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Abstract

A locating-dominating set of an undirected graph is a subset of vertices S such that S
is dominating and for every u, v /∈ S, the neighbourhood of u and v on S are distinct (i.e.
N(u) ∩ S 6= N(v) ∩ S). Locating-dominating sets have received a considerable attention in
the last decades. In this paper, we consider the oriented version of the problem. A locating-
dominating set in an oriented graph is a set S such that for each w ∈ V \ S, N−(w) ∩ S 6= ∅
and for each pair of distinct vertices u, v ∈ V \ S, N−(u) ∩ S 6= N−(v) ∩ S. We consider

the following two parameters. Given an undirected graph G, we look for
→

γ
LD

(G) (
→

ΓLD(G))
which is the size of the smallest (largest) optimal locating-dominating set over all orientations

of G. In particular, if D is an orientation of G, then
→

γ
LD

(G) ≤ γLD(D) ≤
→

ΓLD(G) where
γLD(D) is the minimum size of a locating-dominating set of D.

For the best orientation, we prove that, for every twin-free graph G on n vertices,
→

γ
LD

(G) ≤
n/2 which proves a “directed version” of a widely studied conjecture on the location-domination
number. As a side result we obtain a new improved upper bound for the location-domination
number in undirected trees. Moreover, we give some bounds for

→

γ
LD

(G) on many graph
classes and drastically improve the value n/2 for (almost) d-regular graphs by showing that
→

γ
LD

(G) ∈ O(log d/d · n) using a probabilistic argument.

While
→

γ
LD

(G) ≤ γLD(G) holds for every graph G, we give some graph classes such as

outerplanar graphs for which
→

ΓLD(G) ≥ γLD(G) and some for which
→

ΓLD(G) ≤ γLD(G)

such as complete graphs. We also give general bounds for
→

ΓLD(G) such as
→

ΓLD(G) ≥ α(G).

Finally, we show that for many graph classes
→

ΓLD(G) is polynomial on n but we leave open

the question whether there exist graphs with
→

ΓLD(G) ∈ O(log n).

1 Introduction

A dominating set of an undirected graph G is a subset S of its vertices such that each vertex of
G not in S has a neighbour in S. The domination number of G, denoted by γ(G) is the size of a
smallest dominating set of G. Domination theory is one of the main topics of graph theory, see
for example the two reference books [21, 22]. Among the variations of domination, the location-
domination, introduced by Slater [29], has been extensively studied. A locating-dominating set
of an undirected graph G is a dominating set S such that all vertices not in S have pairwise
distinct neighbourhoods in S. The location-domination number of G, denoted by γLD(G), is the
size of a smallest locating-dominating set of G. Since V (G) is always a locating-dominating set,
γLD(G) is well-defined. Structural and algorithmic properties of locating-dominating sets have
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been widely studied (see e.g. [26] for an online bibliography). Location-domination in directed
graphs was briefly mentioned in several articles (see e.g. [7, 28]) and further studied in [13]. A
locating-dominating set of a directed graph D is a subset S of its vertices such that two vertices
not in S have distinct and non-empty in-neighbourhoods in S. The directed location-domination
number of D, denoted by γLD(D), is the size of a smallest locating-dominating set of D.

Two oriented graphs with the same underlying graph can have a very different behaviour
towards locating-dominating sets. Let us illustrate it on tournaments that are oriented complete
graphs. Transitive tournaments (i.e. acyclic tournaments) have directed location-domination
number ⌈n/2⌉ whereas one can construct locating-dominating sets of size ⌈logn⌉ for a well-chosen
orientation of Kn [28]. Following the idea of Caro and Henning for domination [6] and the work
started by Skaggs [28], we study in this paper the best and worst orientations of a graph for
locating-dominating sets. Orientation of graph G is considered to be best (resp. worst) if it
minimizes (resp. maximizes) the location-domination number over all the orientations of G. A
similar line of work has been recently initiated for the related concepts of identifying codes [9] and
metric dimension [2].

The two parameters that are be considered in this paper are the following. The lower directed
location-domination number of an undirected graph G, denoted by

→
γLD(G), is the minimum

directed location-domination number over all the orientations of G. The upper directed location-

domination number of an undirected graph G, denoted by
→

ΓLD(G), is the maximum directed
location-domination number over all the orientations of G.

Outline of the paper

Basic definitions, some background and first results are given in Section 2. Section 3 is dedicated
to the study of the best orientations whereas Section 4 focuses on the worst orientations.

Main results on best orientations. We first give basic results on
→
γ LD(G) and relations with

classical parameters of graphs. Skaggs [28] proved in 2007 that for any graph G,
→
γ LD(G) ≤

γLD(G). We refine this inequality by proving that, in graphs without cycles of size 4 (as a
subgraph),

→
γ LD(G) and γLD(G) coincide. As a consequence, computing

→
γ LD(G) is NP-complete.

Two vertices are twins if they have the same open or closed neighbourhood. Twins play an
important role in locating-dominating sets since any locating-dominating set must contain at least
one vertex of each pair of twins. As a consequence, if G is a star on n vertices, then

→
γ LD(G) = n−1.

In Section 3.3, we prove that this function can be drastically improved when the graph G is twin-
free, which is one of the main contributions of our paper.

Theorem 1. Let G be a twin-free graph of order n with no isolated vertices. Then,
→
γ LD(G) ≤ n/2.

The fact that any twin-free graph of order n satisfies γLD(G) ≤ n/2 is a notorious conjecture,
left open in [12, 16] for instance.

Conjecture 2 ([16]). If G is a twin-free graph of order n, then γLD(G) ≤ n/2.

The proof of Theorem 1 holds in two steps. First, we show in Section 3.2 that
→
γ LD(G) is the

smallest undirected location-domination number among all the (connected) spanning subgraphs
of G. Then, we prove in Section 3.3 that there exists a spanning subgraph for which the condition
is satisfied. In particular, our result implies a weakening of Conjecture 2 since we prove that any
twin-free connected graph G on n vertices admits a spanning subgraph H with γLD(H) ≤ n/2.
As a side result we obtain a new improved upper bound for the location-domination number in
trees. We also give a characterization for trees attaining this new upper bound.

We then focus on (almost) regular graphs in Section 3.4 and prove, using a probabilistic
argument, that there exists a constant cd such that, if G is d-regular,

→
γ LD(G) ≤ cd ·

log d

d
· |V (G)|.

We continue this subsection by giving some bounds using independence and matching numbers.
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Main results on worst orientations. In Section 4.1, we give some examples and relate
→

ΓLD(G) with some classical graph parameters. In particular, we prove that
→

ΓLD(G) ≥ γLD(G)
if G does not have any cycle of length 4 as a (not necessarily induced) subgraph. Moreover we
prove that if G is a C4-free bipartite graph (which in particular, contains the class of trees), then
→

ΓLD(G) = α(G) where α(G) is the independence number of G.

In Section 4.2, we prove that
→

ΓLD(G) ≥ γLD(G) is satisfied for other graph classes such as
bipartite graphs, cubic graphs, and outerplanar graphs. Somehow surprisingly at first glance,
→

ΓLD(G) ≥ γLD(G) is not always true. In [13], Foucaud et al. have shown that for a complete

graph Kn on n vertices we have
→

ΓLD(Kn) = ⌈n/2⌉ but γLD(Kn) = n − 1. We prove that the
existence of twins is not the reason why this inequality fails since we exhibit a family of twin-free

graphs for which the ratio
→

ΓLD(G)/γLD(G) tends to 1/2. We did not succeed to bound this

ratio by a constant. However, we prove that
→

ΓLD(G) ≥ γLD(G)/⌈log2(∆(G)) + 1⌉. We leave the

existence of a constant bounding
→

ΓLD(G)/γLD(G) as an open problem.

Finally, in Section 4.3, we provide some lower bounds on
→

ΓLD(G) using the number of vertices.

For numerous classes of graphs, we actually have
→

ΓLD(G) ≥ c1 ·nc2 where c1 and c2 are constant.
This is true for perfect graphs (with c2 = 1/2), C3-free graphs, claw-free graphs and actually for
any χ-bounded class of graphs with a polynomial χ-bounding function. However, we leave as an

open problem the existence of a graph G on n vertices such that
→

ΓLD(G) is logarithmic on n.

Note that we did not find the complexity of computing
→

ΓLD(G). In particular, it is not clear
that this problem belongs to NP.

2 Preliminaries

2.1 Notations

We give in this subsection the main definitions and notations we are using along the paper. The
reader may refer to some classical graph theory books like [4] for missing definitions.

Let G = (V,E) be an undirected and simple graph. We usually denote by n the number of
vertices of G. We denote by NG(u) (or N(u) when G is clear from context) the open neighbourhood
of a vertex u, that is the set of neighbours of u. And we denote by NG[u] (abbreviated into N [u])
the closed neighbourhood of u that is N(u) ∪ {u}. Two vertices u and v are twins if N(u) = N(v)
or N [u] = N [v]. The degree of a vertex u, denoted by d(u), is the size of N(u). The minimum and
maximum degree of G are respectively denoted by δ(G) and ∆(G). A leaf is a vertex of degree 1.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph H is induced
if for any pair of vertices of H , (x, y) is an edge of H if and only if it is an edge of G. A graph
G is H-free if it does not contain H has an induced subgraph. We say that a graph G is without
H if G does not contain H as a subgraph (not necessarily induced). A subgraph H is a spanning
subgraph if V (H) = V (G).

The complete graph on n vertices is denoted by Kn. The complete bipartite graph with size
n and m is denoted by Kn,m. A star is a graph isomorphic to K1,m. The star with three leaves,
K1,3, is also called a claw. The cycle on n vertices is denoted by Cn whereas the path on n vertices
is denoted by Pn. The girth of a graph G is the length of a shortest cycle in G. If G does not
contain any cycle we say that G has infinite girth. A set S of vertices is independent if they are
pairwise non-adjacent. A set S is an edge cover if every edge has at least one endpoint in S. A
set of edges M is a matching if no two edges in M share an endpoint. In a graph G, we denote
the cardinalities of maximum independent sets and matchings by α(G) and α′(G), respectively.
Moreover, the cardinality of a minimum edge cover is denoted by β(G). The clique number of a
graph G, denoted by ω(G), is the maximal order of a complete subgraph of G.

Let S be a subset of V . Set S is a dominating set of G if any vertex of G is either in S or
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adjacent to a vertex of S. The minimum size of a dominating set is denoted by γ(G). We denote
by IG(S;u) (I(u) for short) the set NG(u) ∩ S that is the neighbours in S of a vertex u. Note
that S is a locating-dominating set if for each vertex u ∈ V (G) \S, I(u) is non-empty (since S is a
dominating set) and for each pair of distinct vertices u, v ∈ V \S, we have I(u) 6= I(v). We say that
a vertex s ∈ S separates u and v if s is in exactly one of sets I(u) and I(v). Note that any locating-
dominating set must intersect any pair of twins. The minimum size of a locating-dominating set
of G is denoted by γLD(G).

These notions are similarly defined for directed graphs. In this paper, we mostly consider
directed graphs derived from orienting an undirected graph. A directed graph (also called digraph),
is a pair D = (V,E), where V is a set whose elements are called vertices, and A is a set of ordered
pairs of vertices, called arcs. Let G = (V,E) be a simple undirected graph. An orientation
of G is a directed graph (oriented graph) D on V where every edge uv of G is either oriented
from u to v (resulting to the arc (u, v) in D) or from v to u (resulting to the arc (v, u)). In
particular, all the directed graphs considered are oriented and simple: if (u, v) is an arc then (v, u)
is not. The undirected graph G is called the underlying graph of D. Unless otherwise stated,
“graph” means “undirected graph”. A tournament is an orientation of a complete graph. The
open out-neighbourhood and in-neighbourhood of a vertex u of D are denoted by N+

D (u) and
N−

D (u) whereas the closed out- and in-neighbourhood are denoted by N+
D [u] and N−

D [u]. The
maximum out- and in-degree are denoted by ∆+(G) and ∆−(G). A source is a vertex with no in-
neighbours. Locating dominating sets are defined similarly as in the undirected case by considering
the in-neighbourhoods. We denote by ID(S;u) (or I(u) for short) the set N−

D (u) ∩ S, that is, the
in-neighbours of u that are in a set S of vertices. The set S is a locating-dominating set of D
if all the sets ID(S;u) are non-empty and distinct for u /∈ S. The minimum size of a locating-
dominating set of D, called the minimum directed location-domination number, is denoted by
γLD(D).

We finally recall the two main parameters that we are considering along this paper. The
lower directed location-domination number of an undirected graph G, denoted by

→
γ LD(G), is the

minimum directed location-domination number over all the orientations of G. Formally, we have
→
γ LD(G) = min{γLD(D) | D is an orientation of G}.

The upper directed location-domination number of an undirected graph G, denoted by
→

ΓLD(G), is
the maximum directed location-domination number over all the orientations of G. Formally, we
have

→

ΓLD(G) = max{γLD(D) | D is an orientation of G}.

2.2 Preliminary results and examples

Let D be a digraph and u be a non-source vertex of D. Then, V (D)\{u} is a locating-dominating
set of D. In particular, for any directed graph containing at least one edge, Γd(D) ≤ n − 1. In
[13], the authors characterized those digraphs reaching this extremal value. This characterization

is useful for studying the extremal values of
→
γ LD(G) and

→

ΓLD(G). A directed star is a (non-
necessarily simple) directed graph such that the underlying graph is a star. A bi-directed clique is
a directed graph that contains all the possible arcs between two vertices.

Theorem 3 ([13], Theorem 6). Let D be a connected (non necessarily simple) digraph of order
n ≥ 2. Then, γLD(D) = n− 1 if and only if at least one of the following conditions holds:

1. n = 3;

2. D is a directed star;

3. V (D) can be partitioned into three (possibly empty) sets S1, C and S2, where S1 and S2 are
independent sets, C is a bi-directed clique, and the remaining arcs in D are all the possible
arcs from S1 to C ∪ S2 and those from C to S2.

4



In particular, any orientation of a star has location-domination number n− 1.

Corollary 4. Let G be a star on n vertices. Then,
→
γ LD(G) =

→

ΓLD(G) = n− 1.

In [13], the authors also proved a tight upper bound for tournament:

Theorem 5 ([13]). Let D be a tournament on n vertices. Then, γLD(D) ≤ ⌈n/2⌉. Moreover,
γLD(D) = ⌈n/2⌉ if D is transitive.

As a consequence, the upper directed location-domination number of complete graphs is known:

Corollary 6. Let n ≥ 2 be an integer. Then,
→

ΓLD(Kn) = ⌈n/2⌉.

Concerning the best orientation of a complete graph, Skaggs proved in his thesis [28] that one
can obtain the best possible number for

→
γLD(G). For the sake of completeness, we add a short

proof of this result.

Theorem 7 ([28], Proposition 5.4). Let n ≥ 2 be an integer. Let k be the smallest integer such

that n ≤ k + 2k − 1. Then,
→
γ LD(Kn) = k.

Proof. Let S be a set of k vertices of Kn. Then, consider an injective map f from the other
vertices of Kn (there are at most 2k − 1 of them) to the non-empty subsets of S. Let u /∈ S and
v ∈ S. Orient edge uv from v to u if v ∈ f(u) and from u to v otherwise. Orient all the other
edges in any direction. Then, S is a locating-dominating set for this orientation of Kn.

3 Best orientation

In this section we focus on the best orientation. We first give basic results and links with classical
parameters. Then, we give another definition of

→
γ LD(G) using spanning subgraphs and use this

definition to show that
→
γ LD(G) ≤ n/2 if G is twin-free. We finally improve this last result in the

case of almost regular graphs.

3.1 Basics

Theorem 8. Let G be a graph of order n. Then,

1. [28, Proposition 5.3]
→
γ LD(G) ≤ γLD(G).

2.
→
γ LD(G) ≤ n− α′(G).

Proof. Claim (1) is proved in [28], for completeness, we include a short proof here. Consider a
graph G and a locating dominating set S of size γLD(G) of G. Then, orient all the edges uv between
S and V \S from S to V \S and all the other edges in any way. Then, S is a locating-dominating
set for this orientation.

Let us next prove (2). Let G be a graph on n vertices and let M be a maximum matching
of G. Let VM be a subset of vertices containing exactly one vertex from each edge of M and
CM be the set of vertices which are not endpoints of edges in M . Let C = VM ∪ CM . Note
that |C| = n − α′(G). Choose any orientation D′ of G where the edges in M have their tails
in C and all the other edges between V \ C and C are oriented from V \ C to C. Now, C is a
locating-dominating set in D′ since all the vertices of V \ C have exactly one in-neighbour in VM

and all of them are pairwise distinct.

We show that these bounds are tight in Corollary 9 and Theorem 10. Using Theorem 3, we
next provide a characterization of graphs reaching the extremal value

→
γ LD(G) = n− 1.

Corollary 9. For any connected graph G of order n ≥ 2,
→
γ LD(G) = n − 1 if and only if either

n = 3 or G is a star.
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Proof. Let G be a graph of order n ≥ 2 with
→
γ LD(G) = n− 1. If either n = 3 or G is a star, then,

→
γ LD(G) = n− 1 by Corollary 4.

Otherwise, let D be an orientation of G. Since Γd(D) ≤ n− 1 we must actually have Γd(D) =
n− 1. Since G is not at star, then D must have the structure of the third condition of Theorem 3.

Thus, V (G) can be partitioned to sets S1, C and S2 satisfying the third condition of Theorem
3. Since C is a bi-directed clique in Theorem 3, we have |C| ≤ 1 because D is an oriented graph.
Assume first that |C| = 1. If S1 or S2 are empty, then G is a star. If both of them are not empty,
then G contains a triangle and there is an orientation D′ of G with an oriented cycle. Then, by
Theorem 3, Γd(D

′) ≤ n− 2, a contradiction.
If C = ∅, then G is a star if either |Si| = 1 for i ∈ {1, 2} and disconnected if either is an

emptyset. But if |Si| ≥ 2, then again G contains a cycle and an orientation with an oriented cycle
which is against the conditions of Theorem 3. Hence, the claim follows.

Theorem 8 ensures that, for every graph G,
→
γLD(G) ≤ γLD(G). Let us prove that if G is

without C4 as a (not necessarily induced) subgraph, then it is actually an equality.

Theorem 10. Let G be a graph without C4 as a subgraph. Then,
→
γ LD(G) = γLD(G).

Proof. To prove this equality, let us show that, any locating-dominating set S of an orientation D
of a graph G is also a locating-dominating set for G. Let D be an arbitrary orientation of G and
S be a locating-dominating set of D. First note that S is indeed a dominating set of G. Thus, if
S is not locating-dominating in G, then there exist u, v 6∈ S such that IG(u) = IG(v). Moreover,
we have |IG(u)| = |IG(v)| ≥ 2 since |IG(u)| ≥ |ID(u)| and |IG(v)| ≥ |ID(v)|. Thus, if |IG(u)| = 1,
then |IG(v)| = |ID(v)| = |ID(u)| = 1 and hence, ID(u) = IG(u) = IG(v) = ID(v), a contradiction.
Let {c1, c2} ⊆ IG(u). But then u, c1, v and c2 induce a cycle on four vertices, a contradiction.

In particular, Theorem 10 means that
→
γ LD(T ) = γLD(T ) for any tree T . Let us complete this

warm-up part by proving that finding the value of
→
γ LD(G) is NP-hard.

Locating-Dominating-Set

Instance: A graph G, an integer k.
Question: Is it true that γLD(G) ≤ k?

Lower-Directed-LD-Number

Instance: A graph G, an integer k.
Question: Is it true that

→
γ LD(G) ≤ k?

Theorem 11. Locating-Dominating-Set and Lower-Directed-LD-Number are NP-com-
plete for planar graphs of maximum degree 5 without C4 as a subgraph.

Proof. Both problems are in NP. For Lower-Directed-LD-Number, a polynomial certificate
for

→
γ LD(G) ≤ k is an orientation D of G and a locating-dominating set of D of size at most k.
By Theorem 10, both values are equal in the class of graphs without C4. Thus, we just prove

the result for Locating-Dominating-Set. We reduce it from Dominating-Set.
Dominating-Set

Instance: A graph G, an integer k.
Question: Is it true that γ(G) ≤ k?

We use the reduction of Gravier et al. [18, Figure 7]. Consider an instance (G, k) of Dominat-

ing-Set. Let G△ be the graph obtained by adding to each vertex of the graph a pendant triangle
(see Figure 1). Then it is proved in [18] that G has a dominating set of size k if and only if G△

has a locating-dominating set of size k+ n (where n is the number of vertices of G). Indeed, each
triangle must contain at least one of the new vertices in a locating-dominating set and if there is
exactly one vertex in a triangle, the vertex of the original graph must be dominated in the original
graph.

Dominating-Set has been proved to be NP-complete even for planar graphs of maximum
degree 3 and girth at least 5 [33]. If G is planar of maximum degree 3 and girth at least 5, then
G△ is planar, of maximum degree 5, and does not contain C4 as a subgraph. This implies our
result.
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...

G

...

G△

Figure 1: Reduction from Dominating-Set to Locating-Dominating-Set.

3.2 Relation to spanning subgraphs

In this section, we prove a simple but important lemma that links
→
γ LD(G) with optimal locating-

dominating sets of spanning subgraphs of G. This result is used to prove several important results
all along the section, but we illustrate its interest by first giving several simple lower bounds on
→
γ LD(G).

Lemma 12. Let G be an undirected graph. Then,

→
γ LD(G) = min{γLD(H) | H is a spanning subgraph of G}.

Proof. Let us show first that
→
γ LD(G) ≤ γLD(H) holds for each spanning subgraph H of G. Let S

be a locating-dominating set of a spanning subgraph H of G. We next construct an orientation D
of G such that an edge e between S and V \ S is oriented away from the vertex in S if e ∈ E(H)
and if e 6∈ E(H), then we orient edge e towards the vertex in S. Other edges can be oriented
in any way. Observe that we have ID(S;w) = IH(S;w) for each vertex w 6∈ S and hence, S is
locating-dominating in D. Thus,

→
γ LD(G) ≤ min{γLD(H) | H is a spanning subgraph of G}.

Let us then show that for any orientation D′ of G, there exists a spanning subgraph H ′ of
G such that γLD(H

′) ≤ γLD(D′). Let S be a locating-dominating set in D′. Let us construct a
spanning subgraph H ′ from the graph G by having V (H ′) = V (G) and e = uv ∈ E(H ′) if and
only if either u ∈ S and the edge is oriented away from u in D′ or v ∈ S and the edge is oriented
away from v in D′. Observe that now ID′(S;w) = IH′ (S;w) for each vertex w 6∈ S and hence, S
is locating-dominating in H ′. Thus, min{γLD(H

′) | H ′ is a spanning subgraph of G} ≤ →
γ LD(G)

and the claim follows.

In the following theorem, we apply the previous lemma on classes of graphs which are closed un-
der (spanning) subgraphs. In particular, general lower bounds for undirected location-domination
numbers in such classes also hold when we orient graphs.

Lemma 13. Let G be a class of graphs closed under subgraphs. If there exists a function f : N → N

such that for each graph G ∈ G with n vertices we have γLD(G) ≥ f(n), then

→
γ LD(G) ≥ f(n).

Proof. Assume by contradiction that
→
γ LD(G) < f(n) for some G ∈ G. By Lemma 12, there

exists a spanning subgraph H such that γLD(H) =
→
γ LD(G). So H ∈ G and γLD(H) < f(n), a

contradiction.

As proven in [27], planar graphs satisfy γLD(G) ≥ n+10
7 and outerplanar graphs satisfy

γLD(G) ≥ 2n+3
7 . Since planar and outerplanar graphs are closed under subgraphs, the follow-

ing is a consequence of Lemma 13.
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Corollary 14. Let G be a planar graph on n vertices. Then,

→
γ LD(G) ≥ n+ 10

7
.

Let G′ be an outerplanar graph on n vertices. Then,

→
γ LD(G′) ≥ 2n+ 3

7
.

Lemma 15. Let G be a graph of order n. Then,

→
γ LD(G) ≥ 2n

∆(G) + 3
.

Proof. Let G be a graph of order n. In [31, Theorem 2] Slater has given general lower bound
γLD(G) ≥ 2n/(d+3) for a locating-dominating set in a d-regular graph G on n vertices. Moreover,
it is easy to generalize the proof for non-regular graphs, giving γLD(G) ≥ 2n/(∆(G) + 3). For
completeness, we include the proof here. Let G be a graph on n vertices with a locating-dominating
set S. We give one share unit for each vertex. Next, we shift 1/|I(v)| share from each vertex
v ∈ V (G) \ S to every vertex in I(v). After this shift, total share over all vertices remains as n.
Let s denote the largest share in any vertex u ∈ S. Notice that s|S| ≥ n and hence, |S| ≥ n/s.
Moreover, we have that s ≤ 2 + (∆(G) − 1)/2. Indeed, vertex u has share of 1 at the beginning.
After which, we shift at most 1 + (∆(G) − 1)/2 share to u since there is at most one adjacent
vertex v with |I(v)| = 1. Thus, |S| ≥ n/s ≥ 2n/(∆(G) + 3).

Moreover, we also have γLD(H) ≥ 2n/(∆(H)+3) ≥ 2n/(∆(G)+3) for each spanning subgraph
H of G since ∆(H) ≤ ∆(G). Thus, the claim follows from Lemma 13 with graph class GG = {H |
H is a subgraph of G}.

3.3 Conjecture 2 holds for graph orientations

The main goal of this section is to prove Theorem 1 we restate here:

Theorem 1. Let G be a twin-free graph of order n with no isolated vertices. Then,
→
γ LD(G) ≤ n/2.

We first need some auxiliary definitions and results.
Let G = (V,E) be an undirected graph of order n ≥ 3. A vertex adjacent to a leaf is called a

support vertex and a non-leaf, non-support vertex u which has only support vertices as neighbours
is called a support link. The number of support vertices, leaves and support links in G are denoted
by respectively s(G), ℓ(G) and sl(G). Moreover, let us denote by L(G), S(G) and SL(G) the sets
of leaves, support vertices and support links, respectively, in G. By convention, for the path P2

we assume that one of its two vertices is a support vertex and the other is a leaf.
We first introduce a useful lemma. The result has been previously discussed in [3] and claim

2 has been proven in [3, Lemma 2.1].

Lemma 16. Let T be a tree, s ∈ S(T ) with k leaves v1, . . . , vk attached to s. Then:

1. Every locating-dominating set C in T contains at least k vertices in {s, v1, . . . , vk}.

2. There exists a minimum locating-dominating set C in T which contains all the vertices
s ∈ S(T ) and for each s ∈ S(T ) there is exactly one leaf attached to s which is not in C.

Proof. Let C be a locating-dominating set. Let s ∈ S(T ). If s /∈ C, then all the leaves attached
to s are in C. Otherwise, C is not dominating. Let v be a leaf attached to s. We claim that
C′ = {s}∪C\{v} is a locating-dominating set. Indeed, we have I(C′; v) = {s} and if I(C′;u) = {s}
for any v 6= u ∈ V \ C′, then I(C;u) = ∅. Thus, C′ is a locating-dominating set. So, for every C,
there exists a locating-dominating set of the same size containing s. We assume that S(T ) ⊆ C
holds in the rest of the proof.
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Assume by contradiction that |{s, v1, . . . , vk} ∩ C| ≤ k − 1. Since s ∈ C, there are vi, vj 6∈ C
with i 6= j. But then I(vi) = I(vj) = {s}, a contradiction. So the first point holds.

Assume next that N(s) ∩ L(T ) ⊆ C. Let v ∈ N(s) ∩ L(T ). Since C has minimum size, there
exists a vertex u 6∈ L(T ) ∪ C such that I(u) = {s} (otherwise v can be safely removed from C
contradicting the minimality of C). However, if we now consider the set C′ = {u}∪C \ {v}, then
we notice immediately that C′ is locating-dominating and the claim follows.

Locating-dominating sets in trees have been widely studied. Blidia et al. proved in [3] that

γLD(T ) ≤ n+ ℓ(T )− s(T )

2
. (1)

Let us prove a slight improvement of this result that is needed in the proof of the main result of
this section. As this is the best known upper bound for locating-dominating sets in trees, we have
included a complete characterization of trees attaining it in Theorem 18.

Theorem 17. Let T be a tree of order n ≥ 2. Then,

γLD(T ) ≤
n+ ℓ(T )− s(T )− sl(T )

2
.

Proof. Let T be a tree and let F = T − SL(T ). The set F induces a forest without isolated
vertices. Moreover S(T ) = S(F ) and L(T ) = L(F ) (by choosing the right vertex in L and S if
the component is a P2). Let C be an optimal locating-dominating set in F such that S(F ) ⊆ C.
Observe that now C is also a locating-dominating set in T . Indeed, if u ∈ SL(T ), then I(u) ⊆ S(T )
and |I(u)| ≥ 2. Moreover, if I(v) = I(u), then we have a cycle. Finally, if u, v 6∈ SL(T ), then
IT (u) = IT (v) implies that IF (u) = IF (v). Thus, γLD(T ) ≤ |C| = γLD(F ) ≤ n−sl(T )+ℓ(T )−s(T )

2 .
The last inequality is due to bound (1).

As a slight side-step from proving Theorem 1, we first give a characterization for trees reaching
the upper bound of Theorem 17. For this, we need some definitions. Let T be a family of trees
such that T ∈ T if and only if γLD(T ) = n+ℓ(T )−s(T )

2 where n = |V (T )| or if T = P2. This family
has been characterized in [3]. We say that trees T1, T2, . . . , Tk, where k ≥ 2 are support linked into
tree T and we note T = SL(T1, T2, . . . , Tk) if there are vertices vi ∈ S(Ti) and w 6∈ ⋃k

i=1 V (Ti)

such that V (T ) =
⋃k

i=1 V (Ti) ∪ {w} and E(T ) =
⋃k

i=1 E(Ti) ∪ {viw | 1 ≤ i ≤ k}. Let us denote
by TSL the closure of T under SL.

Theorem 18. Let T be a tree. We have γLD(T ) = n+ℓ(T )−s(T )−sl(T )
2 if and only if T ∈ TSL.

Proof. Notice first that if sl(T ) = 0, then γLD(T ) = n+ℓ(T )−s(T )−sl(T )
2 if and only if T ∈ T ⊆ TSL.

Let us assume first that there exists T ∈ TSL such that γLD(T ) < n+ℓ(T )−s(T )−sl(T )
2 . Let T be

a tree satisfying these properties with the least number of vertices. By the previous remark, we
can assume that sl(T ) > 0 and thus, that T can be written as T = SL(T1, . . . , Tk), where k ≥ 2,
with Ti ∈ TSL for both i. Let w be the vertex in V (T ) \⋃k

i=1 V (Ti) and let vi ∈ N(w)∩ V (Ti) for
each i ∈ {1, . . . , k}. Notice that for any i, we have vi ∈ S(T ) and vi ∈ S(Ti). Furthermore, by the
minimality of T , γLD(Ti) =

|V (Ti)|+ℓ(Ti)−s(Ti)−sl(Ti)
2 for each i ∈ {1, . . . , k}. Moreover, let C, be

a locating-dominating set of minimum size in T and Ci be a locating-dominating set of minimum
size in Ti. Notice that

k
∑

i=1

|V (Ti)|+ ℓ(Ti)− s(Ti)− sl(Ti)

2
=

|V (T )|+ ℓ(T )− s(T )− sl(T )

2
.

Indeed, we have |V (T )| = 1+
∑k

i=1 |V (Ti)|, ℓ(T ) =
∑k

i=1 ℓ(Ti), s(T ) =
∑k

i=1 s(Ti) and sl(T ) = 1+
∑k

i=1 sl(Ti). By Lemma 16, we may assume that S(T ) ⊆ C and S(Ti) ⊆ Ci for each i ∈ {1, . . . , k}.
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Since |C| < n+ℓ(T )−s(T )−sl(T )
2 , we have |C ∩ V (Ti)| < |V (Ti)|+ℓ(Ti)−s(Ti)−sl(Ti)

2 for some i ∈
{1, . . . , k}. Since vi ∈ C ∩ V (Ti) and since C is a locating-dominating set in T , C ∩ V (Ti) is a
locating-dominating set in Ti, a contradiction. Thus, any tree in TSL satisfies the claim.

Let us then show that no tree outside of TSL can satisfy the claim. Let us consider a tree T

of minimum size satisfying γLD(T ) = n+ℓ(T )−s(T )−sl(T )
2 and T 6∈ TSL. Observe that sl(T ) > 0,

otherwise we would have T ∈ T ⊆ TSL. Thus, we may assume that T = SL(T1, . . . , Tk), where
k ≥ 2, for some trees Ti, where T1 6∈ TSL and w ∈ V (T ) \ ⋃k

i=1 V (Ti). Let C be a minimum
size locating-dominating set in T such that S(T ) ⊆ C (we may assume this by Lemma 16). Since
S(T ) ⊆ C and since C is of minimum size, we have w 6∈ C. Since |V (T )| = 1+

∑k
i=1 |V (Ti)|, ℓ(T ) =

∑k
i=1 ℓ(Ti), s(T ) =

∑k
i=1 s(Ti) and sl(T ) = 1 +

∑k
i=1 sl(Ti) and

∑k
i=1

|V (Ti)|+ℓ(Ti)−s(Ti)−sl(Ti)
2 =

|V (T )|+ℓ(T )−s(T )−sl(T )
2 , we have |C ∩ V (T1)| = n+ℓ(T1)−s(T1)−sl(T1)

2 . Indeed, since |C ∩ V (Ti)| ≤
n+ℓ(Ti)−s(Ti)−sl(Ti)

2 , we would otherwise have |C| < |V (T )|+ℓ(T )−s(T )−sl(T )
2 . However, this is a

contradiction on the minimality of T . Thus, T ∈ TSL.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let T be a spanning tree of G such that ℓ(T ) − s(T ) is minimal among all
the spanning trees of G. If T has ℓ(T ) = s(T ), then we are done by Lemma 12 and Lemma 17.

First, we claim that any leaf of T adjacent in T to a support vertex s such that |N(s)∩L(T )| ≥ 2,
is adjacent, in G, only to vertices which are support vertices in T . Observe that if u and v are
two leaves of T adjacent to the same support vertex s, then either u or v has another neighbour
in G since G is twin-free. Moreover, if s′ ∈ NG(u), then s′ is a support vertex in T . Indeed, if s′

is a leaf in T , then the spanning tree T ′ = T − us + us′ satisfies ℓ(T ′) − s(T ′) < ℓ(T ) − s(T ), a
contradiction with the minimality of T . Moreover, if s′ is a non-leaf, non-support vertex, then we
have s(T ′) = s(T ) + 1 and ℓ(T ′) = ℓ(T ), a contradiction.

We next construct an auxiliary graph G′ as follows. First we add to the tree T every edge
e = uv ∈ E(G) such that u ∈ L(T ), v ∈ S(T ) and there is a support vertex s ∈ S(T ) in NT (u)
such that |NT (s)∩L(T )| ≥ 2. Then, we delete some of the newly added extra edges so that there is
exactly one leaf adjacent to every vertex in S(T ). The resulting graph is denoted by G′. Observe
that, because G is twin-free, none of the vertices in L(T ) are pairwise twins in G′.

Let C′ be an optimal locating-dominating set in T such that every support vertex is included
in it and for each s ∈ S(T ) there exists a leaf u ∈ N(s) ∩ L(T ) such that u 6∈ C′. By Lemma 16
such a set exists. Let us now denote C′′ = C′ \ L(T ). Now, Lemma 17 and Lemma 16 together
imply that |C′′| ≤ n/2. Indeed,

|C′′| = |C′| − (ℓ(T )− s(T )) ≤ n− ℓ(T )− sl(T ) + s(T )

2
.

Finally, we create the locating-dominating set C by adding to set C′′ all vertices in SL(T ) that
have a twin in G′. Let us denote their set by W . Observe that if v ∈ SL(T ) has a twin u in
G′, then v and u belong to a cycle in G′. Moreover, since NT (v) ⊆ S(T ), we have u ∈ L(T ).
Furthermore, vertices u and v may only have one twin in G′ and for each s ∈ S(T ) ∩ N(u)
we have exactly one adjacent leaf in G′ (which is not u). Thus, ℓ(T ) ≥ s(T ) + |W |. Hence,
|C| = |C′′|+ |W | ≤ n−|W |−sl(T )

2 + |W | ≤ n
2 .

Next, we show that C is a locating-dominating set in G′. First of all, because none of the
vertices in L(T ) are pairwise twins in G′ and because S(T ) ⊆ C, all the vertices in L(T ) are
dominated and pairwise separated by C. Moreover, because we removed only leaves from C′,
which is a locating-dominating set in T , and because each support vertex is in C, all the non-leaf
vertices are dominated and pairwise separated. Finally, there is the case with IG′(C;u) = IG′(C; v)
where u ∈ L(T ) and v ∈ V (T ) \ (L(T ) ∪ S(T ) ∪ SL(T ) ∪ C). We have |I(v)| ≥ 2, otherwise we
would have IT (C′; v) = IT (C

′;u′) for some leaf u′ 6∈ C′. Moreover, since I(u) ⊆ S(T ), we also have
I(v) ⊆ S(T ). Let us denote I(u) = {u1, . . . , ut}, t ≥ 2, and assume without loss of generality that
uu1 ∈ E(T ). Observe that because v 6∈ SL(T ) ∪ S(T ) ∪ L(T ), there exists w ∈ NT (v) \ NG′(u)
and w is not a leaf in T . Let us next consider the tree T ′′ = T − u1v + uu2. We notice that
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no new leaves are created since {w, u2} ⊆ NT ′′(v) and u1 has at least three neighbours in T ,
namely v, u and at least one other leaf. Moreover, the number of support vertices does not
decrease. Indeed, u2 ∈ S(T ′′) and u1 ∈ S(T ′′). Finally, u ∈ L(T ) but u 6∈ L(T ′′). Thus, we have
ℓ(T ′′) − s(T ′′) < ℓ(T )− s(T ), a contradiction and hence, C is a locating-dominating set in G′, a
spanning subgraph of G and the claim follows by Lemma 12.

The bound n/2 is asymptotically tight even for graphs with large minimum degree as we can
see in the next subsection (see Lemma 23). However, it can be improved in many cases, even
without the twin-freeness assumption. Let us provide two simple classes for which we can improve
it.

Remark 19. Let G be a graph on n vertices with a twin-free spanning subgraph G′ with no
isolated vertices. Then,

→
γ LD(G

′) ≤ n/2 by Theorem 1 and by Lemma 12, we have γLD(G) ≤
→
γ LD(G′). Hence, the existence of a twin-free spanning subgraph G′ is enough for Theorem 1 to
hold.

Lemma 20. Let G be a graph on n vertices with a Hamiltonian path. Then,

→
γ LD(G) ≤

⌈

2n

5

⌉

.

Proof. The Hamiltonian path is a spanning subgraph. Since γLD(Pn) =
⌈

2n
5

⌉

as proven in [30],

Lemma 12 ensures that
→
γ LD(G) ≤

⌈

2n
5

⌉

.

We say that a graph G has a P≥t-factor (or t-path factor) if it has a spanning subgraph
containing only paths of length at least t as its components.

Lemma 21. Let G be a claw-free graph with minimum degree δ ≥ 5t + 3, where t is a positive
integer, on n vertices. Then,

→
γ LD(G) ≤ 2t+ 4

5t+ 8
n.

Proof. Let G be a claw-free graph with minimum degree δ ≥ 5t+ 3, where t is a positive integer,
on n vertices. Ando et al. proved in [1] that every claw-free graph with minimum degree δ has a
P≥δ+1-factor. Let P1, . . . , Pq be the paths in the P≥δ+1-factorization where mi = |Pi| ≥ δ+1. As
proven in [30], each of these paths has a locating-dominating set of size exactly ⌈2mi/5⌉. Hence,
by Lemma 12, we have

→
γ LD(G) ≤ ∑q

i=1⌈2mi/5⌉ =
∑q

i=1(⌈2mi/5⌉ − 2mi/5) +
∑q

i=1 2mi/5.
Observe that we have ⌈2mi/5⌉ − 2mi/5 ≤ 4/5 and this value is attained whenever mi = 3

mod 5. It is easy to check that the sum is upper bounded by the case where each mi = 5(t+1)+3
because each mi ≥ 5t + 4 ≥ 9 and the larger each mi is the smaller q is. Hence, we have
∑q

i=1(⌈2mi/5⌉ − 2mi/5) +
∑q

i=1 2mi/5 ≤ n/(5(t+ 1) + 3) · 4/5 + 2n/5 = n(2t+ 4)/(5t+ 8).

3.4 (Almost) regular graphs

The goal of this section is to prove that the n/2 bound can be drastically improved when the graph
is (almost) regular. The proof is based on a probabilistic argument. Namely we prove that, if we
select a random subset of vertices of the graph, then we can find an orientation where it is "almost"
a locating-dominating set. That is, with positive probability, we can obtain a locating-dominating
set from a random set by simply adding a small well-chosen subset of vertices to this random set.

A graph G is d-regular if all the vertices of G have degree exactly d. A class of graphs G is
k-almost regular if for every graph G ∈ G, we have ∆(G) ≤ δ(G)k.

Theorem 22. Let G be a class of k-almost regular graphs. Then, there exists a constant cG,k such
that, for every G ∈ G,

→
γ LD(G) ≤ cG,k ·

log δ

δ
· n.
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Before proving Theorem 22, let us make a couple of remarks. First notice that the bound is
tight up to a constant multiplicative factor since, by Theorem 7, Θ(logn) vertices are needed for
cliques.

Another hypothesis of Theorem 22 asserts that there is a polynomial gap between the minimum
and maximum degree. One can wonder if a similar result holds if we only have some assumptions
on the minimum degree of the graph. We can prove that it is not true:

Lemma 23. Let d, n0 ∈ N, and ǫ > 0 be a real. Then, there exists a twin-free graph G of minimum
degree at least d, order n ≥ n0 such that

→
γ LD(G) ≥ (

1

2
− ǫ)n

Proof. Let p and q be two integers with p ≥ q ≥ 4. We define the graph Gp,q of order n = 4p+ q
as a disjoint union of p paths on four vertices complete to a set {v1, v2, ..., vq} of size q such that
the subgraph induced by {v1, v2, ..., vq} is a cycle. An example is given by Figure 2. As p ≥ q the
minimal degree is δ(G) = q + 1 and one can check Gp,q is twin-free.
Let us prove that

→
γ LD(Gp,q) ≥ 2p − 24q+2 which is enough to obtain the lemma since then,

→
γ LD(Gp,q)/n will tend to 1

2 , when p → ∞.
Let D be an orientation of Gp,q and let S be an optimal locating-dominating set of D. Let

G1 = Gp,q[p1, p2, p3, p4], G2 = Gp,q[q1, q2, q3, q4] and G3 = Gp,q[r1, r2, r3, r4] be three P4 of Gp,q

which belongs to the disjoint union of P4’s. If, for every 1 ≤ i ≤ 4 and every 1 ≤ j ≤ q, the
edges pivj , qivj and rivj have the same orientation in D, then |S ∩V (G1)| ≥ 2 or |S ∩V (G2)| ≥ 2
or |S ∩ V (G3)| ≥ 2. Indeed, if there is at most one vertex of S in each subgraph, then in each
subgraph Gi one extremity have no neighbour in Gi ∩S. Hence we can assume this is the case for
p1 and q1. Then, p1 and q1 have the same neighbourhood in S, a contradiction.
There are 2q

4

orientations of edges between a set of four vertices and a set of q vertices so at
least p − 2 × 2q

4

= p − 2q
4+1 paths of the disjoint union contain at least two elements of S. So

→
γ LD(Gp,q) ≥ 2p− 24q+2.

Figure 2: Example of G9,7 of Lemma 23

The rest of this section is devoted to prove Theorem 22. Let G be a graph in G. We can assume
that G has minimum degree at least e2. (For graphs of degree less than e2, the conclusion indeed
follows since we can modify the constant to guarantee that cG,k · log δ

δ ·n is at least n). The proof is
based on a probabilistic argument. We will select a subset of vertices at random and prove that,
by only modifying it slightly (with high probability), we can construct an orientation of G such
that this set is a locating-dominating set.

Let us first recall the Chernoff inequality.

12



Lemma 24. [Chernoff] Let X =
∑n

i=1 Xi where Xi = 1 with probability p and 0 otherwise and
where all the Xi are independent. Let µ = E(X) and r > 0. We have

P(X ≤ (1− r)µ) ≤ e−µ·r2/2.

Also recall the Markov’s inequality: If X is a random variable taking non-negative values and
a > 0, then:

P(X ≥ a) ≤ E[X ]

a
.

In order to prove Theorem 22, we also need the following general lemma:

Lemma 25. Let G be a graph and X be a subset of vertices such that every vertex v not in X is
adjacent to at least log∆+ 1 vertices of X. Then, there exists an orientation D of G where X is
a locating-dominating set.

Proof. Let V ′ = {v1, . . . , vt} be an arbitrary ordering of V \X . Let us prove that we can associate
to each vertex vi of V ′ a non-empty subset Si of X ∩N(vi) such that, for every i 6= j, Si 6= Sj .

Let us prove that such a collection of sets Si can be found greedily. Since v1 is adjacent to at
least log∆+1 ≥ 1 vertex of X , we can indeed find such a set for v1. Assume that we have already
selected S1, . . . , Sr. Let us prove that we can select a set for vr+1. Let Yr+1 = N(vr+1) ∩X and
u ∈ Yr+1. The number of subsets of Yr+1 containing u is 2|Yr+1|−1 ≥ 2log∆+1 ≥ ∆. So at least
one of them has not been selected since a subset Sj can contain u only if vju is an edge. We
arbitrarily select a subset of Yr+1 containing u that is distinct from S1, . . . , Sr, which completes
the first part of the proof.

Next, for every x ∈ X in N(vi), we orient the edges from vi to xj if x /∈ Si and orient from x
to vi if x ∈ Si. One can easily check that X is a locating-dominating set of this orientation of the
graph.

We now have all the ingredients to prove Theorem 22.

Proof of Theorem 22. Let us first start with the following claim:

Claim 26. Let c ≥ 2 be constant. For every graph G of minimum degree δ, there exists a subset X
of 25c · (log δ)/δ ·n vertices1 of G such that all the vertices of V \X have at least c log δ neighbours
in X .

Proof. Start with a set X which is empty and add each vertex in X with probability 6c · (log δ)/δ.
So E(|X |) = 6c · log δ

δ · n. Moreover P(|X | ≥ 24c · log δ
δ · n) ≤ 1

4 by Markov’s inequality.
Let u be a vertex of G. Since N(u) has size at least δ, E(|X ∩ N(u)|) ≥ 6c · log δ. Thus,

Lemma 24 ensures that

P(|X ∩N(u)| ≤ c · log δ) = P(|X ∩N(u)| ≤ (1− 5/6)6c · log δ) ≤ e−6c·log δ·(5/6)2/2 ≤ 1

δ3

as long as c ≥ 2.
Let us next enrich X with all the vertices u such that |X ∩N(u)| is less than c log δ. By union

bound, the average number of vertices that are added in X is at most n/δ3. Moreover, using again
Markov’s inequality, we know that, with probability at least 1/2, the number of vertices that are
added in X is at most 2 · n/δ3 ≤ c · log δ

δ · n.
So, with probability at least 1/4, the size of X is at most 24c · log δ

δ ·n before X is enriched and
we add at most c · log δ

δ · n vertices in X during the second phase. So there exists a set X of size
at most 25c log δ/δ · n such that all the vertices are either in X or have at least c log δ neighbours
in X .

1All the logarithms of the paper have to be understood base 2.
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Let c = 2k. By Claim 26, G admits a subset of vertices X of size 50k · log δ/δ · n such that
every vertex v is either in X or has at least 2k · log δ neighbours in X . We claim that we can
orient the edges between X and V \X to guarantee that all the vertices of V \X have a different
neighbourhood in X . It follows from Lemma 25 and the fact that log∆ + 1 ≤ 2k · log δ since
log∆ ≤ k log δ.

Let us complete the results of this section with additional results on regular graphs or based
on Lemma 25.

A set S is k-dominating in G if we have for each v ∈ V \ S that |N(v) ∩ S| ≥ k. Let us denote
with γk(G) the cardinality of a minimum k-dominating set of G. The following lemma is a simple
consequence of Lemma 25.

Lemma 27. Let G be a graph with maximum degree ∆. If k ≥ log∆ + 1, then
→
γ LD(G) ≤ γk(G).

By [10, Corollary 14], γk(G) ≤ n − α(G) while k ≤ δ. Then, the inequality is an immediate
consequence of Lemma 27.

Corollary 28. Let G be a graph with maximum degree ∆ and minimum degree δ ≥ log∆ + 1.
Then,

→
γ LD(G) ≤ n− α(G).

A similar result holds for locating-dominating sets, when G is twin-free [16, Corollary 4.5].

Let M be a matching in a graph G. We say that a vertex u ∈ V (G) is M -unmatched if u is
not an endpoint of any edge in M .

Theorem 29. Let G be a d-regular graph with d ≥ 3. Then,
→
γ LD(G) ≤ α′(G).

Proof. Let G be a d-regular graph and M be a maximum matching in G. Moreover, let us construct
the set DM by choosing for each edge uv ∈ M the vertex u to DM if only u has an adjacent M -
unmatched vertex. If neither u or v, or both u and v have an adjacent (common) M -unmatched
vertex, then we arbitrarily add one of them to DM . In the latter case, the M -unmatched vertex
is common to u and v by the maximality of M .

Observe that DM is a dominating set in G and each M -unmatched vertex is 2-dominated by
DM . First of all, each M -matched vertex is dominated by another M -matched vertex. Secondly,
no two M -unmatched vertices can be adjacent because M is a maximum matching. Moreover,
since d ≥ 3, each M -unmatched vertex is adjacent to the endpoints of at least two different edges
in M . Now, due to the structure of DM , each M -unmatched vertex is at least 2-dominated.

Let us next construct graph G′ by removing each edge e ∈ E(G)\M with both endpoints in M -
matched vertices. Now, |IG′(DM ;u)| = 1 for each M -matched vertex in V (G) and |IG′(DM ; v)| ≥ 2
for each M -unmatched vertex v. Thus, M -matched vertices have unique I-sets in G′.

Let w and w′ be two M -unmatched vertices with identical I-sets. If 2 ≤ |I(DM ;w)| =
|I(DM ;w′)| ≤ d − 1, then w is adjacent to vertices u and v with uv ∈ M and, say, u ∈ DM

and v 6∈ DM . Moreover, we also have u ∈ N(w′). But now we could have chosen uw′ and vw in
our matching M which is a contradiction to the maximality of M .

Let us then assume that |I(DM ;w)| = |I(DM ;w′)| = d and I(DM ;w) = I(DM ;w′) =
{u1, . . . ud}. Thus, w and w′ are twins. Let us then count the maximum number, N , of M -
unmatched vertices which are adjacent to at least two of vertices in I(DM ;w). Each vertex in
I(DM ;w) is adjacent in G to at least one M -matched vertex, u and v. Hence, there might be at
most d−3 other adjacent M -unmatched vertices. Hence, we have N ≤ d(d−3)/2+2. Furthermore,
there are exactly 2d − d− 1 subsets of I(DM ;w) of cardinality at least two. Since d ≥ 3, we have
2d − d− 1 > d(d− 3)/2+ 2. Thus, we may go through each M -unmatched vertex one by one and
if an M -unmatched vertex w has an I-set identical to some other (M -unmatched) vertex, then
there exists a set of adjacent edges which can be removed so that w has a unique I-set afterwards.
Therefore, we may construct a spanning subgraph G′′ with the property γLD(G

′′) ≤ α′(G). Hence,
the claim follows by Lemma 12.
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4 Worst orientation

We next focus on the worst possible orientation. We again start with basic results. Then, we

study the lower bound
→

ΓLD(G) ≥ γLD(G)/2 that we prove to be true for several classes of graphs
and let it open in general. Finally, we consider lower bounds using the number of vertices.

4.1 Basic results

Let us start by first showing some lower bounds that are used all along the section. The maximum

average degree of a graph G, denoted by mad(G) is the maximum quantity 2|E(H)|
|V (H)| over all the

subgraphs H of G.

Lemma 30. Let G be a graph of order n. Then,

1.
→

ΓLD(G) ≥ α(G),

2.
→

ΓLD(G) ≥ ⌈ω(G)/2⌉,

3.
→

ΓLD(G) ≥ 2n/⌈mad(G)/2 + 3⌉.

Proof. Let G be a graph on n vertices. Point 1 has already been noticed for the worst orientation
for dominating sets (see [6]) and thus, is still true for locating-dominating sets. We repeat here
the argument. Take an independent set X of size α(G) and orient all the edges with an endpoint
in X from X to V \X . Then, all the vertices in X are sources and thus, must be in any locating
dominating set.

Let us next prove the second point. Let Km be a clique of G. Consider an orientation D such
that each edge is oriented away from Km and the edges inside Km are oriented in a transitive way.
In a locating-dominating set S of D, no vertices outside Km can be in the in-neighbourhoods of
the vertices of Km. Thus, S must induce a locating-dominating set in Km. Since Km is oriented
in a transitive way, by [13], we necessarily have at least ⌈m/2⌉ vertices in V (Km)∩S and so in S.

Let us prove the last point. To do so, let us show that γLD(D) ≥ 2n/(∆+(D) + 3) for
any orientation D of G. Let C be a locating-dominating set of D. For each vertex c ∈ C, let
s(c) =

∑

v∈N+[c] 1/|N−[v]|. Since C is dominating in D, we have
∑

c∈C s(c) = n. Moreover, for
any c ∈ C, at most two vertices in N+[c] have only c in their I-sets (at most one vertex outside c
and maybe c). Thus, s(c) ≤ 2 + (∆+(D)− 1)/2. Now,

n =
∑

c∈C

s(c) ≤ |C|3 + ∆+(D)

2
.

Hence, |C| ≥ 2n/(3+∆+(D)). So Point 3 follows since each graph has an orientation D′ such that
∆+(D′) ≤ ⌈mad(G)/2⌉ by [20].

Observe that all the bounds are tight. Indeed, we see in Corollary 35 that for some bipartite

graphs
→

ΓLD(G) = α(G). Moreover, for a complete graph Kn, we have
→

ΓLD(Kn) = ⌈n/2⌉, by

Corollary 6. Finally, we will see (Corollary 36) that for a cycle on n vertices we have
→

ΓLD(Cn) =
⌈n/2⌉.

We now present three general upper bounds for
→

ΓLD(G). We denote by ad(G) the average
degree of G and by α2(G) the maximum size of an independent set at 2-distance, that is a set of
vertices such that any two vertices of the set are at distance greater than 2.

Lemma 31. Let G be a graph of order n. Then,

1.
→

ΓLD(G) ≤ n− α2(G);
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2.
→

ΓLD(G) ≤ n−
⌊

ω(G)
2

⌋

;

3.
→

ΓLD(G) ≤ n−
⌊

n
2n−2ad(G)

⌋

.

Proof. Let G be a graph on n vertices and D be an orientation of G such that γLD(D) =
→

ΓLD(G).
Let S be a maximum independent set at 2-distance in G. Observe that, for any two distinct
vertices u, v ∈ S, we have N [u] ∩ N [v] = ∅. Let us construct set S′ by adding, for each vertex
u ∈ S, either u to S′ if u has no out-neighbours in D or an out-neighbour of u if u has one in D.
Now, one can easily check that C = V \ S′ is a locating-dominating set of G of size n− α2(G).

Let us next prove 2. Let K be a maximal clique in G and let CK be an optimal locating-
dominating set in D[K]. Now, C = CK ∪ (V (G) \K) is a locating-dominating set of D. Further-
more, |CK | ≤ ⌈ω(G)/2⌉ by Theorem 5 and hence, the claim follows.

Let us finally prove the third bound. We have

→

ΓLD(G) ≤ n− ⌊ω(G)/2⌋ = n− ⌊α(G)/2⌋ ≤ n− ⌊n/(2ad(G) + 2)⌋ = n− ⌊n/(2n− 2ad(G))⌋.

Here the second inequality is due to Caro-Wei lower bound for independence number [5, 32] and
the last equality is due to equality ad(G) + ad(G) = n− 1.

All these bounds are tight: the first bound is tight for stars and the two others for complete
graphs.

We still have
→

ΓLD(G) ≤ n− 1 as soon as G has at least one edge. As in the case of
→
γ LD(G),

we can characterize the set of graphs reaching
→

ΓLD(G) = n− 1 using Theorem 3.

Lemma 32. For a connected graph G,
→

ΓLD(G) = n− 1 if and only if at least one of the following
conditions holds:

1. n = 3;

2. G is a star;

3. G consists of a complete bipartite graph and possibly a single universal vertex.

Proof. By Theorem 3, we have
→

ΓLD(G) = n − 1 if n = 3 or G is a star. Moreover, since we
consider oriented graphs, the third condition of Theorem 3 implies that C must be of size one.
Thus, the claim follows.

Cycles on four vertices have a special role for best orientations. It is also the case for worst
orientations, as illustrated by the following results.

Lemma 33. Let G be a graph without C4 as a subgraph. Then,
→

ΓLD(G) ≤
→

ΓLD(G − e) for any
edge e ∈ E(G).

Proof. Let G be a graph without C4 and with at least one edge. Let D be an orientation such

that γLD(D) =
→

ΓLD(G). By contradiction, assume that
→

ΓLD(G − e) <
→

ΓLD(G). Then, we have
γLD(D − e) < γLD(D).

Let S be an optimal locating-dominating set in D−e. Since γLD(D−e) < γLD(D), S cannot be
a locating-dominating set in D. Because S is dominating in D−e, S is also dominating in D. Thus,
there are vertices u, v ∈ V (G) such that ID(v) = ID(u). Moreover, we have |ID(v)| = |ID(u)| ≥ 2.
Let {c1, c2} ⊆ ID(v). But now we have a cycle on four vertices u, c1, v and c2.

Note that Lemma 33 does not hold for C4. We have
→

ΓLD(C4) = 3 and
→

ΓLD(P4) = 2. The
bounds in the following lemma are tight for example for stars.
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Lemma 34. Let G be a graph without C4 as a subgraph. Then,

γLD(G) ≤
→

ΓLD(G) ≤ n− α′(G).

Proof. Let G = (V,E) be a graph without C4 as a subgraph. The lower bound follows from
Theorem 10. Let us prove the upper bound. Let M be a maximum matching in G and G′

be a graph we get from G by removing each edge not belonging to M . By Lemma 33, we

have
→

ΓLD(G) ≤
→

ΓLD(G′). Moreover, the graph G′ consists of isolated vertices and components
isomorphic to P2. Thus, a set S consisting of isolated vertices and a single vertex for each P2-

component is locating-dominating in G′ and
→

ΓLD(G′) = γLD(G′) = |S| ≤ n− α′(G).

Together with some classical results of König and Gallai, Lemma 34 permits to determine the

exact value of
→

ΓLD(G) for bipartite graphs without C4 (which in particular include all trees).

Corollary 35. Let G be a bipartite graph without C4 as a subgraph. Then,
→

ΓLD(G) = α(G).

Proof. Let G be a bipartite graph without C4. We have
→

ΓLD(G) ≥ α(G) by Lemma 30. By
[25], we have α′(G) = β(G) since G is bipartite. Moreover, by [15], we have α(G) + β(G) = n.

Hence, α(G) = n − α′(G). Now, we have, by Lemma 34,
→

ΓLD(G) ≤ n − α′(G) = α(G). Thus,

α(G) ≤
→

ΓLD(G) ≤ α(G).

Corollary 36. Let Cn be a cycle on n vertices. Let n = 3 or n ≥ 5. Then,

→

ΓLD(Cn) =
⌈n

2

⌉

.

Proof. By Lemma 33, we have
→

ΓLD(Cn) ≤
→

ΓLD(Pn) by Corollary 35 applied to Pn (where α(Pn) =
⌈

n
2

⌉

). Moreover, if we take a cyclic orientation of Cn, the set of vertices with an odd index number
forms an optimal locating-dominating set.

Observe that, for the path on n vertices, Pn, we have γLD(Pn) = ⌈2n/5⌉ for paths [30] while

we have
→

ΓLD(Pn) = α(Pn) = ⌈n/2⌉. As we mentioned above, there exist graphs without C4 with
→

ΓLD(G) > γLD(G). However, we are not aware of any graph G without C4 which does not attain
the upper bound of Lemma 34.

Open problem 37. Does there exist a graph G without C4 as a subgraph with
→

ΓLD(G) <
n− α′(G)?

4.2 Lower bound with γLD(G)

In Section 4.1, we have seen that
→

ΓLD(G) ≥ γLD(G) if G is without C4 subgraphs. One can easily
remark that this equality does not hold in general. For example, for complete graphs we have

γLD(Kn) = n− 1 and
→

ΓLD(Kn) = ⌈n/2⌉ by Corollary 6. However the clique example is somehow
unsatisfactory since all the vertices are twins. One can wonder if we can also provide an example

of twin-free graphs where
→

ΓLD(G) < γLD(G). We will prove (Theorem 43) that there are graphs

for which
→

ΓLD(G)/γLD(G) is arbitrarily close to 1/2. Moreover, we strengthen the result that
→

ΓLD(G) ≥ γLD(G) on graphs without C4 to a wider class of graphs (Lemma 41).

Despite our efforts, we were not able to find graphs for which
→

ΓLD(G) < γLD(G)/2. We leave
as an open problem the following question:

Open problem 38. Is it true that for every graph G,
→

ΓLD(G) ≥ γLD(G)/2?
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We were actually not able to prove the existence of any constant c such that, for any graph G,
→

ΓLD(G) ≥ c · γLD(G). However, in the following theorem we present a bound with ∆(G).

Theorem 39. Let G be a graph. Then,

→

ΓLD(G) ≥ γLD(G)

⌈log2 ∆(G)⌉ + 1
.

Proof. Let D be an orientation of G such that
→

ΓLD(G) = γLD(D). Moreover, let S be an optimal
locating-dominating set in D. Observe, that for each subset I of S, the set

SI = {v ∈ V (G) \ S | IG(S; v) = I}
contains at most ∆(G) vertices: |SI | ≤ ∆(G). Let us next construct a new orientation D1 by first
taking for each set SI , ⌊|SI |/2⌋ disjoint vertex pairs within the set SI , that is, as many disjoint
vertex pairs as possible. Then, we number each vertex of V (G) as ui, 1 ≤ i ≤ |V (G)| so that each
pair has consecutive numbers. Finally we orient each edge from ui to uj where i < j.

Let S1 be an optimal locating-dominating set for orientation D1. Notice that |S1| ≤
→

ΓLD(G).
Moreover, S′

1 = S ∪ S1 is a locating-dominating set in D and D1. Furthermore, S1 separates
each paired pair of vertices in D1. Thus, if for a pair ui, ui+1, vertex x separates ui and ui+1

in D1, then either x = ui+1 or it separates also ui and ui+1 in G. Moreover, for each I ′ ⊆ S′
1

such that I = I ′ ∩ S, we have that S′I′

1 ⊆ SI . Since S1 separates the pairs in G, we have that
|S′I′

1 | ≤ ⌊|SI |/2⌋ ≤ ⌊∆(G)/2⌋.
If we now iterate this process ⌈log2(∆(G))⌉ times, each time creating a new orientation with a

new numbering and a new optimal locating-dominating set for the orientation, then we finally get

set S′
t = S ∪⋃t

i=1 Si, where t = ⌈log2(∆(G))⌉, with |S′
t| ≤ ⌈log2(∆(G)) + 1⌉

→

ΓLD(G). Moreover,
because we (almost) halve the number of vertices with the same I-set in G each time, no vertices
in V \ S′

t share the same I-set with the set S′
t in G. Thus, S′

t is locating-dominating in G and

γLD(G) ≤ |S′
t| ≤ ⌈log2(∆(G)) + 1⌉

→

ΓLD(G).

4.2.1 Graphs for which
→

ΓLD(G) ≥ γLD(G)

Lemma 40. Let G be a graph and D be an orientation of G such that no C4 in G contains a
directed path of length 4 in D. Then, any locating-dominating set of D is a locating-dominating

set of G. In particular,
→

ΓLD(G) ≥ γLD(G).

Proof. Let G be a graph and D be an orientation of G such that no C4 in G contains a directed
path of length 4 in D. Let S be locating-dominating in D. Let us assume that S is not locating-
dominating in G. Set S is clearly dominating in G. Let v, u ∈ V \S be vertices with IG(v) = IG(u).
Since ID(v) 6= ID(u), we have |IG(v)| ≥ 2. Let us assume that c1 ∈ ID(v) \ ID(u) and c2 ∈ ID(u).
But now we have a directed path c2uc1v, a contradiction.

Let M and R be subgraphs of G. An (M,R)-WORM colouring [17] of graph G, is a colouring
of the vertices of G where no subgraph of G isomorphic to M is monochromatic and no subgraph
of G isomorphic to R is heterochromatic (i.e. has all its vertices of different colours). The following
lemma gives us a tool for applying Lemma 40.

Lemma 41. If G admits a (K2, C4)-WORM colouring, then
→

ΓLD(G) ≥ γLD(G).

Proof. Let G be a graph which admits a (K2, C4)-WORM colouring c using colours {1, . . . , k}.
Let D be the orientation such that we have an edge from u to v if c(u) < c(v). Since c is a

(K2, C4)-WORM colouring, it defines an orientation for any edge and
→

ΓLD(G) ≥ γLD(D). Hence,
it is enough to show that γLD(D) ≥ γLD(G).

We claim that no C4 in D contains a directed path of length 4. Indeed, if there is a directed
path u1u2u3u4, then c(u1) < c(u2) < c(u3) < c(u4) and if this path is contained in a C4, then this
C4 is heterochromatic, a contradiction. Then, the claim follows from Lemma 40.
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Observe that any proper colouring with at most three colours is also a (K2, C4)-WORM colour-
ing. Hence, we get the following corollary (where χ(G) denotes the chromatic number of G).

Corollary 42. Let G be a graph with χ(G) ≤ 3. Then,
→

ΓLD(G) ≥ γLD(G).

4.2.2 Worst examples

The following theorem ensures that there exist examples of twin-free graphs where we almost reach

the ratio 1
2 for

→

ΓLD(G)/γLD(G).

u3,1

u2,1

u1,1

u3,2

u2,2

u1,2

u3,3

u2,3

u1,3

v1,1

v2,1

v3,1

v1,2

v2,2

v3,2

v1,3

v2,3

v3,3

Figure 3: Example of graph G of Theorem 43 with t = k = 3.

Theorem 43. There exists an infinite family of twin-free graphs G such that

→

ΓLD(G)

γLD(G)

n→∞−→ 1

2
.

Proof. Let k, t ≥ 2 be integers and let Hk,t be the graph with vertex set

V (Hk,t) = {vi,j , ui,j | 1 ≤ i ≤ k, 1 ≤ j ≤ t}

and edge set

E(Hk,t) = {ui,jui′,j | i 6= i′} ∪ {ui,jui,j′ | j 6= j′} ∪ {vi,jvi′,j | i 6= i′} ∪ {vi,jui,j}

where we have 1 ≤ i ≤ k, 1 ≤ j ≤ t for each i and j. We illustrate graph H3,3 in Figure 3.
In other words, the set of vertices {vi,j | 1 ≤ i ≤ k} induces a clique V j

t for every j. Similarly,
the set of vertices {ui,j | 1 ≤ i ≤ k} induces a clique U j

t for every j and the set of vertices {ui,j |
1 ≤ j ≤ t} induces a clique U i

k for each i. In fact, the set of vertices ui,j , for 1 ≤ i ≤ k, 1 ≤ j ≤ t,
forms the Cartesian product Kt�Kk. Observe that Ht,k is twin-free since each vertex ui,j has a
unique neighbour vi,j and vice versa.

Let C be a locating-dominating set of Ht,k. If we have {vi,j , ui,j , vi′,j, ui′,j} ∩ C = ∅. Then,
I(vi,j) = I(vi′,j) and hence, we have a contradiction. Thus, γLD(Ht,k) ≥ (k − 1)t. On the other
hand, the set {vi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ t} forms a locating-dominating set and hence,

kt ≥ γLD(Ht,k) ≥ (k − 1)t.
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Let us then consider the oriented locating-dominating sets. Let D be an orientation of Ht,k

with
→

ΓLD(G) = γLD(D).
Let Sj be a 2-dominating set in the tournament U j

t for each j (i.e. each vertex outside Sj

is dominated twice). Let S′
i be a dominating set in the tournament U i

k \ ⋃t
j=1 Sj for each i in

the orientation D. Observe that |Sj | ≤ 2 log(t + 1) and |S′
i| ≤ log(k + 1) for each i and j by

[11]. Moreover, let Cj be an optimal locating-dominating set in the tournament V j
t . We have

|Cj | ≤ t/2.
Consider next the set C =

⋃t
j=1 Cj

⋃k
i=1 S

′
i

⋃t
j=1 Sj . We have

|C| ≤ kt/2 + 2k log(t+ 1) + t log(k + 1).

Observe that for each i and j, vertex ui,j is now 3-dominated by
⋃k

a=1 S
′
a∪

⋃t
b=1 Sb and ID(ui,j) 6=

ID(ui′,j′ ) where (i, j) 6= (i′, j′). Moreover, each vertex vi,j is located by the set Cj . Thus, C is a
locating-dominating set of D and

→

ΓLD(Hk,t) = γLD(D) ≤ kt/2 + 2k log(t+ 1) + t log(k + 1).

Finally, if we choose an orientation of Hk,t such that each edge from vi,j is oriented to ui,j

and such that all the cliques V j
t are oriented transitively, we notice that we need at least t⌈k/2⌉

vertices in C.
Thus,

→

ΓLD(Hk,t)

γLD(Hk,t)
≤ kt/2 + 2k log(t+ 1) + t log(k + 1)

(k − 1)t

and
→

ΓLD(Hk,t)

γLD(Hk,t)
≥ t⌈k/2⌉

kt
≥ 1

2
.

When k → ∞ and t → ∞,
→

ΓLD(Hk,t)/γLD(Hk,t) → 1
2 .

4.3 Lower bound with the number of vertices

In this subsection, we consider how small
→

ΓLD(G) can be compared to the number of vertices.
For the best orientation and the undirected case, there exist many graphs reaching the theoretical
lower bound in Θ(logn) (see Theorem 7). For the worst orientation, we did not find any graph

with
→

ΓLD(G) of order logn.

Open problem 44. Does there exist a class of graphs G such that for any G ∈ G on n vertices

the value
→

ΓLD(G) is logarithmic on n?

We have three reasons to believe there is a positive answer for Open problem 44. First, most of
the other types of locating-dominating parameters can achieve logarithmic values on n. Secondly,
we did not find a non-logarithmic lower bound. Thirdly, A natural class of candidates would be
(Erdős-Renyi) random graphs where an unoriented locating-dominating set has indeed logarithmic
size [14]. However, the worst orientation of such a graph is not easy to manipulate and then we

were not able to study efficiently upper bounds on
→

ΓLD(G).
On the other hand, in the following we give some properties which deny the possibility for a

graph class G to have a logarithmic lower bound on n. Together with a well-known conjecture and
an open problem, if they have a positive solution, these properties mean that if G has a certain
type of a forbidden subgraph characterization, then it does not have a logarithmic lower bound

for
→

ΓLD(G). In the following, we discuss these ideas and give some polynomial lower bounds for
→

ΓLD(G) in some graph classes.
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Lemma 30 gives a linear lower bound for
→

ΓLD(G) in n for classes of graphs which have their
chromatic number bounded by a constant since α(G) ≥ n/χ(G) and for classes of graphs with
cliques of linear size. These results can be extended to obtain bounds in Ω(nβ) where β is a
constant when a class of graphs G is χ-bounded by a polynomial function, that is, if there exists
a polynomial function f such that χ(G) ≤ f(ω(G)) holds for all G ∈ G. Note that it has been
asked [23] if it is true that every χ-bounded class admits a χ-bounding function that is polynomial.
Moreover, Gyárfas [19] has conjectured that if the graph class G is F -free for some forest F , then
G is χ-bounded.

Theorem 45. Let G be a class of graphs χ-bounded by a function f : x 7→ xc where c is a constant.
Then, for any G ∈ G with n vertices, we have:

→

ΓLD(G) ≥ 2−c/(c+1) · n 1
c+1 .

Proof. Let G ∈ G. By Lemma 30, we have
→

ΓLD(G) ≥ ω(G)/2 ≥ χ(G)1/c/2 and
→

ΓLD(G) ≥
α(G) ≥ n/χ(G). Thus,

→

ΓLD(G) ≥ max{n/χ(G), χ(G)1/c/2}. This value attains its minimum
when n/χ(G) = χ(G)1/c/2. In other words, when χ(G) = (2n)c/(c+1). This gives the claim.

Theorem 45 applies in particular for perfect graphs for which f is the identity function. Hence,
if G is a perfect graph, then

→

ΓLD(G) ≥
√

n

2
. (2)

Theorem 45 can also be used to get a lower bound, for example, for claw-free graphs. In [8],
the authors have shown that if G is a connected claw-free graph with an independent set of size

at least 3, then χ(G) ≤ 2ω(G). Thus,
→

ΓLD(G) ≥ √
n/2. Similar idea works also for C3-free

graphs. In [24], the author has shown that if G is C3-free, then α(G) ∈ Ω(
√
n logn). Thus, also

→

ΓLD(G) ∈ Ω(
√
n logn).

Finally, we end the chapter by giving a class of perfect graphs which shows that Bound (2) is
tight within a logarithmic multiplier. We denote by G�H the cartesian product of G and H .

Theorem 46. Let m be an integer. Then, m ≤
→

ΓLD(Km�Km) ≤ 3m log(m+ 1).

Proof. Let us denote the vertices of G = Km�Km by V (G) = {(vi, uj) | 1 ≤ i, j ≤ m}. Moreover,
we have (vi1 , uj1)(vi2 , uj2) ∈ E(G) if i1 = i2 or j1 = j2. There are 2m cliques, each of size m in G
and every vertex belongs to exactly two of these cliques. We have ω(Km�Km) = χ(Km�Km) =

m. Thus, m ≤
→

ΓLD(Km�Km) and G is perfect.

Let D be an orientation of G such that
→

ΓLD(G) = γLD(D). Similarly, as in the proof of
Theorem 43, we again construct a dominating set for each clique {(vi, uj) | 1 ≤ i ≤ m} where j
is fixed and a 2-dominating set for each clique {(vi, uj) | 1 ≤ j ≤ m} where i is fixed. Observe
that, in D, each dominating set has cardinality of at most log(m + 1) ([11]) and hence, each
2-dominating set has cardinality of at most 2 log(m + 1). Since we have m dominating sets and

m different 2-dominating sets, we have
→

ΓLD(Km�Km) ≤ 3m log(m+ 1).
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