the equilib-
rium curve. Then, it computes the azeotrope coordinates by successive simulations in
the Gibbs ensemble. The method has been successfully applied for different Lennard-
Jones binary mixtures.

Compared with other molecular simulation techniques able to predict azeotropes
(such as the bubble point pseudo-ensemble, the histogram reweighting method, or the
grand equilibrium method), the proposed method allows immediately checking
the azeotrope existence, while the remaining techniques require the exploration of
the entire phase diagram to reach this point. In addition, thanks to the swap
move, the computational time necessary to detect and localize the azeotrope could
be significantly reduced.

However, the proposed method suffers from some deficiencies:

1. The initialization step proposed here does not allow the detection of an azeotropic
point whose coordinates are closer than 0.025mole fraction unit from the pure
components. Relaxing this hypothesis requires using large initial boxes so as to
get a sufficient number of each component in them.

2. The swap moves are applied to the final configuration obtained by the GEMC
calculations and not to the most stable one. One could alternatively select the
most stable configuration of the GEMC simulation before performing these
moves.

3. When performing identity change move calculations, whether the chemical poten-
tial remains constant was not checked a posteriori. This may induce a small error
that is readily compensated because the GEMC calculation run afterwards resets
to constant the chemical potential.

Deficiencies 2 and 3 stress that successive simulations do not exactly progress along
the equilibrium curves. Nevertheless, the final azeotropic point reached is accurately
determined by the last GEMC calculation.

Further work is intended to implement the following algorithm for poly-atomic
systems. For such mixtures, a more efficient algorithm than the branch and bound
search may be used.
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Appendix: Algorithm Description

The proposed algorithm (see Figure 3) is composed of two steps (from here we drop
the subscripts related to the component of the binary mixture by considering x¼ xA).

1. The first step exploits the behavior of the equilibrium constant K, as described
above, to check the existence of an azeotrope. It consists in running two GEMC
simulations at constant volume with molar fraction Z near the pure components;
for example, for Z0

H ¼ 0.975 and Z0
L ¼ 0.025, the subscripts H and L stand

Figure 3. Algorithm for finding binary mixture A-B azeotropes.



respectively for high and low content in volatile component. Densities of the initial
configuration boxes should be chosen to give rise to a liquid-vapor equilibrium.

The resulting molar fractions x0 and y0 in equilibrium are averaged over all the
configurations, typically several millions, and the equilibrium constants KH and
KL are calculated:
. If KH and KL are equal to 1.00 within statistical uncertainty, the azeotrope has

been found and xaz¼ yaz¼Z.
. Otherwise, KH and KL are compared to unity applying the criteria described

above to determine whether an azeotrope exists or not. If yes, the iteration
counter is set to i¼ 1.

2. If the azeotropic point exists, the second step calculates its coordinates using swap
moves to change the composition and to progress along the boiling-dew equilib-
rium curves towards the azeotrope as follows:
. A random coordinate Zi is pulled out between Zi

H and Zi
L compositions.

. A configuration of global composition Zi is built by successive swap moves
from the box with the closest composition, either Zi

H or Zi
L.

� Note that these
swap moves are not intended to sample any statistical ensemble but simply to
provide a convenient initialization for the next simulation.

. Using the resulting configuration as the initial state of the system, a phase equi-
librium calculation is performed in the Gibbs ensemble at constant volume.

. The equilibrium constant Ki is evaluated:
� If Ki is equal to unity within statistical uncertainty, the azeotrope compo-
sition is found (xaz¼ yaz¼Zi).

� Else, a new step 2 is prepared on a narrower composition interval as the Zi

composition replaces either Zi
H or Zi

L composition, depending on whether
(Kiÿ 1) has the same sign as (Ki

H ÿ 1) or (Ki
L ÿ 1):

. if (Kiÿ 1) has the same sign as (Ki
H ÿ 1) then Ziþ1

H ¼Zi and Ziþ1
L ¼Zi

L.
. if (Kiÿ 1) has the same sign as (Ki

L ÿ 1) then Ziþ1
H ¼Zi

H and Ziþ1
L ¼Zi.

Nomenclature

E total energy of the system
K equilibrium constant
k Boltzmann constant
N number of particles
P pressure
p acceptance probability of the move
q molecular partition function
T absolute temperature
V volume
XYZ Cartesian coordinate
x liquid composition
y vapor composition
Z mixture composition

�In practice, to ensure an efficient convergence of the algorithm, the first steps are
bounded to a maximum value, so that Z¼min(Rand(ZH, ZL) ; ZL(or ZH)�DZmax). DZmax

is taken here equal to 0.20.



Greek Letters

b Boltzmann coefficient
e Lennard-Jones energy parameter
l chemical potential
r Lennard-Jones size parameter

Subscripts

A component A
az azeotropic point
B component B
H high
i type of molecule
L low

* reduced unit
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