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Abstract
Time series non-stationarity can be detected thanks to autocorrelation functions. But trend
nature, either deterministic or either stochastic, is not identifiable.

Strategies based on Dickey-Fuller unit root-test are appropriate to choose between a linear
deterministic trend or a stochastic trend. But all the observed deterministic trends are not linear,
and such strategies fail in detecting a quadratic deterministic trend. Being a confounding factor,
a quadratic deterministic trend makes appear a unit root spuriously.

We provide a new procedure, based on Ouliaris-Park-Phillips unit root test, convenient for
time series containing polynomial trends with degree higher than one. Our approach is assessed
on simulated data.

The strategy is finally applied on two real datasets : number of terminated pregnancies in
Québec, Canada, and atmospheric CO2 concentration. Compared with Dickey-Fuller diagnosis,
our strategy provides the model with the best performances.

Keywords: time series; stationarity; unit root test; Dickey-Fuller; quadratic trend.

1. Introduction

Time series non-stationarity can originate form various sources: either from a trend component
or from a seasonal or even a cyclical component. In this paper, we will be interested in the
non-stationarity caused by a trend. There are two kinds of trends: either a deterministic trend
which can be modeled by some function of time (polynomial trend is generally considered), or a
stochastic trend which presents unit roots. Deterministic and stochastic trends are two specific
models suggested by Nelson and Plosser in [17].

Deterministic trend (DetS,d) Zt = a0 + a1 t + · · · + ad t
d + Bt (1)

Stochastic trend (StoS,d) ∆d(Zt) = Bt , (2)

where we take ad 6= 0, ∆ is the differencing operator and (Bt)t is a moving average process

Bt =
∑
j∈Z

bjEt−j , (H1)

where (Et)t is a sequence of identically distributed and independent centered variables, such
that

E(E2kt ) < ∞, for some k ≥ 2, (H2)
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and where parameters bj (j ∈ Z) satisfy∑
j∈Z
|bj | <∞

∑
j∈Z bj 6= 0

∑
j∈Z

b2j |j| <∞ . (H3)

(H3-a) (H3-b) (H3-c)

We denote (Bt)t as (SN), for Stationary Noise. It’s well known that causal and invertible
ARMA pocesses satisfy Hypotheses (H1) and (H3). When Bt = Et, it is called (WN) for
white noise. In this case, the associated models defined in Equations 1 and 2, are referred as
(DetW,d) and (StoW,d).

When modeling time series, specially for macroeconomic and financial data, it is very impor-
tant to identify the nature of the trend: deterministic or stochastic. Indeed, every type of trend
induces specific behaviors, that we can illustrate with moments properties. Let us consider a
(DetS,1) model associated to a white noise, then IE(Zt) = a0+a1t, and var(Zt) = σ2B, provid-
ing a stationary variance but a non-stationary mean. On the contrary, under a (StoS,1) model
with Z0 = 0, we have IE(Zt) = 0, and var(Zt) = tσ2B, providing the opposite feature. Thus the
source of non-stationarity differs with trend nature. Consequently identifying the correct trend
is fundamental. Globally, time series with a deterministic trend always revert to the trend in the
long run (the effects of shocks are eventually eliminated); and the forecast confident intervals
have constant width. On the contrary, time series with a stochastic trend never recover from
shocks to the mean (the effects of shocks are permanent); and the forecast confident intervals
grow with the horizon. Several authors (see for instance [4] and [16]) studied the consequences
of an inappropriate modeling choice, underlying the importance of developing procedures able
to produce a reliable classification.

Autocorrelation function properties have been widely studied, and are helpful to specify accu-
rate models for stationary time series. The theoretical autocorrelation function at lag h (|h| < n)
is estimated from data (Z1, · · · , Zn) with the random variable

Ξ(h) =

n−h∑
t=1

(Zt+h − Z)(Zt − Z)

n∑
t=1

(Zt − Z)2
, (3)

where

Z =

n∑
t=1
Zt

n
,

is the random mean. We show that autocorrelation functions also have interesting properties in
our framework, since they permit to identify the presence of a trend in a time series. Nevertheless
it can not be used to distinguish between either a deterministic or a stochastic trend.

Dickey and Fuller developed a unit root test that is an essential tool in time series modeling
[9]. The authors considered the following models

M1 : Zt = ρZt−1 + Et

M2 : Zt = a0 + ρZt−1 + Et

M3 : Zt = a0 + a1 t + ρZt−1 + Et ,

where (Et)t is a white noise. Dickey-Fuller procedure permits to test the null hypothesis of a unit
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root (ρ = 1) against the alternative hypothesis of a stationary AR(1) model without drift (resp.
with drift, resp. with trend), accordingly to model M1 (resp. M2, resp. M3 ). Note that a time
series with a (linear) deterministic trend, as defined in (DetW,1), is included in M3 model, by
taking ρ = 0. Consequently, under a (linear) deterministic trend, Dickey-Fuller unit-root test,
led in M3 framework, usually rejects the null hypothesis. On the other hand, (StoW,1)-time
series are included in M1 model, with ρ = 1, so that (H0), tested in M1 framework, is usually
not rejected, accordingly with the rejection rate.

Several strategies based on Dickey-Fuller unit root-test have been developed ([8, 20, 10]),
and they mostly appear to be appropriate to choose between a linear deterministic trend or a
stochastic trend. But all the observed deterministic trends are not linear, trends with higher
degrees can be involved. In this case, Ertur noticed in [11] that the usual strategies fail in
detecting a quadratic deterministic trend. Indeed, under a quadratic trend for instance, Dickey-
Fuller test generally concludes to the presence of a (spurious) unit root, even using model M3

that allows a linear trend.
In this paper, we aim to include polynomial trends with a degree higher than one. Let us

introduce the general model :

M3,d : Zt = a0 + a1 t + · · · + ad t
d + ρZt−1 + Bt (ad 6= 0) .

In [19], Ouliaris, Park and Phillips developed a test that corrects the bias caused by high degree
trend when testing for a unit root. We included this test in a strategy, that correctly identifies
either a deterministic trend or a stochastic one.

In Section 2, we detail autocorrelation functions convergence when time series are driven
by a trend, either deterministic or stochastic. This result permits to detect the presence of a
trend, but without precise identification. In Section 3, we study existing strategies based on
Dickey-Fuller tests, and analyze their performance in classifying models (DetW,1), (DetW,2),
(StoW,1) and (StoW,2). Note that we also consider the simplest model (WN) as a null-model.
Next, we provide a new strategy, based on Trend Diagnosis Tests (TDT), able to identify trends
type, even when (WN) is replaced by a (SN) underlying process, and when higher-degrees d
are considered. Finally, we apply our strategy on real data such as abortion rate in Montreal,
Québec, and also on the CO2 atmospheric concentration. All the functions are implemented in
R language, and they are available at the website:

www.i2m.univ-amu.fr/perso/manuela.royer-carenzi/AnnexesR.TrendTS/TrendTS.html

2. Trend detection

It is essential to start by plotting the graph of the series in order to visualize its evolution, but
the presence or absence of a trend is sometimes difficult to detect from the plot. Autocorrelation
appears to be a powerful tool in the detection of a trend insofar as its behavior is specific in
the presence of a trend. We recall that theoretical autocorrelations ρ(h) = cor(Zt, Zt+h) are
well-defined only if process (Zt)t is square-integrable and stationary. However the associated
random variables Ξ(h), as defined in Equation 3, can be computed for any observed time series
(Z1, · · · , Zn).

2.1. Autocorrelation functions behavior for (WN)-time series

Theorem 2.1.
Let (Zt)t be a white noise. Then

√
n t(Ξ(1),Ξ(2), · · · ,Ξ(r))

L−−−−−−→
n→+∞

Nr(t(0, · · · , 0), Idr) ,
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where tv denotes the transpose of vector v, and Idr is the identity r × r-matrix.

Theorem 2.1 is a particular case of Theorems 7.2.1. or 7.2.2. in [3], that require Hypotheses
(H1), (H3-a) and either Hypothesis (H2) or (H3-c). Thus, we get that the random variables
Ξ(1),Ξ(2), · · · , · · · ,Ξ(r) are asymptotically independent and identically distributed as Gaussian
random variables with zero mean and variance 1/n. Consequently, for any fixed lag h = 1, · · · , r,
for large n, the sample autocorrelation function

√
n ρ̂(h) is expected to be a realization of

a standard Gaussian, that is to be valued in the interval [−1.96, 1.96], with 95% coverage.
Thus, sample autocorrelation functions are used to assess for white noise. But even when the
underlying process is a white noise, several autocorrelations among ρ̂(1), · · · , ρ̂(r) may lie out
of the interval [−1.96/

√
n, 1.96/

√
n]. The asymptotic independence property for variables Ξ(h)

implies that, when sample size n is large, the number of observed autocorrelation functions
out of this interval behaves as a Binomial B(r, 0.05) distribution. We developed an R function,
based on the classical acf() function, that takes into account the multiple testing paradigm
by incorporating the binomial exact test and Sidak correction for white noise diagnosis. Our
function is called acfG() and is available at our website.

As an example, we simulate a white noise, and compute sample autocorrelation functions
with function acfG(). Figure 1 shows that 3 values lie out of the interval [−1.96/

√
n, 1.96/

√
n],

plotted with blue dashed lines. But binomial exact test (p-value = 0.1159) confirms that such
a number remains consistent with white noise hypothesis. Moreover, a second set of interval,
computed with Sidak correction, is provided, and plotted with red dotted lines. If at least
one sample autocorrelation function lies out this global interval, then white noise hypothesis
is rejected. In our simulation, white noise diagnosis is confirmed, both by graphics and by
Binomial’s test.

Figure 1.: Sample autocorrelation functions for a white noise simulation.

2.2. Autocorrelation functions for (DetS,d)-time series

Theorem 2.2.
Let (Zt)t be a stochastic process such that Zt =

∑d
j=0 ajt

j + Bt, where ad 6= 0 and (Bt)t is
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(SN) satisfying Hypotheses (H1) to (H3). Then

Ξ(h)
IP−−−−−−→

n→+∞
1 , ∀ h 6= 0 .

Proof is given in Appendix A. Figure 2 (Left) illustrates the slow decreasing behavior of
sample autocorrelation functions when time series are driven by a deterministic (DetS,2) trend.

2.3. Autocorrelation functions for (StoW,d)-time series

Theorem 2.3.
Let (Zt)t be a stochastic process such that ∆d(Zt) = Et, with Zt = 0, for any t ≤ 0 and and
(Bt)t is (SN) satisfying Hypotheses (H1) to (H3). Then

Ξ(h)
IP−−−−−−→

n→+∞
1 , ∀ h 6= 0 .

Proof is given in Appendix B. Figure 2 (Right) illustrates the slow decreasing behavior of
sample autocorrelation functions when time series are driven by a stochastic (StoW,2) trend.

Figure 2.: Sample autocorrelation functions for simulations with either a deterministic (Left)
or a stochastic trend (Right).

3. Trend-nature identification

In the previous section, we showed that the autocorrelation functions, computed from variables
Z1, · · · , Zn, have a particular asymptotic behavior in presence of a trend. But Figure 2 illustrates
that the behavior is similar either for a deterministic or a stochastic trend. Consequently, a
deeper study has to be led in order to specify the type of trend. We explore Dickey-Fuller
unit-root testing diagnosis.
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3.1. Dickey-Fuller tests failure

In [9], Dickey and Fuller introduced unit root tests adapted to models M1,M2 and M3. Every
time the null and the alternative hypothesis are mathematically expressed in the same way:

(H0) : ρ = 1 against (H1) : |ρ| < 1.

But the alternative hypothesis interpretation depends on the considered model.

(M1) (H1) : (Zt)t is a stationary and centered AR(1) process;

(M2) (H1) : (Zt)t is a stationary not-centered AR(1) process;

(M3) (H1) : (Zt)t is (linear-)trend stationary (TS).

And test statistics do not have the same expression, possibly leading to opposing conclusions,
even on the same data. To distinguish between the null or the alternative hypothesis, one has
to use the suitable test statistics, adapted to every model.

In [9], Dickey and Fuller also developed joined tests :

Test Φ1 under (M2) (H0) : (a0, ρ) = (0, 1) ;

Test Φ2 under (M3) (H0) : (a0, a1, ρ) = (0, 0, 1) ;

Test Φ3 under (M3) (H0) : (a0, a1, ρ) = (a0, 0, 1) .

3.1.1. Simulation study

We perform some simulations to explore the behavior of Dickey-Fuller based-tests, according to
data generating process. We set (Et)t as a white noise with variance σ2E . We consider processes
(Zt)t successively driven by one of the following models :

(WN) Zt = a0 + Et called ”white noise with constant”,

(DetW,1) Zt = a0 + a1 t + Et called ”linear-trend stationary”,

(DetW,2) Zt = a0 + a1 t + a2 t
2 + Et called ”quadratic-trend stationary”,

(StoW,1) ∆(Zt) = Et called ”difference stationary”,

(StoW,2) ∆2(Zt) = Et called ”second-order difference stationary”.

Models (StoW,1) and (StoW,2) do contain a unit root and hence are not stationary, whereas
models (DetW,1) and (DetW,2) are not stationary although they do not contain any unit
root. Logically, Dickey-Fuller test should not reject the null hypothesis for almost realizations
driven from models (StoW,1) and (StoW,2), precisely with a rate (1−α)%, where α stands for
the significance level. Reciprocally, under (DetW,1) and (DetW,2) models, the null hypothesis
should be rejected.

For simulations, we set n = 300, a0 = 5, a1 = 1, a2 = 1. Random generations of Et were
taken from Gaussian centered variables with standard deviation σE , a fixed value among
{0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}. We ran 5 000 simulations from every model,
and successively applied Dickey-Fuller tests, dedicated to models M1,M2 and M3. Table 1
presents the results when σE = 10, and contains the rate of null-hypothesis rejecting, cross-
ing every data generating process (DGP) with every stationarity test, under a standard level
α = 5%.

It appears that Dickey-Fuller diagnosis is accurate for (WN) and (StoW,1) models. As
expected, only the convenient model (M3), provides a correct answer for (DetW,1). And in
Figure C1 from Appendix C, we illustrate that diagnosis is unclear for (DetW,1) realizations
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Table 1.: Null-hypothesis rejection rate (%) in Dickey-Fuller tests, when σE = 10.

DGPa

Test (WN) (DetW,1) (DetW,2) (StoW,1) (StoW,2)

Test ρ under (M1) 100 0 0 5.06 0
Test ρ under (M2) 100 0 0 4.96 12.88
Test ρ under (M3) 100 100 0 5.04 32.4
Test Φ1 under (M2) 100 0 100 4.86 95.46
Test Φ2 under (M3) 100 100 100 4.92 99.08
Test Φ3 under (M3) 100 100 100 5.1 90.4

aData Generating Process.

when using any test under models (M1) or (M2). Indeed, results vary greatly according to pa-
rameter σE , taking value in the set {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}. Surprisingly,
unit root is far to be correctly detected in (StoW,2) realizations. Finally, diagnosis is mainly
incorrect for model (DetW,2), since unit roots are systematically detected, whereas we have
ρ = 0. Thus, Dickey-Fuller-based tests fail in diagnosing unit root for quadratic trends models.

3.1.2. Dickey-Fuller-based strategies

Several strategies based on Dickey-Fuller tests have been developed ([8, 20, 10]). From Table 1,
we can deduce that all the strategies permit to discriminate between first-order deterministic
or stochastic trend, but they do not plan to integrate second-order trends. Thus, the most
simple strategy proposed in [8] falsely classifies (DetW,2) model as a random walk, whereas
Perron predicts a linear-trend stationary process [20]. The most advanced strategy given in
[10] nearly identifies (DetW,2) processes, by describing them as ∆(Zt) = β0 + β1 t + Et,
instead of ∆(Zt) = β0 + β1 t + ∆(Et), where ∆(Zt) = Zt − Zt−1 is the differentiated series.
But diagnosis is mainly incorrect for (StoW,2) processes. Surprisingly, only the most simple
strategy suggested in [8] detects unit root in half realizations, and predicts either a linear-trend
stationary process or a stationary AR(1) process otherwise. And other strategies predict linear-
trend stationary process. Consequently, it appears useful to elaborate a new strategy to identify
not only one-degree trends, but also higher-degree ones.

3.2. Accurate behavior for OPP and KPSS tests

3.2.1. Additional stationarity tests

3.2.1.1. OPP stationarity test.
In [19], Ouliaris, Park, and Phillips generalized Dickey-Fuller unit-root tests ρ to models M3,d

with polynomial trends, where d = 2, 3, 4 or 5. We denote this general test by OPP. Note that
the invariance principle for partial sums, required in OPP test, applies to (SN) stationary
linear processes satisfying Hypotheses (H1) to (H3). We implemented this test as a R function,
denoted by opp.test(), estimating the long run variance with Newey West kernel (introduced
in [18]).

3.2.1.2. KPSS stationarity test.
In [15], Kwiatkowski, Phillips, Schmidt and Shin developed another type of stationarity test,
associated to an underlying (SN). Contrary to Dickey-Fuller tests, KPSS test takes the presence
of unit root as the alternative hypothesis, and the stationarity as the null hypothesis. Actu-
ally, KPSS test can consider as null-hypothesis either level-stationarity or trend-stationarity
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Table 2.: Null-hypothesis rejection rate (%) for KPSS and OPP stationarity tests, for DGP
simulations when the underlying process is a white noise (Et)t. We vary σE on the set
{0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}. The final rejection rate is computed as the av-
erage of the rejection rates obtained for each σE .

DGPa

Test (WN) (DetW,1) (DetW,2) (StoW,1) (StoW,2)

OPP for Zt 100 100 100 5.96 0
OPP for ∆(Zt) 100 100 100 100 5.86
KPSS for Zt 4.8 98.6 100 98.9 100
KPSS for ∆(Zt) 0 0 100 4.8 98.9

aData Generating Process.

(stationarity around a linear deterministic trend). Here, we refer to the level-stationarity test.

3.2.2. Simulation study for OPP and KPSS tests

Models (StoS,1) and (StoS,2) do contain a unit root and hence are not stationary, whereas
models (DetS,1) and (DetS,2) are not stationary although they do not contain any unit root.
Logically, KPSS’s test should reject the null hypothesis for most realizations driven from all
these models. Hence KPSS’s test does not appear to be a good candidate for trend-nature
identification. Nonetheless, KPSS’s test reveals heterogeneous behaviors when applied to the
differentiated series ∆(Zt). Indeed, processes (Zt) driven from models (DetS,1) and (StoS,1)
do become stationary as soon as they are differentiated.

(SN) Zt = Bt =⇒ ∆(Zt) = Bt − Bt−1 , (4)

(DetS,1) Zt = a0 + a1 t + Bt =⇒ ∆(Zt) = a1 + Bt − Bt−1 , (5)

(DetS,2) Zt = a0 + a1 t + a2 t
2 + Bt =⇒ ∆(Zt) = a1 + 2 a2 t + Bt − Bt−1 , (6)

(StoS,1) Zt = Zt−1 + Bt =⇒ ∆(Zt) = Bt , (7)

(StoS,2) Zt = 2Zt−1 − Zt−2 + Bt =⇒ ∆(Zt) = ∆(Zt−1) + Bt. (8)

Moreover OPP’s test should reject the null hypothesis only for realizations driven from models
(DetS,1) and (DetS,2), vice versa for (StoS,1) and (StoS,2). Applied to the differentiated
series, OPP’s test should not reject the null hypothesis only for realizations initially driven from
models (StoS,2).

We ran the suggested testing procedure on 5 000 simulations using every data generating
process among (SN), (DetS,1), (DetS,2), (StoS,1) and (StoS,2), when the associated sta-
tionary noise is either a (WN), or (SN) such as a MA(2) or an ARMA(1,1) centered, causal
and invertible process. We took again parameters values as a0 = 5, a1 = 1, a2 = 1, n =
300. Table 2 presents the null-hypothesis rejection rate when Bt = Et where σE varies in
{0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}.

Table 2 shows that KPSS and OPP tests perform as expected, not only for simulations driven
from one-order trends, but also for quadratic trends. Moreover, results remain identical for any
value of parameter σE , varying from 0.5 to 500, such as shown in Figure D1, Appendix D. We
also present results for simulations with underlying stationary noises (Bt)t, such as a MA(2) and
an ARMA(1,1). In this case, both Supplementary Figures S1 and S2 show the same behavior
for KPSS and OPP tests, whatever σE value.
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4. Applications

4.1. A new strategy for trend identification

4.1.1. TDT strategy

We suggest to apply the following tests successively :

i) OPP test to series Zt ;
ii) OPP test to series ∆(Zt) ;
iii) KPSS test to series Zt ;
iv) KPSS test to serie ∆(Zt).

We call Trend Diagnosis Tests (TDT) the set of responses to tests i) to iv) computed on
a time series. Let us denote by Null, the case where the null hypothesis can not be rejected,
and by Alt otherwise. From Equations 4 to 8, we provide the expected diagnosis led by TDT
strategy for every model. Hence,

(SN) expected diagnosis : Alt/Alt/Null/Null ,

(DetS,1) expected diagnosis : Alt/Alt/Alt/Null ,

(DetS,2) expected diagnosis : Alt/Alt/Alt/Alt ,

(StoS,1) expected diagnosis : Null/Alt/Alt/Null ,

(StoS,2) expected diagnosis : Null/Null/Alt/Alt .

We ran again 5 000 simulations under every data generating process among (WN), (DetW,1),
(DetW,2), (StoW,1) and (StoW,2), with a0 = 5, a1 = 1, a2 = 1, n = 300 and σE , taking
value in the set {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}. Then we applied successively
tests i) to iv) to any simulation, using a risk α = 5%. In Table 3, every column sums the
diagnosis percentage associated to the corresponding DGP. The percentage in bold refers to
the expected diagnosis. For example, if the DGP is (WN), only two sets of responses were
obtained to TDT : Alt/Alt/Null/Null for 95.247% of (WN) simulations (percentage written
in bold), and Alt/Alt/Alt/Null for the other 4.753% simulations. Note that the two TDT
diagnosis associated to (WN) only differ due to KPSS response on the initial series. The two
obtained percentages are consistent with the Type I error for this test, when α is fixed to 5%.
In the same way, if the DGP is (StoW,1), several responses are possible. Note that among
tests i) to iv), only the first and the last one are led under the Null hypothesis. Consequently,
when α = 5%, each of tests i) to iv) may approximately produce the Null response in 95%
simulations, and the Alt response in the other 5%. This theoretically yields to percentages

95%× 95% = 90.25% (StoW,1)-simulations with response Null/ - / - /Null

95%× 5% = 4.75% (StoW,1)-simulations with response Null/ - / - /Alt

95%× 5% = 4.75% (StoW,1)-simulations with response Alt/ - / - /Null

5%× 5% = 0.25% (StoW,1)-simulations with response Alt/ - / - /Alt

We do observe almost these expected percentages by summing the corresponding TDT per-
centages in Table 3, column (StoW,1). For instance, in relation to the expected diagnosis
Null/ - / - /Null, we observed either Null/Alt/Alt/Null or Null/Alt/Null/Null diag-
nosis for (StoW,1)-simulations, with respective percentages 86.162% and 3.216%, summing to
89.378%, that is very close to the expected 90% percentage.
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Table 3.: Percentage of Trend Diagnosis Tests (TDT) associated to every Data Generating
Process (DGP)when σE takes values in {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300}.

DGPa

TDTb (WN) (DetW,1) (DetW,2) (StoW,1) (StoW,2)

Alt/Alt/Alt/Alt 0 0 100c 0.438 0
Alt/Alt/Null/Alt 0 0 0 0 0
Alt/Null/Alt/Alt 0 0 0 0 0
Alt/Null/Null/Alt 0 0 0 0 0
Null/Alt/Alt/Alt 0 0 0 4.273 6.213
Null/Alt/Null/Alt 0 0 0 0.005 0
Null/Null/Alt/Alt 0 0 0 0 90.427
Null/Null/Null/Alt 0 0 0 0 0.007
Alt/Alt/Alt/Null 4.753 99.993 0 5.822 0
Alt/Alt/Null/Null 95.247 0.007 0 0.084 0
Alt/Null/Alt/Null 0 0 0 0 0
Alt/Null/Null/Null 0 0 0 0 0
Null/Alt/Alt/Null 0 0 0 86.162 0.089
Null/Alt/Null/Null 0 0 0 3.216 0
Null/Null/Alt/Null 0 0 0 0 3.220
Null/Null/Null/Null 0 0 0 0 0.015

Total percentage 100 100 100 100 100

aData Generating Process
bTrend Diagnosis Tests
cBold font highlights the expected TDT diagnosis associated to every DGP.

But the interest of Table 3 lies is in its reverse reading. Let us associate a DGP to a TDT diag-
nosis. As an example, since none simulation under (WN), (DetW,1), (DetW,2) or (StoW,1)
DGP led to responses Null/Null/Alt/Alt, then if one obtains such a response on its time
series, this means that a (StoW,2) model is suitable. Alternately Alt/Alt/Alt/Null di-
agnosis could lead either to a (WN), a (DetW,1) or a (StoW,1) model. But referring to
occurrence percentages, 99.993/(4.753 + 99.993 + 5.822) = 90.436% of simulations with TDT
Alt/Alt/Alt/Null are produced by a (DetW,1) DGP, only 4.299% by a (WN) and 5.266% by
a (StoW,1). Then a (DetW,1) model appears as the best candidate, but (WN) and (StoW,1)
models can not be totally excluded. As shown in Figure E1, Appendix E, the relative occurrence
of these three models for diagnosis Alt/Alt/Alt/Null remains the same, whatever σE value in
the set {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}. In this precise case, even if a linear trend
is present, the relevance of either a (WN) or a (DetW,1) model depends on the intensity of
the trend in relation to the variance of the associated noise. The convenient choice can be ruled
out by previously computing autocorrelation functions, with acfG() function. If several models
remain acceptable, then we suggest to construct and compare them.

In order to evaluate the effect of autocorrelation on TDT strategy, we also run simulations
with autocorrelated noises. In other words, we replaced Et either by a MA(2) process or by
an ARMA(1,1) process, denoted as Bt, see Supplementary. Percentage of TDT diagnosis
associated to every Data Generating Process, driven by (SN), are given in Supplementary
Tables S1 and S2. Percentage diagnosis remains similar regardless of the underlying model
for Bt. From Table 3 and Supplementary Tables S1 and S2, we suggest to associate each
model with some sets of responses to TDT. More specifically, with diagnoses ranked by risk of
occurrence :
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• Alt/Alt/Null/Null is associated with (SN) ,

• Alt/Alt/Alt/Null is associated with (DetS,1) ,

• Alt/Alt/Alt/Alt is associated with (DetS,2) ,

• Null/Alt/Alt/Null
Null/Alt/Null/Null are associated with (StoS,1) ,
Null/Alt/Null/Alt

Null/Null/Alt/Alt
• Null/Null/Alt/Null are associated with (StoS,2) ,

Null/Null/Null/Alt
Null/Null/Null/Null

• Null/Alt/Alt/Alt is associated either with (StoS,1) or (StoS,2) .

Figure E1 and Supplementary Figures S3 and S4 illustrate that this classification remains
stable as σE varies, whenever the underlying noise is (WN) or (SN). We implemented this
diagnosis strategy as the R function trend.diag.tests(), with an argument nb.mod taking
values among c("single", "multiple"), specifying either if only the main model is returned
or if all possibilities are returned, even the most occasional one. In this case, all the suggested
models can be constructed and compared.

4.1.2. Higher-degree trends

Actually, it is possible to detect higher-degree trends, either deterministic (DetS,d) or stochas-
tic (StoS,d), with d = 3, 4, 5, by iterating OPP and KPPS tests on the successive differentiated
series. More precisely,

? Step 0 :
Compute sample autocorrelation functions with acfG() in order to distinguish between a

white noise and a time series with a trend. If the series is driven by a trend, then run the
following steps.

? Step 1 :
Run OPP test on the given time series.

If the null is rejected, we identify a (DetS,d) model, otherwise (StoS,d), with d ≥ 1. It
remains to precise d.

? Step 2 :
Case 2a :

If a (StoS,d) model is detected in Step 1, differentiate the current time series, and apply
OPP test. Iterate this step until the null is rejected. Then d corresponds to the number of
necessary differentiations.
Case 2b :

If a (DetS,d) model is detected in Step 1, differentiate the current time series, and apply
KPSS test. Iterate this step until the null is rejected. Then d corresponds to the number of
necessary differentiations.

We implemented this diagnosis strategy as the R function trend.diag.high(). When applying
this strategy, a model is suggested, leading either to Equation 1 or 2, with parameters to be
determined. In particular, process (Bt)t is rarely a white noise, and should rather be modeled
by an ARMA(p,q) process. The validity of the global model has to be confirmed with residuals
diagnosis.
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Table 4.: p-values provided by several tests on the initial and the differentiated abortion series.

Test

Series OPP KPSS ρ under (M1) ρ under (M2) ρ under (M3)

Zt 0.2 0.01 0.9784 0.011 0.99
∆(Zt) 0.0852 0.02 0.01 0.01 0.01

4.2. Application on data

4.2.1. Terminated pregnancies in Québec, Canada

Since 1969, abortion is legal in Canada at all stages of pregnancy. Since 1971, la Régie de
l’assurance maladie du Québec provides the number of voluntarily terminated pregnancies in
Québec, Canada, plotted in Figure 3 (Left). Autocorrelation functions, given in Figure 3 (Right),
suggest that data are driven by a trend.

Figure 3.: Abortion data evolution (Left) and autocorrelation functions (Right).

Table 4 shows that our strategy TDT applied to abortion data suggests a (StoS,2) model.
Both functions trend.diag.tests() and trend.diag.high() confirm this diagnosis. Dickey-
Fuller tests rather suggest a (StoS,1) model. Indeed, most Dickey-Fuller tests do not reject
the null for the initial series, but they are unable to detect a unit root in the differentiated
series. We construct both a (StoS,1) and a (StoS,2) model, as in Equation 2, by modeling the
stationary process (Bt)t by the first clearly valid model among all ARMA(p,q) with p, q ≤ 2,
sorted by minimizing Schwarz’s Bayesian Criterion [22]:

• (Bt)t is AR(1) for (StoS,2) model, suggested by our strategy TDT.
• (Bt)t is AR(2) for (StoS,1) model, suggested by Dickey-Fuller tests.

In Table 5, we compare both models relevance in terms of information criteria such as AIC, BIC,
AICc [1, 22, 13] and prediction criterion computed between the observed series and predictions
for the last 4 values(almost 10%), such as Root Mean Square Error (RMSE) and Mean Absolute
Percentage Error (MAPE). Table 5 shows that the (StoS,2) model provided by our strategy is
the most suitable.

Figure 4 plots forecasts for abortion data. Residuals being normally distributed, we plot both
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Table 5.: Models comparison for abortion series.

Criterion

Model AIC AICc BIC RMSE MAPE

TDTa: (StoS,2) with AR(1) 695.4 695.7 698.9 206.2 0.731
DFb: (StoS,1) with AR(2) 710.1 710.8 715.4 382 1.469

aTrend Diagnosis Tests.
bDickey-Fuller tests.

forecasts and 80% and 95% prediction intervals, computed from gaussian quantiles.

Figure 4.: Predictions for abortion series with TDT model, where prediction intervals colored
in steel blue (resp. light grey) represent 80% (resp. 95%) confidence level.

4.2.2. Evolution of atmospheric CO2 concentration

Since 1959, atmospheric CO2 concentrations (ppm) has been measured monthly in situ air
measurements, at Mauna Loa, Observatory, Hawäı see [14]. Figure 5 reveals that the global
average concentration of atmospheric carbon dioxide has a clear increasing trend, and also a
seasonal monthly component.

Our strategy does not take into account seasonal component, then we deseasonalize, by re-
gressing the CO2 series on the seasonal dummy variables and by retaining the residuals from
this regression. Autocorrelation functions plotted in Figure 6 (Right) show that the remaining
series is driven by a trend. From Table 6, we see that Dickey-Fuller tests applied to the deseason-
alized series clearly suggests a (StoS,1) model, whereas our TDT strategy produces responses
Alt/Alt/Alt/Alt to tests i) to iv), suggesting rather a (DetS,2) model. We construct both a
(StoS,1) and a (DetS,2) model, as in Equations 1 and 2, by modeling the stationary process
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Figure 5.: CO2 atmospheric concentration evolution.

Figure 6.: CO2 deseasonalized series evolution (Left) and associated autocorrelation functions
(Right).

Table 6.: p-values provided by several tests on CO2 deseasonalized series.

Test

Series OPP KPSS ρ under (M1) ρ under (M2) ρ under (M3)

Zt 0.01 0.01 0.9791 0.99 0.5465
∆(Zt) 0.01 0.01 0.01 0.01 0.01
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Table 7.: Models comparison for CO2 deseasonalized series.

Criterion

Model AIC AICc BIC RMSE MAPE

TDTa: (DetS,2) with SARMA(1,2)(1,1)[12] 376.8 377 413.6 0.78 1.291
DFb: (StoS,1) with SARMA(1,0)(1,1)[12] 400 400.1 418.4 1.757 2.816

aTrend Diagnosis Tests.
bDickey-Fuller tests.

(Bt)t by the first valid model among all SARMA(p,q)(P,Q)[12] with p, q, P,Q ≤ 2, sorted by
minimizing Schwarz’s Bayesian Criterion [22]:

• (Bt)t is SARMA(1,2)(1,1)[12] for (DetS,2) model, suggested by our strategy TDT.
• (Bt)t is SARMA(1,0)(1,1)[12] for (StoS,1) model, suggested by Dickey-Fuller tests.

In Table 7, we compare both models relevance in terms of information criteria such as AIC, BIC,
AICc [1, 22, 13] and prediction criterion computed between the observed series and predictions
for the last six years (almost 10%), such as RMSE and MAPE. Table 7 shows that the (DetS,2)
model provided by our strategy is the most suitable.

Figure 7 shows that forecasts for CO2 atmospheric concentration maintain the same trajec-
tory, with great accuracy. Indeed, prediction intervals are so thin that they are hardly visible.

Figure 7.: Predictions for CO2 atmospheric concentration with TDT model, where prediction
intervals colored in steel blue (resp. light grey) represent 80% (resp. 95%) confidence level.

5. Conclusion

We present a strategy to detect and identify trend component in time series. We recall that,
as a first analysis, visualizing time series plot is indispensable, since it may already suggest the
presence of a trend. Then trend can be confirmed by analyzing autocorrelation functions with
acfG(). Next, whence a trend is detected, it remains to identify its nature. Indeed deterministic
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or stochastic trends do not produce the same forecasts.
From Dickey-Fuller tests behavior, it appears useful to elaborate a new strategy to identify not

only one-degree trends, but also higher-degree ones. For instance diagnosis for data generated
from a (StoS,2) model results misleading. Indeed, the tests being ran on a single realization,
the conclusion provided by each test will not necessary correspond to the majority response,
that was obtained over a large number of simulations. Thus realizations of a (StoS,2) process
can be falsely inferred as generated from either a (DetS,1) or a (DetS,2) or a (StoS,1) model.
Then we propose a new strategy, involving other stationarity tests.

In this paper, we suggest a strategy based on OPP and KPSS tests, called TDT, and imple-
mented in diag.trend.tests() and diag.trend.high() functions, in order to select between
either a (DetS,d) or a (StoS,d) generating process. Our TDT strategy was assessed on simu-
lations, and compared with Dickey-Fuller tests diagnosis. Of course, both procedures, TDT and
Dickey-Fuller tests, may result in the same model suggestion. But diagnosis can be different,
especially for time series with a quadratic trend, that reduces Dickey-Fuller tests reliability.
Hence when both procedures suggest different models, both model candidates should be com-
puted, validated and compared. Applied on two real data sets, our automatic TDT strategy
provides a better model than the one provided using the classical Dickey-Fuller tests. Thus we
recommend TDT strategy to improve and facilitate modeling procedure.
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Appendix A. Sample autocorrelation functions behavior for (DetS,d) models –
Proof of Theorem 2.2

We consider the polynomial case with degree d ≥ 1. Let us define as Sj(n) the sum of the j-th
power of the first n integers:

Sj(n) =

n∑
k=1

kj .

From Faulhaber’s formula, detailed in [6], we know that

Sj(n) =
nj+1

j + 1
+

1

2
nj +

1

j + 1

j∑
p=2

Bp
(
j + 1

p

)
nj−p+1 , (A1)

where Bp are rational numbers called Bernoulli numbers.

Lemma A.1. For any j ∈ IN∗, the sum of the j-th power of the first n integers, Sj(n), is a
(j + 1)-degree polynomial with leading coefficient 1

j+1 . More precisely,

Sj(n) =
nj+1

j + 1
+ o(nj+1), (A2)

where o(f) is one of the Landau symbols, as defined in [12], p. 7-8. o(f) is called ”little-O of
f”, and expresses the convergence to 0 of a given function, when it is divided by f .

Then,

Z =
ad
d+ 1

nd + o(nd) + B . (A3)
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In order to study the asymptotic behavior of variables Ξ(h), estimators of the theoretical auto-
correlation function for stationary square-integrable processes, we first compute variables Γ(h),
estimators of the theoretical autocovariance function cov(Zt, Zt+h).

Definition A.2. From random variables (Z1, · · · , Zn), we define the autocovariance function
as

Γ(h) =

n−h∑
k=1

(Zk+h − Z)(Zk − Z)

n
, |h| ≤ n.

Using Equation A3, we can express Γ(h), by summing from k = 1 to k = n− h the products
of

Zk − Z =

d∑
j=0

aj k
j − ad

d+ 1
nd + o(nd) + Bk −B

with

Zk+h − Z =

d∑
j=0

aj (k + h)j − ad
d+ 1

nd + o(nd) + Bk+h −B .

We have to study every term, and clarify its asymptotic behavior.

a) First, we consider all product terms involving either B or
∑n−h

k=1
Bk

n , or
∑n−h

k=1
Bk+h

n . Let us
denote by Ta the sum of all these terms. Since (Bt)t is (SN) satisfying Hypotheses (H1) to
(H3), then we can apply the weak law of large numbers for moving averages (see [3], Prop
6.3.10) and obtain

B
IP−−−−−−→

n→+∞
IE(B1) = 0 ,

so do converge
∑n−h

k=1
Bk

n and
∑n−h

k=1
Bk+h

n . Since B,
∑n−h

k=1
Bk

n , or
∑n−h

k=1
Bk+h

n do multiply
either themselves or polynomials with degree ≤ d, then these product terms converge IP to
0, as soon as they are divided by nd.

Ta = o
IP

(nd) (A4)

b) Next, we study the behavior of the following terms :

Tb,1 =

n−h∑
k=1

Bk Bk+h
n

,

Tb,2 =

n−h∑
k=1

d∑
j=0

aj
kj Bk+h

n
,

Tb,3 =

n−h∑
k=1

d∑
j=0

aj
(k + h)j Bk

n
.

Applying again the weak law of large numbers for moving averages (see [3], Prop 7.3.5), we
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obtain the IP-convergence of term Tb,1 to γB(h), and then

Tb,1 = o
IP

(nd)

On the other hand, we need Cauchy-Schwarz’s inequality to study terms Tb,2 and Tb,3 in the
same way. We get

Tb,2 =

d∑
j=0

aj

n−h∑
k=1

(
kj√
n
× Bk+h√

n

)

≤
d∑
j=0

aj

(n−h∑
k=1

k2j

n

)1/2

×

(
n−h∑
k=1

B2
k+h

n

)1/2


≤

(
n− h
n

n−h∑
k=1

B2
k+h

n− h

)1/2 d∑
j=0

aj

(
n2j

2j + 1
+ o(n2j)

)1/2

.

The weak law of large numbers for moving averages and Prop 7.3.5 in [3] imply the IP-
convergence of the left hand term to γB(0)1/2 = σB. In addition, the right hand term is
o(nd+1). Consequently,

Tb = Tb,1 + Tb,2 + Tb,3 = o
IP

(nd+1) (A5)

c) Let us denote by Tc all the product terms involving o(nd), not studied yet. From Equation
A1, we get that o(nd) multiplies polynomials with degree ≤ d. Then all product terms
converge to 0, as soon as they are divided by nd. Consequently, we have

Tc = o(n2d) . (A6)

d) It remains to specify terms with polynomial products, in order to explicit the leading coef-
ficient. Let us consider

Td,1 =
a2d

(d+ 1)2
n− h
n

n2d ,

Td,2 = − ad
d+ 1

nd ×
d∑
j=0

aj

n−h∑
k=1

kj

n
,

Td,3 = − ad
d+ 1

nd ×
d∑
j=0

aj

n−h∑
k=1

(k + h)j

n
,

Td,4 =

n−h∑
k=1

 d∑
i=0

ai
ki√
n
×

d∑
j=0

aj
(k + h)j√

n

 .

All the terms Td,1 to Td,4 contain a leading term, associated to degree 2d. There is nothing
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to do for Td,1. Equation A2 provides

Td,2 = − ad
d+ 1

nd ×
d∑
j=0

aj

(
nj

j + 1
+ o(nj)

)

= −
a2d

(d+ 1)2
n2d + o(n2d) .

We get the same formula for Td3. In addition, Equation A2 also provides

Td,4 =

d∑
i,j=0

ai aj
n

n−h∑
k=1

ki (k + h)j ,

=
a2d

2d+ 1
n2d + o(n2d) .

Finally,

Td = Td,1 + Td,2 + Td,3 + Td,4

=

(
a2d

(d+ 1)2
n− h
n
− 2

a2d
(d+ 1)2

+
a2d

2d+ 1

)
n2d + o(n2d) (A7)

Adding Equations A4 to A7, we obtain

Γ(h) =

(
a2d

(d+ 1)2
n− h
n
− 2

a2d
(d+ 1)2

+
a2d

2d+ 1

)
n2d + o

IP
(n2d)

Finally since ad 6= 0,

Ξ(h) =
Γ(h)

Γ(0)

=

(
a2
d

(d+1)2
n−h
n − 2 a2

d

(d+1)2 + a2
d

2d+1

)
n2d + o

IP
(n2d)(

− a2
d

(d+1)2 +
a2
d

2d+1

)
n2d + o

IP
(n2d)

IP−−−−−−→
n→+∞

1 .

Appendix B. Sample autocorrelation functions behavior for (StoS,d) models –
Proof of Theorem 2.3

We just give the proof for d = 1, since the general case can be deduced using the decomposition
technique suggested in [5].

We first differentiate the initial series at a given lag h :

Vk,h = Zk − Zk−h =

h−1∑
j=0

Bk−j .
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Let L denotes de lag operator i.e. LXt = Xt−1, hence Vk,h can be written as

Vt,h = A(L)Bt,

where A is the following polynomial

A(z) = 1 + z + ...+ zh−1.

Since Bt = Ψ(L)Et, where Ψ(z) =
∑

j∈Z bjz
j , it follows that

Vt,h = A(L)Ψ(L)Et = V (L)Et,

where

V (z) = A(z)Ψ(z) =
∑
j∈Z

vjz
j , with vj =

h−1∑
i=0

bj−i.

Consequently the process (Vt,h) is also a moving average, by straightforward calculations we
can show that (Vt,h) satisfies Hypotheses (H1) to (H3).
Let us set

Bn(t) =
1√
n

[nt]∑
k=1

Bk ,

Vn,h(t) =
1√
n

[nt]∑
k=1

Vk,h, for all t ∈ [0, 1] ,

where [x] is the integer part of x. Then using [2] and Theorem 2 in [7], we get the weak
convergence :

Bn(.)
D[0,1]−−−−−−→
n→+∞

√
2πfB(0)W.

Vn,h(.)
D[0,1]−−−−−−→
n→+∞

√
2πfV (0)W. ,

where D[0, 1] is the set of càdlàg functions with Skorokhod topology, and where (Wt)t is a stan-
dard Brownian motion. Moreover fB and fV are the spectral densities associated to processes
(Bt) and (Vt,h) :

fB(λ) =
σ2E
2π

∣∣∣∣∣∣
∑
j∈Z

bje
ijλ

∣∣∣∣∣∣
2

(B1)

fV (λ) =
σ2E
2π

∣∣∣∣∣∣A(eijλ)
∑
j∈Z

bje
ijλ

∣∣∣∣∣∣
2

(B2)
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We also define

Zn(t) = Z[nt] − Z , such that Zn

(
k

n

)
= Zk − Z .

We recall that

1√
n
Zn(t) = Bn(t)− 1

n

n∑
j=1

Bn

(
j

n

)
,

Then by weak convergence continuity, we obtain that

1√
n
Zn(.)

D[0,1]−−−−−−→
n→+∞

√
2πfB(0) W1,. ,

with

W1,t =

(
Wt −

∫ 1

0
Wsds

)
.

Autocorrelation function definition was given in Equation 3. We deduce that

Ξ(h) = 1 +

n−h∑
k=1

(Zk − Z) Vk+h,h

n∑
k=1

(Zk − Z)2
+ OIP

(
1

n

)
.

Then,

n (Ξ̂(h)− 1) = n

n−h∑
k=1

(Zk − Z) Vk+h,h

n∑
k=1

(Zk − Z)2
+ OIP(1)

=

n−h∑
k=1

Zn( k

n)√
n

(
Vn
(
k+h
n

)
− Vn

(
k+h−1
n

))
1
n

n∑
k=1

(
Zn( k

n)√
n

)2 + OIP(1)

L−−−−−−→
n→+∞

√
2πfV (0)√
2πfB(0)

∫ 1
0 W1,s dWs∫ 1
0 W

2
1,s ds

= |h|
∫ 1
0 W1,s dWs∫ 1
0 W

2
1,s ds

.

Prokhorov theorem ([21]) permits to deduce that n (Ξ̂(h)− 1) = OIP(1).

Appendix C. Boxplot of null-hypothesis rejection rate when σE varies –
Complement to Table 1

In the main paper, Table 1 shows results for σE = 10. Here, Figure C1 dis-
plays results when all the simulations with σE taking successive values in
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{0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500} are gathered. This illustrates the stability
of Dickey-Fuller-testing response, as σE varies, for most data generating process, except for
(DetW,1) simulations, showing high variability.

Figure C1.: Null hypothesis rejection rate for Dickey-Fuller tests, with respect to the underlying
generating process used for simulations. All the simulations with σE taking successive values in
{0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500} are gathered.
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Appendix D. Boxplot of null-hypothesis rejection rate when σE varies, and when
noise is (WN) – Complement to Table 2

In the main paper, Table 2 shows that KPSS and OPP tests perform accurately on (WN),
(DetW,1), (DetW,2), (StoW,1) and (StoW,2) simulations. In Table, 2, σE successively takes
values in the set {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500} and the final rejection rate is
computed by gathering all the simulations obtained for each σE . Here, Figure D1 illustrates
the stability of testing procedure for every data generating process as σE varies. Note that an
outlier is observed when applying KPSS test to (DetS,1) simulations. This means that KPSS
test generally rejects the null hypothesis, as expected, in almost all cases. Actually, KPSS test
sometimes fails to reject the null for several (DetS,1) simulations with σE = 500, that is to
say when noise intensity is too high in relation to the linear coefficient a1, so that the trend
becomes imperceptible. Thus σE = 500 is above the high-limit for noise intensity.

Figure D1.: Null hypothesis rejection rate for either KPSS or OPP stationarity tests applied
upon either the initial or the differentiated series, with respect to the underlying generating
process used for simulations. All the simulations, driven with a (WN), where σE takes successive
values in {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}, are gathered.

Appendix E. Classification stability of Trend Diagnosis Tests (TDT) when noise
is (WN) – Complement to Table 3

We ran 5 000 simulations under every data generating process among (WN), (DetW,1),
(DetW,2), (StoW,1) and (StoW,2), with a0 = 5, a1 = 1, a2 = 1, n = 300 and σE , taking
value in the set {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300}. Then we applied successively tests
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i) to iv) to any simulation, using a risk α = 5%.
Given a data generating process, several diagnosis were observed, but not all of them. In the

paper, Table 3 shows TDT diagnosis, when gathering simulations associated to a fixed DGP,
whatever σE value in {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300, 500}. Here, Figure E1 illustrates
the stability of the classification associated to every model as σE varies.

Note that the classification remains stable when σE keeps growing. But when noise inten-
sity is too high in relation to the linear coefficient a1, the trend becomes imperceptible, and
KPSS test sometimes fails to reject the null for several (detT,1) simulations with σE > 300.
Whereas Alt/Alt/Alt/Null diagnosis is accurately associated to almost 99.9% of (detT,1)
simulations while σE ≤ 300, 83.6% of (detT,1) simulations with σE = 500 have the convenient
diagnosis Alt/Alt/Alt/Null, but the 16.4% other simulations are associated to diagnosis
Alt/Alt/Null/Null, that is accurate for (WN). And the confusion between (detT,1) and
(WN) naturally increases with σE . In this case, the true model (detT,1) might no longer be
the most suitable for the series.
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Figure E1.: (First part) Percentage of simulations with the associated diagnosis for TDT tests,
versus every data generating process. All the simulations, driven with a (WN), where σE takes
successive values in {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300}, are gathered.

26



Figure E1.: (Last part) Percentage of simulations with the associated diagnosis for TDT tests,
versus every data generating process. All the simulations, driven with a (WN), where σE takes
successive values in {0.5, 1, 3, 5, 10, 20, 30, 50, 100, 200, 300}, are gathered.
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