
HAL Id: hal-03468746
https://hal.science/hal-03468746

Submitted on 7 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inference of Gene Networks from Single Cell Data
through Quantified Inductive Logic Programming

Samuel Buchet, Francesco Carbone, Morgan Magnin, Mickaël Ménager,
Olivier Roux

To cite this version:
Samuel Buchet, Francesco Carbone, Morgan Magnin, Mickaël Ménager, Olivier Roux. Inference of
Gene Networks from Single Cell Data through Quantified Inductive Logic Programming. CSBio2021,
Oct 2021, FULLY VIRTUAL, Thailand. �10.1145/3486713.3486746�. �hal-03468746�

https://hal.science/hal-03468746
https://hal.archives-ouvertes.fr

Inference of Gene Networks from Single Cell Data through
Quantified Inductive Logic Programming

Samuel Buchet
samuel.buchet@ec-nantes.fr
LS2N, UMR CNRS 6004, École

Centrale de Nantes
Nantes, France

Francesco Carbone
francesco.carbone@institutimagine.org
Université de Paris, Imagine Institute,

Laboratory of Inflammatory
Responses and Transcriptomic

Networks in Diseases, Atip-Avenir
Team, INSERM UMR 1163

Paris, France

Morgan Magnin
morgan.magnin@ec-nantes.fr
LS2N, UMR CNRS 6004, École

Centrale de Nantes
Nantes, France

Mickaël Ménager
mickael.menager@institutimagine.org
Université de Paris, Imagine Institute,

Laboratory of Inflammatory
Responses and Transcriptomic

Networks in Diseases, Atip-Avenir
Team, INSERM UMR 1163

Paris, France

Olivier Roux
olivier.roux@ec-nantes.fr

LS2N, UMR CNRS 6004, École
Centrale de Nantes
Nantes, France

ABSTRACT
Single cell sequencing technologies represent a unique opportunity
to appreciate all the heterogeneity of gene expressions within spe-
cific biological cell types. While these data are sparse and especially
noisy, it remains possible to perform multiple analysis tasks such
as identifying sub cellular types and biological markers. Beyond
revealing distinct sub cell populations, single cell gene expressions
usually involve complex gene interactions, which may often be
interpreted as an underlying gene network. In this context, logi-
cal computational approaches are particularly attractive as they
provide models that are easy to interpret and verify. However, the
noise is especially important in single cell sequencing data. This
may appear as a limit for symbolic methods as they usually fail
in addressing the statistical aspect necessary to handle efficiently
such noise. In this work, we propose a computational approach
based on symbolic modeling to identify gene connections from
single cell RNA sequencing data. Our algorithm, LOLH, is based
on Inductive Logic Programming, and intends to rapidly identify
potential gene interactions by formulating discrete classification
problems, which are solved through discrete optimization. By com-
bining symbolic modeling with optimization techniques, we aim to
provide an interpretable model that still fits properly on sparse and
noisy data. We apply our method to the unsupervised inference
of a gene correlation network from a concrete single cell dataset.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSBio2021, October 14–15, 2021, Virtual (GMT+7 Bangkok Time), Thailand
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8510-7/21/10. . . $15.00
https://doi.org/10.1145/3486713.3486746

We show that the output of our algorithm can be interpreted by
using the data itself, and we use additional biological knowledge to
validate the approach.

CCS CONCEPTS
• Theory of computation → Constraint and logic program-
ming; •Mathematics of computing→ Combinatorial optimiza-
tion; • Applied computing→ Biological networks; Computa-
tional genomics; •Computingmethodologies→ Inductive logic
learning; Rule learning.

KEYWORDS
Systems biology, Gene Correlation Networks, Single cell, Inductive
Logic Programming, Optimization, Machine Learning.
ACM Reference Format:
Samuel Buchet, Francesco Carbone, Morgan Magnin, Mickaël Ménager,
and Olivier Roux. 2021. Inference of Gene Networks from Single Cell Data
through Quantified Inductive Logic Programming. In The 12th Interna-
tional Conference on Computational Systems-Biology and Bioinformatics (CS-
Bio2021), October 14–15, 2021, Virtual (GMT+7 Bangkok Time), Thailand.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3486713.3486746

1 INTRODUCTION
1.1 Context and scientific challenge
Single cell sequencing technologies allow to capture the gene ex-
pressions of individual cells coming from a biological sample. These
recent technologies are now widely used in molecular biology re-
search. Although single cell gene expressions are particularly noisy,
their analysis provides insightful knowledge about biological sys-
tems. For instance, they allow the identification of specific sub cell
populations and biological markers. The precision of single cell
data makes it particularly interesting for the inference of gene net-
works. In comparison, data coming from traditional sequencing

https://orcid.org/0000-0002-5387-9130
https://orcid.org/0000-0001-5443-0506
https://orcid.org/0000-0002-6838-2389
https://orcid.org/0000-0001-7058-8696
https://doi.org/10.1145/3486713.3486746
https://doi.org/10.1145/3486713.3486746

CSBio2021, October 14–15, 2021, Virtual (GMT+7 Bangkok Time), Thailand S. Buchet et al.

techniques can be seen as an average expression profile of different
cells. Thus the heterogeneity of single cell data can be expected to
reveal more complex gene interactions. However, the noise and the
technical artefacts complicate the design of computational tools,
and original computational methods are required to entirely exploit
the biological signal available. Despite of numerous tools being
developed in single cell analysis, the inference of gene networks
remains a difficult task [15].

In this context, symbolic and logical approaches are especially
interesting as they help to study genomics data as expression pat-
terns, and allow to easily represent the combined effect of multiple
genes. Moreover, gene expression data can be easily abstracted as:
expressed/not expressed. However, the noisy aspect is not always
considered with this type of algorithms and existing methods would
not perform properly on them. In this paper, we propose a compu-
tational approach based on logic modeling, to automatically induce
logical models from single cell gene expressions. Our algorithm
called Learning Optimized Logical Hypothesis (abbreviated as LOLH)
is an extension of existing algorithms in Inductive Logic Program-
ming (ILP), which is a form of machine learning applied to Logic
Programming. More precisely, LOLH is specifically dedicated to ac-
count for the noise by extending the definitions of existing methods,
and by using notions from discrete optimization. To our knowledge,
such a combination of ILP and statistical machine learning to learn
single-cell data has not been investigated before. This conjunction
allows us to get a logical output that has the advantage to be a
simplification of the input data while being fully interpretable. To
show its relevance, we apply our algorithm to compute biological
properties on the cells by tackling the induction of co-expression
relations between the genes. We propose an interpretation of the
resulting logical relations as a graph in order to identify cells of
interest, and we perform a comparison with existing single cell
tools.

1.2 Originality of the contribution
We are interested in the problem of identifying gene expression
patterns, representing the combined effect of several genes in order
to reveal interesting properties of a biological system such as com-
plex gene interactions. Several scientific barriers are encountered to
address this question. On the experimental side, advanced technolo-
gies are needed to obtain a reasonable amount of data, with a preci-
sion that is sufficient enough to enable the capture of such patterns.
This challenge seems well addressed by single cell technologies
as they provide an unprecedented amount of data that is precise
enough to reveal complex relations such as sub cellular types. On
the computational side, the difficulties lie in the combinatorial and
large amount of input data, as well as a need for explanation of
machine learning methods. To address this problem, we propose
a new method combining inductive logic programming (ILP) and
statistical machine learning. This combination aims at overcoming
the respective limitations of each of these two approaches taken in-
dividually. Inductive logic programming (ILP) leads to interpretable
logic rules, which are however very sensitive to noise in the input
data. At the same time, classical machine learning approaches are
efficient in handling large data sets, but struggle to be explainable.

The algorithm proposed in this paper, named Learning Optimized
Logical Hypothesis (LOLH), achieves a simplification of the input
data while providing an interpretable representation of the learned
features.

We will now describe the general principle of LOLH. As input,
we process gene expression data for multiple cells. The input cells
are assumed to represent a binary classification problem, they are
thus separated into two sets: positive examples, i.e. expression data
corresponding to the class that is learned; and negative examples,
i.e. expression data not corresponding to this class. This separation
that has been proposed by the so-called Learning From Interpretation
Transition framework (abbreviated hereafter as LFIT) [10] to learn
dynamic data expressed as successions of states-transitions allows
us to reduce every learning task to a binary classification. Although
considering classification problems may be seen as reductive re-
garding the complexity of the biological properties hidden in the
data, our assumption is that such binary classification tasks, when
judiciously identified from the input data, are able to represent com-
plex knowledge. Given the encouraging results obtained by LFIT,
our proposition thus consists in an extension to handle high noise.
To do so, we introduce a new notion which was not previously
included in the existing LFIT framework, namely a score for each
rule that is optimized regarding the positive and negative examples
in order to provide generality of the model on the data. Focusing
on the generality of the rules ensure the ability of the algorithm to
avoid overfitting on the data. This approach then leads to a unique
optimal rule, which is the aggregation of a reduced number of genes.
This rule, which can be interpreted, is in a way the signature of
a given learned concept (e.g. cell type, co-expression). It can thus
serve as a predictor for the positive concept. To put the approach
into practice, we show several possibilities to identify the positive
and negative examples from a single-cell dataset. We propose a first
example to perform cellular classification using labels provided in
the dataset as a supervised learning task. We also demonstrate the
application of our method to learn co-expression relations between
the genes, as an unsupervised approach. This latter application is
developed in order to obtain interesting properties about the dataset
that may not be revealed by existing computational approaches for
single cell data.

1.3 Overview of the paper
In this paper, we first show how to adapt existing Inductive Logic
Programming approaches on noisy data, in order to account for
the noise and still provide a formal and explainable model. To this
aim, the logical definitions are refined for the quantification of a
model error on the data, and optimization techniques are used to
select the most relevant features. The method is then applied to a
single cell dataset provided by Imagine Institute. It is first illustrated
through the induction of gene markers for the identification of
cell types. We show that our approach account for the noise and
recover biologically relevant information from the gene expressions.
Finally, we demonstrate its application to the inference of gene co-
expression (correlation) networks, in order to discover relevant
biological properties. The inference is performed unsupervisedly
on all the genes and without the use of background knowledge,

Gene Networks through Inductive Logic Programming CSBio2021, October 14–15, 2021, Virtual (GMT+7 Bangkok Time), Thailand

and different approaches are proposed to verify the relevance of
the network by using the data itself and already known biological
markers. Our implementation of LOLH used to produce all the
results in this paper is available online at http://doi.org/10.5281/
zenodo.4738850.

2 SINGLE CELL DATA AND RELATEDWORKS
In this section, we introduce the single cell sequencing technolo-
gies and the different types of data produced in this context. We
introduce more specifically the dataset used in this study. We then
review multiple approaches developed for the inference of gene
networks and logical models from single cell data.

2.1 Single cell sequencing technologies
Single cell genomics represent a set of techniques for the isolation
and the measurement of a large amount of cells. Different technolo-
gies have been developed, allowing to measure several biological
aspects of the cells such as proteomics, spatial genomics and chro-
matin accessibility. Due to the technical difficulty of isolating the
cells and measuring small amount of molecules, these data are es-
pecially sparse and noisy. Even so, they allow to study a biological
system at a very precise level and they have become widely used
in biological research.

In this work, we focus on transcriptomic data, i.e. the sequenc-
ing of the mRNA at the single cell level, abbreviated hereafter as
scRNA-seq. scRNA-seq data usually consists in a matrix containing
the expressions (real values) of multiple genes for several cells. Our
method is intended to be applied to various datasets but we focus
on one specific scRNA-seq dataset, containing mononuclear cells
extracted from blood samples (pbmc). The dataset already processed
has been provided by Imagine Institute1 (the processing was per-
formed with Seurat2 [8]). More details about the data are available
in Appendix B. Each cell of the dataset has been provided with a
label designating the cell type, which have been identified before-
hand using cell clustering combined with manual annotation. A two
dimensional representation of the cells, computed with the UMAP
method [17] have also been provided through 2d coordinates for
all the cells, and is designated hereafter as the UMAP representa-
tion of the cells. Fig. 1 shows the UMAP representation of the cells
with colors indicating the labels of the cell types provided with
the data. For the application of our method, we have empirically
discretized the genes of the normalized (i.e. processed) data into
multiple discrete values, using the gene expression distributions. It
results into 14030 genes having 2 discrete values, 134 genes with 3
values and 42 genes with 4 values. The script used to discretize the
data is available within the implementation.

2.2 Modeling gene networks in systems biology
Modeling gene networks has always represented a main challenge
in systems biology. The availability of large scale genomics data
encourages the development of models and computational tools
to better understand biological systems, but the consideration of
up to thousands of variables makes this task especially difficult

1The dataset is available online at http://doi.org/10.5281/zenodo.4730807
2Seurat is available at https://satijalab.org/seurat

Figure 1: UMAP visualization of the 9198 cells with pre-
identified cell types. Each point represents one cell, and is
colored according to its corresponding cell type.

on both the modeling and the computational aspects [22]. Many
approaches based on gene networks have been proposed to under-
stand the relationships between the genes [18]. Other approaches
such as Boolean Networks use a symbolic/discrete representation
of the gene expression and propose logical relations to model their
dynamical behaviors [12, 24]. In this context, single cell sequencing
is especially interesting since it allows to obtain the gene expres-
sions of thousands of cells in one single experiment.

Although network inference methods originally designed for tra-
ditional genomics data have been applied to single cell data [19],
several methods have been specifically created for scRNA-seq. Most
of them focus on the inference of directed edges between the genes,
representing direct influences. Some approaches like SCODE [16]
are based on Ordinary Differential Equations, and rely on pseu-
dotime information provided by algorithms such as Monocle [25].
Other approaches such as SCENIC [1] rely on statistical and ma-
chine learning methods. Since single cell technologies have also
been developed for other type of omics data, some network infer-
encemethods also consider alternative data such as scATAC-seq, and
their combination with scRNA-seq [9]. Lastly, Boolean Networks
have also been applied to single cell data analysis with different
tools such as SCNS [26] and BTR [14]. Benchmarking methodolo-
gies have been designed to evaluate and compare these different
methods on artificial and concrete datasets [4, 11, 19].

Our framework LOLH presented in this paper relies onmulti-valued
logic programs, a form of logic modeling which allows the use of
more than two discrete values per gene. It intends to take advantage
of both logical modeling and statistical machine learning aspects
to produce a formal model while accounting for the noise in the
data. Like BTR, a scoring function is used to induce the model, but
our method performs locally instead of considering the state space
of the system. This paper presents one possible application of our

http://doi.org/10.5281/zenodo.4738850
http://doi.org/10.5281/zenodo.4738850
http://doi.org/10.5281/zenodo.4730807
https://satijalab.org/seurat

CSBio2021, October 14–15, 2021, Virtual (GMT+7 Bangkok Time), Thailand S. Buchet et al.

framework comparable to the application of SCENIC, through the
unsupervised inference of gene correlation networks. However, sev-
eral other uses of LOLH are also considered, including the inference
of dynamical relations between the genes.

3 EXTENSION OF INDUCTIVE LOGIC
PROGRAMMING TO SINGLE CELL GENE
EXPRESSIONS DATA

Inductive Logic Programming is a research topic consisting in the
application of machine learning to the field of Logic Programming.
One motivation of learning logic programs is the ability to perform
formal verification on the induced programs, in order to analyse its
properties. This aspect is particularly interesting in systems biology
since it would be difficult to exploit and to verify the biological
properties of a blackbox model.

Inductive Logic Programming algorithms consider as input a set
of positive and negative examples, and background knowledge on
the system [5]. Several algorithms tackling different goals have
been proposed to infer the Logic Programs. In this work, we focus
on the framework LFIT (Learning From Interpretation Transition),
which intends to infer a Multi Valued Logic Program from time
series data. This framework has been previously applied on biolog-
ical systems to model their dynamical behavior [10]. Up to now,
the experimental and noisy aspect of genomics data has not been
properly studied in LFIT. As single cell data is particularly sparse
and noisy, we discuss the behavior of existing algorithms and we
propose an extension that aims to be more adapted.

The next sub-section introduces the formal definitions of the LFIT
framework. Then, we study the application of existing LFIT algo-
rithms on a scRNA-seq data, and we propose a new approach that
intends to better account for the specificity of the data. The dif-
ferent approaches are compared on one practical induction task,
formulated from the single cell dataset introduced in subsection 2.1.

3.1 Learning biological systems from
Interpretation Transitions

LFIT algorithms aim to model a dynamical discrete system as a
multi-valued dynamical logic program. LFIT takes as input a set of
discrete transitions, represented as pairs of discrete states usually
extracted from time series data. The output of the algorithm is a
multi-valued logic program, i.e. a set of logic rules representing
the dynamical behavior of each discrete variable. In this work, we
focus especially on the induction of the logic rules. Although LFIT
intends to learn the dynamics of a system, the learning of every
variable is always transformed into a binary classification problem,
from which the logic rules are induced. By focusing on properly
identified classification problems on scRNA-seq data, we hope to
improve existing algorithms as a first step. The following definitions
formalizes the different notions used in LFIT algorithms.

3.1.1 Atoms and discrete states. We consider a set of multi-valued
logic variablesV , with |V| = n, representing genes with multiple
discrete values. The discrete values of a variable are represented by
logical atoms. For instance, if a variable a ∈ V has 3 discrete values,

the corresponding atoms are denoted: {a0/2,a1/2,a2/2}. Note that
the maximum discrete value of a is mentioned in its atoms for
purposes of clarity. A discrete state s of the system is a vector
containing one atom per variable (e.g. one discrete value per gene),
for example s = (a1/1,b0/1, c1/1). The set of all states of the system
is denoted as S. The notation s(x) = xi/j is used to represent the
atom corresponding to the variable x in the state s (e.g. s(b) = b0/1
in the previous example).

3.1.2 Multi-valued logic rules. The logic rules forming the logic
program have the following form: r = a1/1 ← a0/1,b1/1, c1/1,
Wherea1/1 is called the head of r , denotedhead(r) anda0/1,b1/1, c1/1
is called the body of r , denoted body(r). A rule r matches on a state
s ∈ S, denoted match(s, r) = ⊤, if xi/j = s(x) ∀xi/j ∈ body(r).
Usually, multiple rules are proposed with the same head in order
to represent complex knowledge.

3.1.3 Learning task in LFIT. In the LFIT framework, the logic rules
are induced independently for each variables. To do so, the discrete
states of the system are separated into positive and negative exam-
ples, denoted S+ and S− respectively. The positive examples aim
to represent the data on which the rules are supposed to match,
and the negative examples represent the data on which they should
not.

3.2 Extension for noisy data: application of
LFIT to scRNA-seq

To extend the application of the LFIT framework to noisy discrete
data, we focus on the rule induction task, formulated from positive
(S+) and negative (S−) examples. We consider the behaviour of two
general and recent implementations: GULA [20], and PRIDE [21],
and discuss their relevance when applied to positive and negative
examples identified from noisy discrete data. We then propose a
new algorithm that intends to overcome the difficulties presented
by this new application.

3.2.1 GULA and PRIDE algorithms. Let P be a logic program, i.e.
a set of logic rules created from S+ and S−. As the logic rules
of P should be consistent with S+ and S−, the following prop-
erty is used as a starting point: every positive example must be
matched at least once, and no negative example must be matched,
i.e:

(∀s+ ∈ S+,∃r ∈ P :match(r , s+) = ⊤
)
∧

(∀s− ∈ S−,�r ∈ P : .
match(r , s−) = ⊤) However, many different sets of rules are consis-
tent with this definition. For example, it is possible to create one
rule per positive example, which results into an overfitting on the
data. For this reason, an optimality criterion is used to specify the
desired properties. In GULA, P is optimal if its rules match on as
many examples as possible, while being consistent with negative
examples [20]. In this case, P is proved to be unique. Since the com-
putation of such program is expensive, a heuristic version named
PRIDE has also been proposed, where the optimality is not formally
proven.

We identify two main issues with these LFIT implementations. First,
the logical matching definition between rules and states makes the
generalization over noisy states difficult. Indeed, assuming a gene
expression pattern composed of multiple genes is visible in the data,
it is not expected to observe any positive state verifying completely

Gene Networks through Inductive Logic Programming CSBio2021, October 14–15, 2021, Virtual (GMT+7 Bangkok Time), Thailand

the pattern due to the noise. Thus, a rule matching on this pattern
is not likely to be proposed since it would not completely match
on any positive examples. Similarly, a mismatch of a rule by only
one condition in its body does not help to properly account for
the negative examples, i.e. a rule proposed by GULA could be very
close from matching the negative examples in the data. The second
issue comes from the definition of optimality from GULA, and its
application to a system that is only partially observed. Indeed, as-
suming that many negative states are not observed, inducing the
most general rules will tend to overfit on the negative examples. In
this case, the generalization would go beyond the observed positive
examples and the rules would not be able to correctly represent the
patterns showing up in the input data.

3.2.2 Extension through rule-state matching error. To overcome the
difficulties identified previously, we propose a new definition of
the matching predicate on a logic rule. In order to identify a gene
pattern from noisy discrete states, we introduce thematchinдError
function between a rule and a state, that aims to estimate how well
the pattern is present in the state. The matching error corresponds
to the number of atoms from the body that do not match in the
state, and it is defined as follows:

matchinдError (r , s) =
∑

xi/j ∈body(r)

(
1 − 1{s(x)}(xi/j)

)
(1)

With 1A(x) = 1 if x ∈ A, 0 otherwise, alternatively formulated as
matchinдError (r , s) = |{xi/j ∈ body(r) | xi/j , s(x)}|. From this
definition, we introduce a new optimization criterion in order to
search for the most interesting rule. Since the rule intends to match
as much as possible on the positive examples, the matching error
should be the smallest possible on these states. On the contrary, the
error should be as big as possible on the negative examples. Using
the mean of the matching error as a global score over multiple
states, this leads to the following bi-objective optimization problem
on the rule:

-min
r

1
|S+ |

∑
s+∈S+

matchinдError (r , s+)

-max
r

1
|S− |

∑
s−∈S−

matchinдError (r , s−)
(2)

To simplify this problem, we propose to maximize the difference
between the twomeanmatching errors of the rule. Thus the positive
and the negative examples are equally considered for the global
score. This leads to the following criterion to maximize (where
mError stands for matchingError):

max
r

(
1
|S− |

∑
s−∈S−

mError (r , s−) −
1
|S+ |

∑
s+∈S+

mError (r , s+)

)
(3)

By developing the matchingError term, one can notice that the
mean matching error can be decomposed by computing an individ-
ual error for each atom, as it is shown below (where ∗ corresponds
to + for the positive examples and − for the negative examples):

1
|S∗ |

∑
s ∈S∗

mError (r , s) =
1
|S∗ |

∑
xi/j ∈body(r)

∑
s ∈S∗

(
1 − 1{s(x)}(xi/j)

)

From this expression, our optimization criteria can be re-written
as the sum of individual atom scores that need to be optimized.
Thus, we define score(xi/j) ∈ [−1, 1] as follows:

score(xi/j) =
error−(xi/j)

|S− |
−
error+(xi/j)

|S+ |
(4)

With:

error+(xi/j) =
∑

s+∈S+

(
1 − 1{s+(x)}(xi/j)

)
error−(xi/j) =

∑
s−∈S−

(
1 − 1{s−(x)}(xi/j)

)
These scores can be efficiently computed from the dataset by

iterating over all the examples. As an intermediary step, we fix
the number of atoms of the body to a constant k . The choice of
this constant is discussed hereafter. We finally obtain the following
optimization criterion equivalent to expression 3, for the inference
of a logic rule with k atoms:

max
r, |body(r) |=k

∑
xi/j ∈body(r)

score(xi/j) (5)

When the number k of atoms is fixed, this method allows for
the efficient computation of one rule which generalizes over the
positive and the negative examples at the same time, by sorting the
atoms according to their scores. For the sake of clarity, the next
example illustrates the computation of the atom scores using the
previous definitions on a small dataset, in order to compose the
body of an optimal rule.

Example 3.1. Let S+ = {(a0/1,b1/1, c0/1,d1/1),
(a0/1,b0/1, c1/1,d0/1), (a0/1,b1/1, c0/1,d1/1)(a0/1,b1/1, c1/1,d1/1)}
and S− = {(a1/1,b1/1, c1/1,d1/1),
(a1/1,b1/1, c0/1,d1/1), (a0/1,b1/1, c1/1,d1/1), (a1/1,b1/1, c0/1,d1/1)}
be a dataset of 4 positive and 4 negative examples for a set of
4 discrete variablesV = {a,b, c,d} (with 2 discrete values each). In
this dataset, one can notice that the value 0 is dominant for a in S+
and 1 is dominant for b in S−. Thus, the atoms a1/1 and b0/1 have
the best scores, and a and b are efficient to differentiate between
S+ from S−. For instance, error+(a0/1) = 0, error−(a0/1) = 3, thus

score(a0/1) =
error−(a0/1)

4 −
error+(a0/1)

4 = 3/4 = 0.75. Regarding
variable b, score(b1/1) = 3

4 −
0
4 = 0.75 On the contrary, c has no

dominant value inS+ andS−, thus it cannot be used to differentiate
between the two subsets, e.g error+(c0/1) = 2, error−(c0/1) = 2, and
score(c0/1) = 0. Lastly,d is almost constant acrossS+ andS−. Thus,
d is not effective as well to classify S+ from S−, which can be veri-
fied on the score: score(d1/1) = 0/4 − 1/4 = −0.25. Thus, the most
interesting rule in this example can be created with the atoms a0/1
and b1/1 which have a score close to 1, i.e. r = concl.← a0/1,b1/1,
where concl. (conclusion) is the head, representing the logical con-
cept described by S+ and S−.

Expression 5 can be used to compute an optimal rule when the
length of the body is fixed. However, deciding about the number of
atoms to include in a rule can be difficult. For instance, one may try
to compare the scores of two rules having different lengths. How-
ever, when the rules do not have the same number of atoms in their

CSBio2021, October 14–15, 2021, Virtual (GMT+7 Bangkok Time), Thailand S. Buchet et al.

body, their score are not comparable (since the score is in the range
of 0 to the number of atoms). Although it is possible to normalize
the score in expression 5, the optimal rule regarding the normalized
score would always contain only one single atom. Indeed, adding
an additional atom can only worsen a normalised score, as logical
atoms are sorted out beforehand. A logic rule containing only one
atom would not be robust for the classification considering the
noise of the data, thus it is preferable to select multiple atoms to
form a rule. As atoms with scores close to 0 should be avoided to,
we propose to select the atoms based on a threshold t on their score.
Such threshold intends to find a compromise between the quality
and the robustness of the prediction. The body of the optimal rule
ropt is then created by selecting the best atoms according to the
threshold t : body(ropt) = {xi/j | score(xi/j) ≥ t}. A more detailed
example illustrates the application of LOLH on a toy dataset in
appendix A with the computation of a rule from the atom scores
by using a threshold.

3.3 Comparisons through cell type
classification on scRNA-seq

In this sub-section, we compare the performance of LOLH with
an existing LFIT implementation, through a cell type classification
task. In this case, the goal is to predict the type of a cell from the
expressions of the genes. For the illustration, we selected the NK
cells (natural killer) previously identified in the data (see Fig. 1).
This cell type is interesting to evaluate the method since these cells
have gene expressions that are similar to the CD8 cells. While the
ultimate goal of inducing logic programs is the representation of
gene interactions, cell classification is a relevant point of compari-
son since biological knowledge, such as gene markers, can be used
to interpret the output of the algorithms.

Since the GULA algorithm would not be applicable to an entire
dataset due to its computational complexity, we use the heuristic
version PRIDE, with the python implementation pylfit3. From the
cell type labels provided with the single cell matrix, a binary classi-
fication problem can be formulated on the discretized cells, which
leads to 829 positive examples S+ (cells labeled as NK), and 8369
negative examples S− (cells not labeled as NK) over 14206 genes.
Thus in this example |S+ | = 829 and |S− | = 8369.

This binary classification problem has been given as input to PRIDE
and to LOLH. PRIDE returned a logic program with 593 rules, pre-
senting up to 96 atoms from the dataset in their bodies. On the
other side, LOLH applied with a threshold of 0.55 returned one
optimized rule containing the following 21 atoms in the body:
GNLY1/1, GZMB1/1, NKG71/1, PRF11/1, KLRD11/1, CTSW1/1,
KLRF11/1, CST71/1, GZMA1/1, HOPX1/1, KLRB11/1, IL2RB1/1,
TYROBP1/1, CD71/1, CD2471/1, CMC11/1, CLIC31/1, SPON21/1,
MATK1/1, FCER1G1/1, B2M2/3
The matching error of LOLH rule on the data can be visualized as
histograms in Appendix D.1. In the following, the logic program
returned by PRIDE is denoted as PPRIDE and the logic program
returned by our optimization method is denoted as PLOLH (conse-
quently |PPRIDE | = 593 and |PLOLH |= 1).

3pylfit package can be found at https://github.com/Tony-sama/pylfit.git

Figure 2: Comparison between LOLH rule (in orange) and
PRIDE rules (colored crosses). Brightest PRIDE rules indi-
cates the longest bodies. The dotted lines delimit all the
points for which both positive and negative scores are worst
than the LOLH score. The black line indicates proportionally
equal positive and negative score.

3.3.1 Comparison of mean rule matching scores. A first comparison
is proposed through the mean matching error over the positive and
the negative examples of the rules from PPRIDE and PLOLH. Since
the different rules may not have the same number of atoms in
their bodies, the positive and negative means are normalized by the
number of atoms in every body. Using the definitions previously
introduced, the scores (i.e. normalized error) of each rule r on the
positive and negative examples are defined as:

- score+(r) =

(∑
s ∈S+

matchinдError (s, r)

)
/|body(r)|

- score−(r) =

(∑
s ∈S−

matchinдError (s, r)

)
/|body(r)|

(6)

The scores of all the rules are shown in Fig. 2, where the black line
corresponds to the rules having proportional scores on S+ and S−.
Since it is intended to minimize the score on S+ and maximize the
score on S−, the dotted lines delimit all the rules that perform less
than the rule in PLOLH. It can be noticed that most of the rules from
PPRIDE are inside the area delimited by these lines, indicating that
according to mean matching error defined previously, they perform
significantly less than the rule in PLOLH. Moreover, they mostly lie
on the black line, meaning that they fail at differentiating between
the positive and negative examples. It is still possible to identify
two effects induced by the search performed by PRIDE: rules with
a largest body deviates from the black line, indicating that they
are slightly better, and rules with the shortest bodies have also the
smallest scores on both S+ and S−.

https://github.com/Tony-sama/pylfit.git

Gene Networks through Inductive Logic Programming CSBio2021, October 14–15, 2021, Virtual (GMT+7 Bangkok Time), Thailand

Figure 3: Visualization of the individual scores of all atoms.
The blue atoms are the atoms selected by PRIDE and the or-
ange atoms are the atoms selected by LOLH. The grey atoms
are the remaining atoms from the dataset. The black line in-
dicates atoms having proportionally the same error on the
positive and negative examples.

3.3.2 Comparison on each atom. Since it remains difficult to anal-
yse individually each of the 593 rules of PPRIDE, we alternatively
propose to compare all the atoms from the bodies of the rules in
PPRIDE and PLOLH. The comparison can be performed on their in-
dividual positive and negative errors, as defined in subsection 3.2.2.
Fig 3 shows the positive and negative errors of all possible atoms
from the data (i.e. one atom per discrete value, per gene). In this
graph, the black line also represents the points for which the posi-
tive and negative errors are proportionally equal. It can be directly
noticed that the orange circles, corresponding to the atoms from
PLOLH, are the most distanced from the back line, as a result of the
optimization of the weighted difference between the two scores per-
formed by LOLH. On the contrary, the atoms from PPRIDE, indicated
in blue, mostly lie on the black line. It shows that they do not help
to differentiate between the positive and the negative examples.
While this does not inform about the effect of combining the atoms
together into the different rules, this explains the location of the
rule mean errors in Fig. 2 and the better performance of PLOLH rule
regarding the rule matching error.

3.3.3 Comparison with differential expression analysis and bio-
markers. To further assess the relevance of the atoms selected by
PRIDE and LOLH, it is possible to rely on existing analysis tools in
single cell genomics, such as differential expression (DE) analysis.
Given two groups of cells, (DE) analysis tools compute genes that
are the most differentially expressed between these two groups.
We performed (DE) analysis on the dataset with Seurat (with Find-
Markers function), using the cells labeled as NK as the first group,
and the remaining cells as the second group (the script used for
this analysis is available within our LOLH implementation). The re-
sulting table containing the 30 most differentially expressed genes,
sorted by the third column, can be found in Appendix D.2. In this

table, the second and the last columns indicate the statistical sig-
nificance of the result, and the third column indicates how much
the gene is differentially expressed between the two groups of cells
(positive values indicate that the gene is more expressed in the first
group, i.e. in the NK cells in this case) (more details are available
in the documentation of Seurat). We can notice that most of the
genes used in PLOLH rule are in the table, except TYROBP, MATK,
FCER1G and B2M. On the contrary, genes selected in PPRIDE are not
found in the table, which seems consistent with the observation
in Fig. 3. Lastly, using known biomarkers, the (DE) analysis can be
used to justify that the NK cells are indeed correctly labeled in the
dataset, and that LOLH selected relevant genes for the classification.
Appendix C shows a list of genes associated to different type of
cells. The genes NKG7, PRF1 and IL2RB are indeed mainly found in
NK cells. In addition, other genes that are usually expressed (not
only) in NK cells are found, such as GNLY, GZMB, KLRD1, CST7
and FCER1G. None of the genes selected by PRIDE have been found
to be relevant to characterise the NK cells.

4 INFERENCE OF GENE CO-EXPRESSION
NETWORKS

Subsection 3.3 has shown the application of LOLH on positive and
negative examples obtained from already identified cell types. Yet,
this framework becomes especially interesting when it is applied
in an unsupervised way. In order to create a model of gene interac-
tions, we propose to formulate the classification problems directly
from the discrete expressions of the genes, in order to link together
genes that are globally expressed in the same cells. By capturing
correlations between the genes in the dataset, the resulting model
can be expected to bring interesting insights about the structure of
the dataset.

Considering an atom xi/j from the dataset, representing the discrete
value i of the gene x , the sets of positive and negative examples are
formed from the following definition: S+xi/j = {s ∈ S | s(x) = xi/j }

and S−xi/j = S \ S
+
xi/j , i.e. the positive examples are the cells where

the gene x has the discrete value i and the negative examples are
the cells where x does not have the value i . In this classification task,
the gene x is discarded from the data, so that xi/j is not selected by
LOLH. We propose to use LOLH on this classification problem with
an appropriate threshold, and to interpret the resulting logic rule as
edges between the atom xi/j and the atoms in the rule’s body. Thus,
creating one classification problem per atom leads to the inference
of a global weighted correlation/co-expression network between
all the atoms, over all the cells of the dataset. It is also interesting
to quantify the influence of each atom selected in the body of the
rule, thus expression 4 is used to compute a weight for each edge
of the network. The analysis of the resulting network can lead to
useful information about the way genes are expressed in the cells,
as it is shown in the following sub-section.

4.1 Identification of biological knowledge
through gene clustering

Using the methodology introduced previously, a global graph of all
the atoms has been generated from the complete discrete single cell
matrix. In order to account for relevant correlations while having a

CSBio2021, October 14–15, 2021, Virtual (GMT+7 Bangkok Time), Thailand S. Buchet et al.

sufficient number of edges in the graph, a threshold of 0.35 have
been selected to compute the logic rules with LOLH. Additionally,
constant genes are usually not informative, thus genes varying in
less than 200 cells are not considered. Lastly, mitochondrial and
ribosomal genes are also discarded since they are not expected to
be informative and they may complicate the analysis of the graph.

The resulting network can by analyzed by performing clustering
on the atoms. The graph based clustering algorithm Louvain [3]
has been used in this purpose, through the python implementation
python-louvain4. In this graph, the application of Louvain cluster-
ing leads to 6 clusters of atoms. The content of the clusters can be
found in Appendix E.1. Some symmetries are observed between
the clusters, i.e. some clusters contain globally the same genes with
opposite discrete values. Thus, the following pairs of clusters can be
considered together: clusters 0 and 4, clusters 1 and 3, and clusters
2 and 5. For this reason, we focus our analysis on clusters 3, 4 and
5, which mainly contain atoms corresponding to expressed genes.

To associate the cells of the dataset with each cluster of atoms,
the clusters can be interpreted as the bodies of logic rules in order
to compute a matching error on all the cells using Expression 1. The
resulting cells with the lowest matching error are then considered to
be representative of the clusters. Fig. 4 allows to visualize the match-
ing error of the clusters on all cells as colors on the UMAP represen-
tation. In this figure, the symmetries are clearly visible, and the clus-

Figure 4: Visualization of the matching error of the atoms
from each cluster on all the cells on the UMAP representa-
tion.

4python-louvain is available at https://github.com/taynaud/python-louvain.git

ters can be easily associated with some cell types identified in Fig. 1
and Fig. 8, additionally with the help of the biological markers from
Appendix C as done previously. Thus, cluster 3 seems to match on
differentiated T cells and NK cells, which is confirmed by the pres-
ence of GNLY1/1, IL2RB1/1, GZMB1/1, CST71/1, NKG71/1, CCL51/1,
KLRD11/1, PRF11/1, GZMH1/1, CD8A1/1 and CD8B1/1. Cluster 4 can
be associated with the myeloids, confirmed by the presence of
AIF11/1,CD141/1,CST31/1, FCER1G1/1, FCN11/1, LGALS31/1, LST11/1,
LYZ1/1, S100A42/2, S100A91/1 and TYROBP1/1, as well as the follow-
ing atoms indicating the absence of genes associated with T cells:
CD3E0/2, IL320/2, and IL7R0/1. Lastly, cluster 5 matches on B cells,
confirmed by the presence of BLK1/1, CD372/2, CD741/1, CD79A1/1,
CD79B1/1,HLA-DMA1/1,HLA-DQA11/1,MS4A11/1, PAX51/1, SPIB1/1,
TCL1A1/1 and VPREB31/1. However, cluster 3 and cluster 4 in Fig. 4

Figure 5: Histogram of the matching error of cluster 4 on all
the cells.

seems to indicate the presence of wrongly classified cells in the
myeloids. To improve the characterization of the clusters, and to
further study the cell heterogeneity within clusters, it is possible
to perform network refinement through cell selection. We illus-
trate this by selecting cells matching on cluster 5, corresponding to
the myeloids. The selection is performed by selecting cells with a
matching error ≤ 193 on cluster 5, which can be visualized in the
histogram illustrated in Fig. 5.

4.2 Network refinement on the myeloids cells
Using the previous cell selection method, we created a new network
by considering only the myeloids. The application of Louvain algo-
rithm on this network gave 13 clusters of atoms. Since symmetries
are also found with these clusters, we focus our analysis on clusters
1, 4, 5, 8, 9 and 10, which can be found in Appendix E.2. Similarly
to the previous analysis, the matching error between these clusters
and the cells can be visualized on Fig. 6 (where 11 cells were dis-
carded for clarity purpose). By using the biological markers, cluster
1 can be associated with the CD16 cell type, through the presence of
CD140/1, CSF1R1/1, FCGR3A1/1, LYZ0/1, S100A42/2 and S100A90/1.
Cluster 4 can be associated with T cells, with CD3E1/1, CD8A1/1,
GZMH1/1, GZMK1/1, IL321/1, IL7R1/1 and LEF11/1. Cluster 5 can be
associated with cDC cells, with CD741/1, FCER1A1/1,HLA-DQA11/1
and S100A40/2. Cluster 9 relates to B cells, with the presence of
CD79A1/1, MS4A11/1, PAX51/1 and TCL1A1/1. Lastly, cluster 10
can be association to NK cells, with CCL51/1, CST71/1, GNLY1/1,

https://github.com/taynaud/python-louvain.git

Gene Networks through Inductive Logic Programming CSBio2021, October 14–15, 2021, Virtual (GMT+7 Bangkok Time), Thailand

Figure 6: Visualization of the matching error of the atoms
from each cluster on the previously selected cells.

GZMB1/1, IL2RB1/1,KLRC11/1,KLRD11/1,NCAM11/1,NKG71/1 and
PRF11/1.

The matching error of the different clusters can also be visual-
ized on all the cells of the dataset on Fig. 11 in Appendix E.3. The
colors seem to confirm that the clusters 4, 9 and 10 do not represent
myeloids. This indicates that both our algorithm and the processing
previously performed with Seurat wrongly associated few cells with
the myeloids. To verify this more precisely, we focused on cluster
10 and performed a sub selection of the cells from the myeloids,
with the matching error. We performed (DE) analysis similarly to
sub-section 3.3.3, by using these cells as the first group, and the
remaining myeloids as the second group. The resulting table in
Appendix E.4 seems to confirm that the corresponding cells are NK
cells wrongly associated with myeloids.

Lastly, cluster 8 seems also interesting since it matches not only
on myeloids, as seen in Fig. 11. This cluster is enriched for PPBP, a
growth factor marker for platelets, but found to be associated with
monocyte (CD14) migration and autocrine, receptor-desensitising
chemokine ligand release [6, 23]. To confirm the identity of these
cells, we selected the cells matching with cluster 8 from the com-
plete dataset and performed (DE) analysis, with the the first group of
cells being the cells that also belong to themyeloids, and the second
group being the remaining cells. The resulting table in Appendix E.4
indeed indicates that these cells correspond to monocytes, which is
also consistent with the identification shown in Fig. 1, and where

PPBP can be a sign of inflammation. The other cells matching with
cluster 8 might also be associated with inflammation.

5 CONCLUSION AND FUTUREWORKS
In conclusion, we have presented a method derived from inductive
logic programming that intends to compute logical models describ-
ing combined gene interactions from noisy gene expressions data.
Our method, extended from the LFIT framework, ensure robustness
from the noise as well as interpretability of the gene relations, as it
has been illustrated through an example of cell classification. We
have applied our algorithm LOLH on a representative single cell
dataset to compute correlation networks of the different genes. The
structure of the graph, more especially the gene clusters, have been
demonstrated to be informative about biological aspects of the cells.
We have shown how LOLH can be used to identify cells of interest,
and to compute refined models capturing more detailed charac-
teristics (e.g. by focusing on one specific cell type). By clustering
genes instead of cells, we have also been able to characterize cells
that were previously wrongly identified using classical single cell
analysis tools. Although the method has been applied on scRNA-
seq data in this work, we expect it to be relevant on other type of
single cell sequencing based dataset, when the discretization can
be performed.

Through this application, gene relations have been identified within
the same cells. However, it might be interesting to recover dynami-
cal relations, by using the initial LFIT formulation on transitions
data. While transitions are not initially available in scRNA-seq data,
we consider a reconstruction of this information using graph based-
methods. Alternatively, other types of data containing dynamical
information may be used in that purpose, such as RNA-velocity
based approaches [2, 13]. In order to compare this approach to ex-
isting tools for the inference of gene networks from single cell, we
also consider using the benchmarking methodology presented in
[19]. Lastly, we consider refining the optimization task performed
by LOLH, in order to infer multiple rules from one classification
instance.

ACKNOWLEDGMENTS
We would like to thank Dr Tony Ribeiro for his valuable comments
on this paper and Imagine institute for providing and processing
the dataset used in this work.

REFERENCES
[1] Sara Aibar, Carmen Bravo González-Blas, Thomas Moerman, Vân Anh Huynh-

Thu, Hana Imrichova, Gert Hulselmans, Florian Rambow, Jean-ChristopheMarine,
Pierre Geurts, Jan Aerts, Joost van den Oord, Zeynep Kalender Atak, Jasper
Wouters, and Stein Aerts. 2017. SCENIC: single-cell regulatory network inference
and clustering. Nature Methods 14, 11 (Nov. 2017), 1083–1086. https://doi.org/10.
1038/nmeth.4463

[2] Volker Bergen, Marius Lange, Stefan Peidli, F. Alexander Wolf, and Fabian J.
Theis. 2020. Generalizing RNA velocity to transient cell states through dynamical
modeling. Nature Biotechnology 38, 12 (Dec. 2020), 1408–1414. https://doi.org/
10.1038/s41587-020-0591-3

[3] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of Sta-
tistical Mechanics: Theory and Experiment 2008, 10 (Oct. 2008), P10008. https:
//doi.org/10.1088/1742-5468/2008/10/P10008

[4] Shuonan Chen and Jessica C. Mar. 2018. Evaluating methods of inferring gene
regulatory networks highlights their lack of performance for single cell gene

https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1038/s41587-020-0591-3
https://doi.org/10.1038/s41587-020-0591-3
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008

CSBio2021, October 14–15, 2021, Virtual (GMT+7 Bangkok Time), Thailand S. Buchet et al.

expression data. BMC Bioinformatics 19, 1 (Dec. 2018), 232. https://doi.org/10.
1186/s12859-018-2217-z

[5] Andrew Cropper, Sebastijan Dumančić, and Stephen H.Muggleton. 2020. Turning
30: New Ideas in Inductive Logic Programming. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, Christian
Bessiere (Ed.). International Joint Conferences on Artificial Intelligence Organi-
zation, 4833–4839. https://doi.org/10.24963/ijcai.2020/673 Survey track.

[6] A. Elmesmari, A. R. Fraser, C. Wood, D. Gilchrist, D. Vaughan, L. Stewart, C.
McSharry, I. B. McInnes, and M. Kurowska-Stolarska. 2016. MicroRNA-155 regu-
lates monocyte chemokine and chemokine receptor expression in Rheumatoid
Arthritis. Rheumatology (Oxford) 55, 11 (Nov 2016), 2056–2065.

[7] Christoph Hafemeister and Rahul Satija. 2019. Normalization and variance
stabilization of single-cell RNA-seq data using regularized negative binomial
regression. Genome Biology 20, 1 (Dec. 2019). https://doi.org/10.1186/s13059-
019-1874-1

[8] Yuhan Hao, Stephanie Hao, Erica Andersen-Nissen, William M. Mauck, Shiwei
Zheng, Andrew Butler, Maddie J. Lee, Aaron J. Wilk, Charlotte Darby, Michael
Zagar, Paul Hoffman, Marlon Stoeckius, Efthymia Papalexi, Eleni P. Mimitou,
Jaison Jain, Avi Srivastava, Tim Stuart, Lamar B. Fleming, Bertrand Yeung, An-
gela J. Rogers, Juliana M. McElrath, Catherine A. Blish, Raphael Gottardo, Peter
Smibert, and Rahul Satija. 2020. Integrated analysis of multimodal single-cell
data. bioRxiv (2020). https://doi.org/10.1101/2020.10.12.335331

[9] Xinlin Hu, Yaohua Hu, Fanjie Wu, Ricky Wai Tak Leung, and Jing Qin. 2020.
Integration of single-cell multi-omics for gene regulatory network inference.
Computational and Structural Biotechnology Journal 18 (2020), 1925–1938. https:
//doi.org/10.1016/j.csbj.2020.06.033

[10] Katsumi Inoue, Tony Ribeiro, and Chiaki Sakama. 2014. Learning from in-
terpretation transition. Machine Learning 94, 1 (Jan. 2014), 51–79. https:
//doi.org/10.1007/s10994-013-5353-8

[11] Yoonjee Kang, Denis Thieffry, and Laura Cantini. 2021. Evaluating the Re-
producibility of Single-Cell Gene Regulatory Network Inference Algorithms.
Frontiers in Genetics 12 (2021), 362. https://doi.org/10.3389/fgene.2021.617282

[12] S.A. Kauffman. 1969. Metabolic stability and epigenesis in randomly constructed
genetic nets. Journal of Theoretical Biology 22, 3 (1969), 437–467. https://doi.org/
10.1016/0022-5193(69)90015-0

[13] Gioele La Manno, Ruslan Soldatov, Hannah Hochgerner, Amit Zeisel, Viktor
Petukhov, Maria E. Kastriti, Peter Lönnerberg, Alessandro Furlan, Jean Fan, Zehua
Liu, David van Bruggen, Jimin Guo, Erik Sundström, Gonçalo Castelo-Branco,
Igor Adameyko, Sten Linnarsson, and Peter V. Kharchenko. 2018. RNA velocity
in single cells. Nature 560 (2018), 494–498. https://doi.org/10.1038/s41586-018-
0414-6

[14] Chee Yee Lim, HuangeWang, StevenWoodhouse, Nir Piterman, LorenzWernisch,
Jasmin Fisher, and Berthold Göttgens. 2016. BTR: training asynchronous Boolean
models using single-cell expression data. BMC Bioinformatics 17, 1 (Dec. 2016).
https://doi.org/10.1186/s12859-016-1235-y

[15] Malte D Luecken and Fabian J Theis. 2019. Current best practices in single-
cell RNA-seq analysis: a tutorial. Molecular Systems Biology 15, 6 (June 2019).
https://doi.org/10.15252/msb.20188746

[16] Hirotaka Matsumoto, Hisanori Kiryu, Chikara Furusawa, Minoru S H Ko, Shigeru
B H Ko, Norio Gouda, Tetsutaro Hayashi, and Itoshi Nikaido. 2017. SCODE:
an efficient regulatory network inference algorithm from single-cell RNA-Seq
during differentiation. Bioinformatics 33, 15 (Aug. 2017), 2314–2321. https:
//doi.org/10.1093/bioinformatics/btx194

[17] Leland McInnes, John Healy, and James Melville. 2018. UMAP: Uniform Man-
ifold Approximation and Projection for Dimension Reduction. ArXiv e-prints
1802.03426 (2018). arXiv:1802.03426 [stat.ML]

[18] Daniele Mercatelli, Laura Scalambra, Luca Triboli, Forest Ray, and Federico M.
Giorgi. 2020. Gene regulatory network inference resources: A practical overview.
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1863, 6 (2020),
194430. https://doi.org/10.1016/j.bbagrm.2019.194430 Transcriptional Profiles
and Regulatory Gene Networks.

[19] Aditya Pratapa, Amogh P. Jalihal, Jeffrey N. Law, Aditya Bharadwaj, and T. M.
Murali. 2020. Benchmarking algorithms for gene regulatory network inference
from single-cell transcriptomic data. Nat Methods 17 (June 2020), 147–154. https:
//doi.org/10.1038/s41592-019-0690-6

[20] Tony Ribeiro, Maxime Folschette, Morgan Magnin, Olivier Roux, and Katsumi
Inoue. 2018. Learning Dynamics with Synchronous, Asynchronous and General
Semantics. In Inductive Logic Programming, Fabrizio Riguzzi, Elena Bellodi,
and Riccardo Zese (Eds.). Vol. 11105. Springer International Publishing, Cham,
118–140. https://doi.org/10.1007/978-3-319-99960-9_8

[21] Tony Ribeiro, Maxime Folschette, Laurent Trilling, Nicolas Glade, Katsumi Inoue,
Morgan Magnin, and Olivier Roux. 2020. Les enjeux de l’inférence de modèles
dynamiques des systèmes biologiques à partir de séries temporelles. (May 2020).
https://hal.archives-ouvertes.fr/hal-02634235 to appear.

[22] Alan Scheinine,Wieslawa I. Mentzen, Giorgio Fotia, Enrico Pieroni, FabioMaggio,
Gianmaria Mancosu, and Alberto De La Fuente. 2009. Inferring Gene Networks:
Dream or Nightmare?: Part 2: Challenges 4 and 5. Annals of the New York
Academy of Sciences 1158, 1 (March 2009), 287–301. https://doi.org/10.1111/j.1749-

6632.2008.04100.x
[23] F. Schwartzkopff, F. Petersen, T. A. Grimm, and E. Brandt. 2012. CXC chemokine

ligand 4 (CXCL4) down-regulates CC chemokine receptor expression on human
monocytes. Innate Immun 18, 1 (Feb 2012), 124–139.

[24] René Thomas. 1973. Boolean formalization of genetic control circuits. Journal of
Theoretical Biology 42, 3 (1973), 563–585. https://doi.org/10.1016/0022-5193(73)
90247-6

[25] Cole Trapnell, Davide Cacchiarelli, Jonna Grimsby, Prapti Pokharel, Shuqiang Li,
Michael Morse, Niall J Lennon, Kenneth J Livak, Tarjei S Mikkelsen, and John L
Rinn. 2014. The dynamics and regulators of cell fate decisions are revealed by
pseudotemporal ordering of single cells. Nature Biotechnology 32, 4 (April 2014),
381–386. https://doi.org/10.1038/nbt.2859

[26] StevenWoodhouse, Nir Piterman, ChristophM.Wintersteiger, Berthold Göttgens,
and Jasmin Fisher. 2018. SCNS: a graphical tool for reconstructing executable
regulatory networks from single-cell genomic data. BMC Systems Biology 12, 1
(Dec. 2018). https://doi.org/10.1186/s12918-018-0581-y

A TOY EXAMPLE WITH LOLH (FROM AN
ARTIFICIAL DATASET)

We illustrate here the application of our algorithm LOLH on an
artificial example over 4 bi-valued discrete variables. In this example,
the dataset consists of 4 positive and 4 negative examples, and LOLH
is used to create a logic rule able to recognise the positive examples
from the negative ones.

A.1 Artificial dataset
This artificial example contains observations over a set of 4 discrete
variables:V = {a,b, c,d}. 8 observations (e.g. cells) are given, la-
beled from s0 to s7, and are separated into positive and negative
examples as follows: S+ = {s0, s1, s2, s3} and S− = {s4, s5, s6, s7}
The next tables contain the values of the variables in each observa-
tion. Rows correspond to the observations and columns correspond
to the variables.

Table 1: Positive examples

a b c d
s0 1 0 0 0
s1 1 0 1 0
s2 1 0 1 1
s3 0 0 1 0

Table 2: Negative examples

a b c d
s4 1 1 1 1
s5 0 1 0 1
s6 1 1 0 1
s7 1 0 0 1

It can be noticed that the variables b and d are mostly equal
to 0 in the positive examples and they are mostly equal to 1 in
the negative examples. Additionally, c has the inverse behaviour.
Thus, the atoms associated to b, c and d are expected to have the
best scores. On the contrary, the variable a has no dominant value
between the positive and negative examples, thus a should not be
used in a logic rule.

https://doi.org/10.1186/s12859-018-2217-z
https://doi.org/10.1186/s12859-018-2217-z
https://doi.org/10.24963/ijcai.2020/673
https://doi.org/10.1186/s13059-019-1874-1
https://doi.org/10.1186/s13059-019-1874-1
https://doi.org/10.1101/2020.10.12.335331
https://doi.org/10.1016/j.csbj.2020.06.033
https://doi.org/10.1016/j.csbj.2020.06.033
https://doi.org/10.1007/s10994-013-5353-8
https://doi.org/10.1007/s10994-013-5353-8
https://doi.org/10.3389/fgene.2021.617282
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1186/s12859-016-1235-y
https://doi.org/10.15252/msb.20188746
https://doi.org/10.1093/bioinformatics/btx194
https://doi.org/10.1093/bioinformatics/btx194
https://arxiv.org/abs/1802.03426
https://doi.org/10.1016/j.bbagrm.2019.194430
https://doi.org/10.1038/s41592-019-0690-6
https://doi.org/10.1038/s41592-019-0690-6
https://doi.org/10.1007/978-3-319-99960-9_8
https://hal.archives-ouvertes.fr/hal-02634235
https://doi.org/10.1111/j.1749-6632.2008.04100.x
https://doi.org/10.1111/j.1749-6632.2008.04100.x
https://doi.org/10.1016/0022-5193(73)90247-6
https://doi.org/10.1016/0022-5193(73)90247-6
https://doi.org/10.1038/nbt.2859
https://doi.org/10.1186/s12918-018-0581-y

Gene Networks through Inductive Logic Programming CSBio2021, October 14–15, 2021, Virtual (GMT+7 Bangkok Time), Thailand

Table 3: Atom positive errors, negative errors and scores

error+ error− score

a0/1 3 3 0
a1/1 1 1 0
b0/1 0 3 0.75
b1/1 4 1 -0.75
c0/1 3 1 -0.5
c1/1 1 3 0.5
d0/1 1 4 0.75
d1/1 3 0 -0.75

Figure 7: Positive and negative errors of all atoms.

A.2 Computation of the atom scores
From this dataset, one can define one logical atom for each dis-
crete value of each variable (4 ∗ 2 = 8 atoms in total), in order
to form the logic rules. This leads to the following set of atoms:
A = {a0/1,a1/1,b0/1,b1/1, c0/1, c1/1,d0/1,d1/1}

For each atom, it is possible to compute its positive and negative
errors according to the definitions introduced in part 3.2.2. For
instance, the score of atom b0/1 is computed as follows:
• error+(b0/1) = |{si , i ∈ {0, .., 3} | si (b) , b0/1}| = 0
• error−(b0/1) = |{si , i ∈ {4, .., 7} | si (b) , b0/1}| = 3

• score(b0/1) =
error−(b0/1)
|S− |

−
error+(b0/1)
|S+ |

= 3/4 − 0/4 = 0.75

Table 3 gives the positive errors, negative errors and scores of
all atoms from the artificial dataset. Fig. 7 shows the errors as 2d
coordinates. In this plot, it is possible to visualize the scores as
diagonal lines. Atoms with the best scores (i.e. closer to 1) are
located at the top left part of the plot.

A.3 Induction of LOLH rule
In this example, the threshold 0.4 has been chosen to select the
atoms. In Fig.7, the selected atoms (in green) are the atoms located
above line corresponding to the score threshold: b0/1, d0/1 and c1/1.
Thus the corresponding LOLH rule is: concl .← b0/1,d0/1, c1/1
It can be noticed that the atoms b0/1 and d0/1 have the same score,
thus they are located on the same diagonal line. The atom c1/1 is
slightly worst, but it is still selected according to the threshold. As
the variables have 2 discrete values each, the errors are symmetric.
As a result, the atoms d1/1, b1/1 and c0/1 can be used to form a rule
that matches on the negative examples. Lastly, it can be noticed in
the dataset that the variable a does not behave differently between
the positive and the negative example, i.e. the errors of the atoms
are the same in S+ and S−. This is also visible in the plot as a0/1
and a1/1 are located on the same line corresponding to the score 0.

B TECHNICAL INFORMATION ABOUT THE
DATASET

The dataset used in this study is a single cell RNA-sequencing ma-
trix composed of 9198 peripheral blood mononuclear cells (pbmc:
T, B, NK and myeloids) extracted from two healthy donors. The
dataset has been provided and processed by Imagine Institute. Cells
labeled as C26 come from a 30 years old female and cells labeled
as C27 come from a 53 years old male. Cells have been isolated
from blood using ficoll. Samples were sequenced using standard
3’ v3 chemistry protocols by 10x genomics. Cellranger v4.0.0 was
used for the processing, and reads were aligned to the ensembl
GRCg38 human genome (GRCg38_r98-ensembl_Sept2019). QC met-
rics were calculated on the count matrix generated by cellranger
(filtered_feature_bc_matrix). Cells with less than 3 genes per cells,
less than 500 reads per cell and more than 20% of mithocondrial
genes were discarded.

Figure 8: Visualization of cells through the UMAP coordi-
nates with the macro cell-types pre-identified in the data.

CSBio2021, October 14–15, 2021, Virtual (GMT+7 Bangkok Time), Thailand S. Buchet et al.

The processing steps were performed with the R package Seu-
rat5, including sample integration, data normalisation and scaling,
dimensional reduction, and clustering. SCTransformmethod [7] was
adopted for the normalisation and scaling steps. The clustered cells
were manually annotated using known cell type markers (Fig. 1).
Fig. 8 shows the general cell types identified from the data on the
UMAP representation.

C KNOWN GENE MARKERS

Table 4: List of genes expressed for different type of cells.

genes B cells NK T cells CD4 CD8
BLK ✓
CCL5 ✓ ✓
CCR6 ✓
CD180 ✓
CD19 ✓
CD37 ✓
CD3D ✓ ✓ ✓
CD3E ✓ ✓ ✓

CD40LG ✓
CD72 ✓
CD74 ✓
CD79A ✓
CD79B ✓
CD80 ✓
CD8A ✓
CD8B ✓
CD96 ✓ ✓ ✓ ✓
CST7 ✓ ✓
CTLA4 ✓
CXCR5 ✓
FASLG ✓
FCER1G ✓
FCGR3A ✓
FCRL2 ✓
GNLY ✓
GZMB ✓ ✓ ✓
GZMH ✓ ✓ ✓

HLA-DMA ✓
HLA-DQA1 ✓
HTR3A ✓
IL2RB ✓
IL32 ✓ ✓ ✓
IL6R ✓
IL7R ✓ ✓ ✓

ITM2A ✓ ✓ ✓
KIR2DL3 ✓ ✓
KLRC1 ✓
KLRD1 ✓ ✓
KLRG1 ✓
MS4A1 ✓

5https://satijalab.org/seurat/

Table 4: List of genes expressed for different type of cells
(continued).

genes B cells NK T cells CD4 CD8
NCAM1 ✓
NKG7 ✓
PAX5 ✓

PIKFYVE ✓
PNOC ✓
PRF1 ✓
SPIB ✓
STAP1 ✓
TBX21 ✓ ✓ ✓
TCL1A ✓
TCL1B ✓
TLR7 ✓

TNFRSF13B ✓
VPREB3 ✓
ZBTB16 ✓

Table 5: List of genes expressed in myeloids cells.

genes CD14 CD16 cDC
AIF1 ✓
CCL2 ✓
CD14 ✓
CD16 ✓
CD74 ✓
CD83 ✓
CSF1R ✓
FCER1A ✓
FCER1G ✓
FCGR3A ✓
FCN1 ✓ ✓
FLT3 ✓

GPR183 ✓
HLA-DMA ✓
HLA-DQA1 ✓

IL1R2 ✓
ITGAX ✓
LGALS2 ✓ ✓
LGALS3 ✓
LST1 ✓ ✓
LYZ ✓

S100A4 ✓
S100A9 ✓
TYROBP ✓

https://satijalab.org/seurat/

Gene Networks through Inductive Logic Programming CSBio2021, October 14–15, 2021, Virtual (GMT+7 Bangkok Time), Thailand

D SUPPLEMENTARY MATERIALS ON NK
CELL CLASSIFICATION

D.1 Visualizations of the PLOLH rule on the NK
cells

Figure 9: Rule matching error histogram on positive exam-
ples (in green) and negative examples (in red) forPLOLH rule.

Figure 10: Matching error between the cells and PLOLH rule
visualized as colors on the UMAP representation. Brighter
cells match the most with the rule.

D.2 (DE) analysis on the NK cells

Table 6: Result of (DE) analysis performed on the NK cells
versus all the other cells, sorted by avg_log2FC.

gene p_val avg_log2FC p_val_adj
GNLY 0 4.48 0
GZMB 0 3.18 0
KLRF1 0 2.75 0
SPON2 0 2.54 0
PRF1 0 2.53 0
CTSW 0 2.48 0

Table 6: Result of (DE) analysis performed on the NK cells
versus all the other cells, sorted by avg_log2FC (continued).

gene p_val avg_log2FC p_val_adj
HOPX 0 2.48 0
PTGDS 1.33e − 155 2.43 1.99e − 151
IL2RB 0 2.38 0
CLIC3 0 2.37 0
KLRB1 0 2.36 0
KLRD1 0 2.27 0
CMC1 0 2.25 0
NKG7 0 2.11 0
CD7 0 2.09 0
CST7 0 2.06 0
TRDC 0 1.94 0
FGFBP2 1.38e − 294 1.92 2.06e − 290
CD247 0 1.91 0
GZMA 0 1.78 0
MAP3K8 2.46e − 252 1.72 3.68e − 248
KLRC1 0 1.69 0
CD63 0 1.67 0
IFITM2 9.92e − 273 1.62 1.48e − 268
AREG 1.71e − 279 1.57 2.56e − 275
RUNX3 8.1e − 256 1.54 1.21e − 251
EFHD2 7.93e − 258 1.53 1.19e − 253
FCGR3A 0 1.52 0
GZMM 3.77e − 241 1.51 5.63e − 237
METRNL 5.31e − 290 1.51 7.94e − 286

E SUPPLEMENTARY MATERIALS FOR THE
COEXPRESSION ANALYSIS

E.1 Atom clusters from the first network
- Cluster 0: (275 atoms)

HES40/1,MS4A70/1, CDKN1C0/1, IFITM30/1, SERPINA10/1, CFD0/1,
SIGLEC100/1, PSAP0/1, SAT10/1, AIF10/1, SPI10/1, CTSS0/1, FTL0/1,
CD680/1, LST10/1,COTL10/1,CST30/1, LYN0/1,CSF1R0/1,ASAH10/1,
WARS0/1, TYMP0/1, VSIR0/1, LILRB20/1, TNFRSF1B0/1, NPC20/1,
FGL20/1, FCER1G0/1, BRI30/1, PILRA0/1, TKT0/1, PECAM10/1,
TCF7L20/1, TYROBP0/1, RHOC0/1, LRRC250/1, CYBB0/1, IER50/1,
STXBP20/1, CXCL160/1, LGALS10/1, CEBPB0/1, FGR0/1, BID0/1,
RNF1300/1, CTSZ0/1, LILRA50/1, CLEC7A0/1, TIMP10/1, CUX10/1,
S100A110/1,NAMPT0/1,CLEC12A0/1,HSBP10/1, FKBP1A0/1, FCN10/1,
TCIRG10/1,DUSP10/1, LGALS90/1,NINJ10/1, PYCARD0/1, CTSL0/1,
ANXA20/1,NCF20/1, SH3BP20/1, SEC14L10/1,ANXA50/1,CAMK10/1,
LYST0/1, PRELID10/1,MARCKS0/1,CTSB0/1, THEMIS20/1,ZFAND50/1,
ZNF7030/1, SNX100/1, PLEKHO10/1, CASP10/1, SOD20/1, CFP0/1,
HMOX10/1, GSTP10/1, C5AR10/1, GRINA0/1, ZYX0/1, LGALS30/1,
GDI20/1, FCGRT0/1, EHBP1L10/1,HCK0/1,ARPC1B0/1, PGK10/1, EVI2B0/1,
APOBEC3A0/1, LTA4H0/1,ARRB20/1,NOTCH20/1,MGAT10/1, SKAP20/1,
GPBAR10/1,ARPC50/1,MIDN0/1, SLC7A70/1,C1orf1620/1, STX110/1,
CD40/1,ZEB20/1,AP1S20/1, RILPL20/1,ADA20/1, IFI300/1,CAP10/1,
HK30/1,BATF30/1, RRAS0/1, PIK3AP10/1,MYOF0/1,CHP10/1, FLNA0/1,
RIN30/1,NCOA40/1, TSPO0/1,CPPED10/1, PPT10/1, LAP30/1,C19orf380/1,

CSBio2021, October 14–15, 2021, Virtual (GMT+7 Bangkok Time), Thailand S. Buchet et al.

C1QA0/1, LMO20/1, LILRB10/1, YBX30/1,H2AFY0/1, TPP10/1,MAFB0/1,
SH3BGRL0/1,NUMB0/1,MS4A4A0/1,OAS10/1, S100A40/2,ATP6V0D10/1,
NR4A10/1, JAML0/1, TMEM176B0/1,CKB0/1,QKI0/1, RGS180/1, RTN30/1,
AGTRAP0/1,NUP2140/1,ACTR20/1,APLP20/1,ALDH3B10/1, RAC10/1,
DPYSL20/1, IRAK30/1, S100A90/1,CPVL0/1, TNFSF100/1, IFNGR10/1,
GABARAP0/1,MYO1F0/1,CSTA0/1, SCO20/1,MPEG10/1,MNDA0/1,
GRN0/1, LYZ0/1, S100A80/1, NCF10/1, FOS0/1, KLF100/1, CTSD0/1,
RGS20/1, LRRK20/1, TNFSF13B0/1, ZFP360/1,MS4A6A0/1, VCAN0/1,
MCL10/1, CEBPD0/1, CSF3R0/1, KCTD120/1, PTPRE0/1, AHNAK0/1,
IER20/1,CD140/1, S100A120/1,CD360/1, EGR10/1,CYP1B10/1, SDCBP0/1,
MEGF90/1, PGD0/1, HIF1A0/1, CD440/1, NFKBIA0/1, SERPINB10/1,
IRS20/1, FPR10/1,OGFRL10/1,DPYD0/1, PICALM0/1, PLBD10/1, RAB310/1,
ANXA10/1, LAMP20/1, DMXL20/1, CMIP0/1, THBS10/1, CD3020/1,
G0S20/1, IQGAP10/1,VIM0/1,GCA0/1,GASK1B0/1, FOSB0/1,ALDH20/1,
CRISPLD20/1,ANPEP0/1, SCPEP10/1, FCAR0/1,CD930/1,MYADM0/1,
SLC11A10/1, TGFBI0/1, PLXDC20/1,ALDH1A10/1,CRTAP0/1,CD1630/1,
DUSP60/1, SGK10/1, TREM10/1, MARCH10/1, AOAH0/1, BLVRB0/1,
GLUL0/1, TNFAIP20/1, TFEC0/1,CAPG0/1,KLF40/1, SIRPA0/1, FOSL20/1,
SAMHD10/1, IFNGR20/1, F13A10/1, TLR40/1, FCGR1A0/1,CSF2RA0/1,
LGALS20/1, TLR80/1, CD300E0/1, CTSH0/1, FCGR2A0/1, SRGN0/1,
TMEM176A0/1, HLA-DRB50/1, PLSCR10/1, GAS70/1, CCDC88A0/1,
JDP20/1,HBEGF0/1,ACTB1/3,CD3E1/2, S100A61/2, IL321/2, LTB1/2,
EEF1B22/3, TRAC1/1, IL7R1/1,CD21/1, LAT1/1,C12orf571/1,CD61/1,
PRKCH1/1, BCL21/1, CD271/1

- Cluster 1 (64 atoms)

FCGR3A0/1,METRNL0/1, EFHD20/1, ITGAL0/1, CLIC10/1, CD990/1,
ARL4C0/1,GNLY0/1,KLRB10/1,KLRF10/1, SYTL30/1, IL2RB0/1,CTSW0/1,
GZMB0/1,CST70/1,NKG70/1,GZMA0/1,CCL50/1,KLRD10/1,GZMM0/1,
PRF10/1, FGFBP20/1,ABHD17A0/1,MATK0/1, SPON20/1,GZMH0/1,
APMAP0/1,CLIC30/1, PYHIN10/1,CHST120/1,DUSP20/1, RUNX30/1,
LITAF0/1, HOPX0/1, CD810/1, C12orf750/1, ACTN40/1, PLAAT40/1,
SYNE20/1, ID20/1,MAP3K80/1, SYNE10/1, CD8A0/1,APOBEC3G0/1,
CD8B0/1, IL2RG0/1, SAMD30/1, PPP2R5C0/1, LYAR0/1, PPIB0/1, TPST20/1,
CCL40/1, CMC10/1, TRDC0/1, SH2D1B0/1, B3GNT70/1, PTPN220/1,
CLEC2B0/1, TRGC10/1, EEF1A11/2, B2M1/3, HLA-A1/3, HLA-C1/3,
TPT12/3

- Cluster 2 (67 atoms)

HLA-DRA0/1, POU2F20/1,HLA-DPA10/1,HLA-DRB10/1,HLA-DQB10/1,
HLA-DPB10/1, SNX20/1,HLA-DQA10/1,HLA-DMB0/1,HLA-DMA0/1,
CD79A0/1,MS4A10/1, CD740/1, TNFRSF13C0/1, IGHM0/1, IGHD0/1,
BANK10/1, FCRL10/1,CD220/1,CD79B0/1, PAX50/1,NIBAN30/1, TCF40/1,
ADAM280/1, IGKC0/1, RALGPS20/1, GNG70/1, BCL11A0/1, BLK0/1,
MEF2C0/1, ARHGAP240/1, FCER20/1, EBF10/1, COBLL10/1, SPIB0/1,
HLA-DOB0/1, IGLC20/1,AFF30/1, TCL1A0/1,BCL7A0/1,VPREB30/1,
TSPAN130/1, PKIG0/1, JCHAIN0/1, CD400/1, BLNK0/1, FCRLA0/1,
POU2AF10/1, SNX220/1, IGLC30/1,HVCN10/1,CXCR40/1, PLPP50/1,
IL4R0/1, S100A41/2,CD371/2,MGAT4A1/1, TCF71/1, LEF11/1,CCR71/1,
MAL1/1, TRABD2A1/1, PIK3IP11/1,NOSIP1/1,CAMK41/1, RCAN31/1,
LEPROTL11/1

- Cluster 3 (76 atoms)

TCF70/1, LEF10/1,MAL0/1,CCR70/1,NOSIP0/1,CAMK40/1, RCAN30/1,

TRABD2A0/1, TPT11/3, EEF1B21/3, B2M2/3, HLA-C2/3, HLA-A2/3,
CD991/1, ARL4C1/1, FCGR3A1/1,METRNL1/1, FLNA1/1, EFHD21/1,
ITGAL1/1,CLIC11/1,GNLY1/1,KLRB11/1, ,KLRF11/1, SYTL31/1, IL2RB1/1,
CTSW1/1,GZMB1/1,CST71/1,NKG71/1,GZMA1/1,CCL51/1,KLRD11/1,
GZMM1/1, PRF11/1, FGFBP21/1,ABHD17A1/1,MATK1/1, SPON21/1,
GZMH1/1,APMAP1/1,CLIC31/1, PYHIN11/1,CHST121/1,DUSP21/1,
RUNX31/1, LITAF1/1, HOPX1/1, CD811/1, C12orf751/1, PLAAT41/1,
SYNE21/1, ID21/1,ACTN41/1,MAP3K81/1, SYNE11/1,CD8A1/1,CD8B1/1,
IL2RG1/1, SAMD31/1,APOBEC3G1/1, PPIB1/1, PPP2R5C1/1, LYAR1/1,
TPST21/1, CCL41/1, CMC11/1, TRDC1/1, SH2D1B1/1, B3GNT71/1,
PTPN221/1, CLEC2B1/1, TRGC11/1, PFN12/2, ACTG12/2, CFL12/2

- Cluster 4 (275 atoms)

TRAC0/1, IL7R0/1,CD20/1, LAT0/1,C12orf570/1,CD60/1, PRKCH0/1,
BCL20/1, CD270/1, CD3E0/2, IL320/2, TLE50/2, LTB0/2, ACTB2/3,
HES41/1,MS4A71/1, CDKN1C1/1, IFITM31/1, SERPINA11/1, CFD1/1,
SIGLEC101/1, PSAP1/1, FTH12/2, SAT11/1,AIF11/1, SPI11/1,CTSS1/1,
FTL1/1, CD681/1, LST11/1, COTL11/1, CST31/1, LYN1/1, CSF1R1/1,
ASAH11/1, WARS1/1, TYMP1/1, VSIR1/1, LILRB21/1, TNFRSF1B1/1,
NPC21/1, FGL21/1, FCER1G1/1,BRI31/1, PILRA1/1, TKT1/1, PECAM11/1,
TCF7L21/1, TYROBP1/1, RHOC1/1, LRRC251/1, CYBB1/1, IER51/1,
STXBP21/1,CXCL161/1, LGALS11/1,CEBPB1/1, FGR1/1,BID1/1, RNF1301/1,
CTSZ1/1, LILRA51/1, CLEC7A1/1, TIMP11/1, CUX11/1, S100A111/1,
NAMPT1/1, S100A42/2,CLEC12A1/1,HSBP11/1, FKBP1A1/1, FCN11/1,
TCIRG11/1,DUSP11/1, LGALS91/1,NINJ11/1, PYCARD1/1, CTSL1/1,
ANXA21/1,NCF21/1, SH3BP21/1, SEC14L11/1, S100A62/2,ANXA51/1,
CAMK11/1, LYST1/1, PRELID11/1,MARCKS1/1,CTSB1/1, THEMIS21/1,
ZFAND51/1,ZNF7031/1, SNX101/1, PLEKHO11/1,CASP11/1, SOD21/1,
CFP1/1,HMOX11/1,GSTP11/1,C5AR11/1,GRINA1/1,ZYX1/1, LGALS31/1,
GDI21/1, FCGRT1/1, EHBP1L11/1, HCK1/1, PGK11/1, NOTCH21/1,
APOBEC3A1/1, LTA4H1/1,ARRB21/1, EVI2B1/1,MGAT11/1, SKAP21/1,
GPBAR11/1,ARPC51/1,MIDN1/1, SLC7A71/1,C1orf1621/1, STX111/1,
CD41/1,ZEB21/1,AP1S21/1, RILPL21/1,CTSC1/1,ADA21/1, IFI301/1,
CAP11/1,HK31/1,BATF31/1, RRAS1/1, PIK3AP11/1,MYOF1/1,CHP11/1,
RIN31/1,NCOA41/1, TSPO1/1,CPPED11/1, PPT11/1, LAP31/1, LMO21/1,
C19orf381/1, LILRB11/1,C1QA1/1, YBX31/1,H2AFY1/1, TPP11/1,MAFB1/1,
SH3BGRL1/1,NUMB1/1,MS4A4A1/1,OAS11/1,ATP6V0D11/1,NR4A11/1,
JAML1/1, TMEM176B1/1,CKB1/1,QKI1/1, RGS181/1, RTN31/1,AGTRAP1/1,
NUP2141/1,ACTR21/1,APLP21/1,ALDH3B11/1, RAC11/1,DPYSL21/1,
IRAK31/1, S100A91/1,GABARAP1/1, TNFSF101/1, IFNGR11/1,CPVL1/1,
MYO1F1/1,CSTA1/1, SCO21/1,MPEG11/1,MNDA1/1,GRN1/1, LYZ1/1,
S100A81/1,NCF11/1, FOS1/1,KLF101/1,CTSD1/1, RGS21/1, LRRK21/1,
TNFSF13B1/1,MS4A6A1/1,ZFP361/1,VCAN1/1,MCL11/1,CEBPD1/1,
CSF3R1/1,KCTD121/1, PTPRE1/1, IER21/1,CD141/1, S100A121/1,CD361/1,
EGR11/1,CYP1B11/1, SDCBP1/1,MEGF91/1, PGD1/1,HIF1A1/1,CD441/1,
NFKBIA1/1, SERPINB11/1, IRS21/1, FPR11/1, OGFRL11/1, DPYD1/1,
PICALM1/1, PLBD11/1, RAB311/1,ANXA11/1, LAMP21/1,DMXL21/1,
CMIP1/1,G0S21/1,CD3021/1, THBS11/1, IQGAP11/1,VIM1/1,GCA1/1,
CRISPLD21/1,AHNAK1/1, FOSB1/1,GASK1B1/1,ALDH21/1,ANPEP1/1,
SCPEP11/1, FCAR1/1, CD931/1,MYADM1/1, SLC11A11/1, TGFBI1/1,
PLXDC21/1,ALDH1A11/1,CRTAP1/1,CD1631/1,DUSP61/1, SGK11/1,
TREM11/1,MARCH11/1,AOAH1/1,BLVRB1/1,GLUL1/1, TNFAIP21/1,
TFEC1/1,CAPG1/1,KLF41/1, SIRPA1/1, SAMHD11/1, FOSL21/1, IFNGR21/1,
F13A11/1, TLR41/1, CSF2RA1/1, FCGR1A1/1, LGALS21/1, TLR81/1,
CD300E1/1,CTSH1/1, FCGR2A1/1, SRGN1/1, JDP21/1,HLA-DRB51/1,
PLSCR11/1, GAS71/1, CCDC88A1/1, TMEM176A1/1, HBEGF1/1

Gene Networks through Inductive Logic Programming CSBio2021, October 14–15, 2021, Virtual (GMT+7 Bangkok Time), Thailand

- Cluster 5 (59 atoms)

MGAT4A0/1, PIK3IP10/1, LEPROTL10/1, HLA-DRA1/1, POU2F21/1,
HLA-DPA11/1,HLA-DRB11/1,HLA-DQB11/1,HLA-DPB11/1, SNX21/1,
HLA-DQA11/1, HLA-DMB1/1, HLA-DMA1/1, CD79A1/1,MS4A11/1,
CD741/1, TNFRSF13C1/1, IGHM1/1, IGHD1/1, BANK11/1, FCRL11/1,
CD221/1, CD79B1/1, PAX51/1, NIBAN31/1, TCF41/1, ADAM281/1,
CD372/2, IGKC1/1, EBF11/1,GNG71/1,BCL11A1/1,BLK1/1,MEF2C1/1,
ARHGAP241/1, FCER21/1, RALGPS21/1,COBLL11/1, SPIB1/1,AFF31/1,
IGLC21/1,HLA-DOB1/1, TCL1A1/1,BCL7A1/1,VPREB31/1, TSPAN131/1,
PKIG1/1, JCHAIN1/1, CD401/1, BLNK1/1, FCRLA1/1, POU2AF11/1,
SNX221/1, IGLC31/1,HVCN11/1,CXCR41/1, PLPP51/1,BTG12/2, IL4R1/1

E.2 Atom clusters on the second (refined)
network

- Cluster 1 (47 atoms)

FOS0/1,VCAN0/1, S100A120/1, S100A80/1,MS4A6A0/1, LYZ0/1,CSF3R0/1,
CD140/1, SLC2A30/1,CD360/1, EGR10/1, S100A90/1, PILRA1/1,HES41/1,
FCGR3A1/1,CDKN1C1/1, RHOC1/1, SIGLEC101/1, TCF7L21/1,CSF1R1/1,
IFITM21/1,MS4A71/1,CTSL1/1, LRRC251/1, IFITM31/1, PAG11/1,DRAP11/1,
LILRB21/1, SPN1/1,HMOX11/1, PTP4A31/1,ZNF7031/1, LY6E1/1, RRAS1/1,
VMO11/1, PPM1N1/1,C1QA1/1,CKB1/1,OAS11/1,NAP1L11/1,MS4A4A1/1,
UNC1191/1, IL3RA1/1, C1QC1/1, ICAM41/1, C1QB1/1, S100A42/2

- Cluster 4 (26 atoms)

EMB1/1, ISG151/1, SLC38A11/1, TESPA11/1, TCF71/1, INPP4B1/1, IL321/1,
IL7R1/1,CD3E1/1,CD21/1,GZMK1/1,C12orf751/1, TRAC1/1, LEF11/1,
GZMH1/1,CD8A1/1,ABLIM11/1,HOOK11/1, PLEKHG11/1,CFAP541/1,
BIRC51/1, STX1B1/1, TPX21/1

- Cluster 5 (36 atoms)

WARS0/1,NCF10/1, IER20/1,MNDA0/1,APOBEC3A0/1,GBP40/1,CTSS0/1,
GBP20/1, FTL0/1,CYBB0/1, S100A40/2,BATF31/1,HLA-DQA11/1, S100A61/1,
CD741/1,HLA-DRB51/1,CLIC21/1, FCER1A1/1, ENHO1/1,BEND51/1,
AREG1/1, NDRG21/1, CD1C1/1, ENPP11/1, CLEC9A1/1, GCSAM1/1,
CADM11/1, TACSTD21/1,CLNK1/1, TMEM14A1/1,UHRF11/1,CXCR31/1,
DUSP41/1, BTLA1/1, MCM21/1, TYMS1/1

- Cluster 8 (16 atoms)

CD1631/1, PPBP1/1,NRGN1/1,CAVIN21/1,CLU1/1, PF41/1,HIST1H2AC1/1,
MPIG6B1/1, SPARC1/1, GNG111/1, TMEM401/1, GP91/1, TUBB11/1,
PTCRA1/1, TDRP1/1, GATA21/1

- Cluster 9 (31 atoms)

IFI60/1, EPSTI10/1, PSME20/1, STAT10/1, TNFSF100/1,GBP10/1,MEGF91/1,
SLC44A21/1, IKZF31/1, RHOH1/1, LTB1/1, IRS21/1, THBS11/1,CD221/1,
FCRL51/1, IGKC1/1,CD79A1/1,MS4A11/1, IGHM1/1, PAX51/1,BANK11/1,
IGHG31/1, TTN1/1, IGHG11/1, TCL1A1/1, EBF11/1, FCRL11/1, IGHD1/1,
NIBAN31/1, PCDH91/1, CARMIL21/1

- Cluster 10 (50 atoms)

SYTL11/1, TNFRSF181/1, GZMA1/1, PRKCH1/1, IL2RB1/1, CTSW1/1,
GNLY1/1, SYNE21/1, STAT41/1,CST71/1,NKG71/1, SYNE11/1,NCAM11/1,
AKR1C31/1, B3GNT71/1, CD2471/1, GZMB1/1, CLIC31/1, SPON21/1,
GZMM1/1,KLRB11/1,MATK1/1,KLRD11/1, SKAP11/1,CCL51/1,KLRF11/1,
FEZ11/1, HOPX1/1, PRF11/1, CMC11/1, LYAR1/1, XCL21/1, CCL41/1,
TRGC11/1, FGFBP21/1, SH2D1A1/1, PYHIN11/1, PTCH11/1,NCR11/1,
ADGRG11/1,NCR31/1, PDGFD1/1, RRM21/1, TOGARAM21/1, SOCS21/1,
RNF1651/1, KIR3DL11/1, KIR2DL11/1, KLRC11/1, SLA21/1

E.3 Rule matching error of the sub network
clusters on all the cells

Figure 11: Rule matching error of the sub network clusters
on all the cells.

CSBio2021, October 14–15, 2021, Virtual (GMT+7 Bangkok Time), Thailand S. Buchet et al.

E.4 (DE) analysis on the refined network

Table 7: Result of (DE) analysis performed on cells selected
from cluster 10 in the refined network. The 20 first and 20
last genes sorted by the third column (avg_log2FC), indicat-
ing the most differentially expressed genes between the two
groups.

gene p_val avg_log2FC p_val_adj
GNLY 1.78e − 71 4.84 2.65e − 67
NKG7 7.48e − 52 4.08 1.12e − 47
CCL5 1.17e − 36 3.21 1.76e − 32
GZMA 1.06e − 141 2.84 1.59e − 137
CST7 3.62e − 120 2.44 5.41e − 116
GZMB 5.6e − 171 2.42 8.37e − 167
IL32 3.71e − 30 2.32 5.55e − 26
KLRB1 1.1e − 137 2.28 1.64e − 133
CTSW 1.94e − 102 2.23 2.9e − 98
GZMH 2.52e − 94 1.98 3.76e − 90
FGFBP2 1.06e − 120 1.97 1.58e − 116
PRF1 3.63e − 139 1.95 5.43e − 135
CLIC3 1.77e − 93 1.93 2.64e − 89
KLRD1 1.22e − 164 1.93 1.82e − 160
SYNE2 2.97e − 73 1.89 4.43e − 69
GZMM 2.12e − 107 1.79 3.17e − 103
ETS1 7.13e − 61 1.77 1.07e − 56
CD247 1.18e − 102 1.74 1.76e − 98
SPON2 1.27e − 85 1.68 1.9e − 81
CMC1 5.15e − 34 1.66 7.71e − 30
...
ORMDL3 3.38e − 10 0.253 5.05e − 06
MNAT1 8.35e − 07 0.251 0.0125
OAZ1 1.65e − 08 −0.511 0.000247
LAPTM5 1.01e − 06 −0.521 0.0151
GNAI2 6.64e − 07 −0.536 0.00992
CST3 3.28e − 06 −0.546 0.049
S100A6 2.83e − 07 −0.579 0.00424
BRI3 2.03e − 07 −0.612 0.00304
FTH1 4.19e − 07 −0.614 0.00626
FKBP1A 1.32e − 06 −0.618 0.0197
FTL 2.03e − 10 −0.67 3.04e − 06
COTL1 1.22e − 09 −0.683 1.82e − 05
ASAH1 9.13e − 07 −0.701 0.0136
CTSS 6.64e − 12 −0.755 9.93e − 08
VIM 1.3e − 07 −0.762 0.00194
LST1 3.2e − 07 −0.801 0.00478
LYZ 6.22e − 07 −0.854 0.0093
FCN1 2.68e − 09 −0.882 4.01e − 05
S100A11 6.85e − 07 −0.899 0.0102
SPI1 3.1e − 09 −0.941 4.64e − 05

Table 8: (DE) analysis performed on cells selected from clus-
ter 8 in the refined network. The first group correspond to
the myeloids and the second group is the remaining cells se-
lected. Genes are sorted by the third column.

gene p_val avg_log2FC p_val_adj
LYZ 7.23e − 43 6.13 1.08e − 38
S100A9 4.28e − 41 5.57 6.4e − 37
FOS 1.57e − 39 4.83 2.35e − 35
S100A8 4.84e − 36 4.74 7.23e − 32
CTSS 4.51e − 41 4.27 6.75e − 37
VCAN 4.63e − 38 4.12 6.92e − 34
FCN1 3.87e − 42 3.92 5.79e − 38
AIF1 4.07e − 40 3.48 6.09e − 36
LST1 1.28e − 39 3.46 1.92e − 35
FGL2 4.79e − 42 3.42 7.16e − 38
CYBB 2.59e − 40 3.27 3.87e − 36
NAMPT 1.34e − 36 3.22 2e − 32
S100A12 2.58e − 30 3.18 3.85e − 26
DUSP1 1.56e − 38 3.11 2.33e − 34
SERPINA1 4.88e − 42 3.05 7.3e − 38
MNDA 3.86e − 38 2.97 5.77e − 34
PSAP 5.05e − 39 2.75 7.55e − 35
KLF10 4.74e − 39 2.74 7.09e − 35
LGALS1 1.8e − 35 2.71 2.69e − 31
TYMP 6.4e − 36 2.71 9.57e − 32
TYROBP 1.57e − 35 2.68 2.35e − 31
SPI1 6.55e − 39 2.64 9.8e − 35
EGR1 1.93e − 25 2.63 2.89e − 21
S100A6 1.69e − 37 2.59 2.52e − 33
APLP2 1.14e − 39 2.56 1.71e − 35
CSTA 1.76e − 36 2.54 2.63e − 32
CLEC7A 2.5e − 38 2.53 3.74e − 34
CEBPD 1.17e − 35 2.47 1.75e − 31
CD14 1.1e − 31 2.46 1.65e − 27
COTL1 2.67e − 36 2.44 3.99e − 32

	Abstract
	1 Introduction
	1.1 Context and scientific challenge
	1.2 Originality of the contribution
	1.3 Overview of the paper

	2 Single cell data and related works
	2.1 Single cell sequencing technologies
	2.2 Modeling gene networks in systems biology

	3 Extension of Inductive Logic Programming to single cell gene expressions data
	3.1 Learning biological systems from Interpretation Transitions
	3.2 Extension for noisy data: application of LFIT to scRNA-seq
	3.3 Comparisons through cell type classification on scRNA-seq

	4 Inference of gene co-expression networks
	4.1 Identification of biological knowledge through gene clustering
	4.2 Network refinement on the myeloids cells

	5 Conclusion and future works
	Acknowledgments
	References
	A Toy example with LOLH
	A.1 Artificial dataset
	A.2 Computation of the atom scores
	A.3 Induction of LOLH rule

	B Technical information about the dataset
	C Known gene markers
	D Supplementary materials on NK cell classification
	D.1 Visualizations of PLOLH
	D.2 (DE) analysis on the NK cells

	E Supplementary materials for the coexpression analysis
	E.1 Atom clusters from the first network
	E.2 Atom clusters on the second (refined) network
	E.3 Rule matching error of the sub network clusters on all the cells
	E.4 (DE) analysis on the refined network

