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ABSTRACT 

Deep Brain Stimulation (DBS) is an increasingly common therapy for a large range of 

neurological disorders, such as abnormal movement disorders. The effectiveness of DBS in terms 

of controlling patient symptomatology have made this procedure increasingly used over the past 

few decades. Concurrently, the popularity of Machine Learning (ML), a subfield of artificial 

intelligence, has skyrocketed and its influence has more recently extended to medical domains 

such as neurosurgery. Despite its growing research interest, there has yet to be a literature review 

specifically on the use of ML in DBS. We have followed a fully systematic methodology and to 

obtain a corpus of 73 papers. In each paper, we identified the clinical application, the type/amount 
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of data used, the method employed, and the validation strategy of each paper, further decomposed 

into 12 different sub-categories. The papers overall illustrated some existing trends in how ML is 

used in the context of DBS, including the breath of the problem domain and evolving techniques, 

as well as common frameworks and limitations. This systematic review analyzes at a broad level 

how ML have been recently used to address clinical problems on DBS, giving insight into how 

these new computational methods are helping to push the state-of-the-art of functional 

neurosurgery. DBS clinical workflow is complex, involves many specialists, and raises several 

clinical issues which have partly been addressed with artificial intelligence. However, several 

areas remain and those that have been recently addressed with ML are by no means considered 

“solved” by the community nor are they closed to new and evolving methods. 

1. Introduction

Deep Brain Stimulation (DBS) is a neurosurgical procedure, introduced in 1987 by Pr. 

Benabid [1], in which electrodes are implanted into deep regions of the brain to correct for 

abnormal neural behavior. Continuous stimulation of these regions typically greatly enhances the 

quality of life of the patient by reducing the severity their symptoms. Parkinson’s Disease (PD), 

Essential Tremor (ET), dystonia, Tourette’s syndrome or Obsessive Compulsive Disorders (OCD) 

are all among the pathologies now commonly treated using DBS, and the most commonly targeted 

structures are the bilateral Ventral Intermediate nucleus of the thalamus (VIM), Globus Pallidus 

internus (GPi) and Subthalamic Nucleus (STN). 

DBS interventions have a complex clinical workflow, involving several steps (presented in 

Figure 1) that involve many challenges, both clinical challenges and challenges for the use of 

computer assistance. A large amount of expertise and domain knowledge is crucial for the success 



of this procedure, and computer-assisted tools, referred to as Computational Decision Support 

System (CDSS), have been designed to support clinicians in neurosurgery since the 1980s [2]. 

CDSS’s are commonly divided in two categories: knowledge-based and non-knowledge-based. In 

knowledge-based CDSS’s, the tool’s intelligence is explicitly integrated into the system by a 

human, often the system programmer. Decision rules are explicitly programmed according to 

medical domain knowledge such as guidelines and definitions [3], and the purpose of the CDSS is 

solely to retrieve the data, to evaluate the rule and to display the result with an User Interface (UI). 

In non-knowledge-based CDSS’s, machine learning replaces expert medical knowledge in order to 

address new challenges and to reach new levels of performance: the intelligence is implicitly 

generated by learning from a database using  Machine Learning (ML) tools designed by data 

scientists, without requiring external domain knowledge. 

Figure 1: Surgical workflow of a typical DBS, composed of four majors steps. 

The term ‘machine learning’ appeared for the first time in 1959 in the works of Samuel et 

al. [4]. It is a branch of Artificial Intelligence (AI) which consists in constructing an algorithm that 

learns how to perform a task using a database of experiences without requiring any explicit 

programming of the user or knowledge of the task. On its most common form, called supervised 

learning, it consists in predicting an output from a set of inputs, called features. To model the link 

between the inputs and the output, the algorithm processes a dataset of multiple known pairs of 

inputs and output. If the training has been successful, the trained model should predict the 

unknown output of a new sample from its known inputs. The other common form of machine 

learning is called unsupervised learning, where there is no specific output to predict. In this case, 



the model performs a task, such as clustering, based solely on the set of inputs without an explicit 

function determining the applicability of the learned representations to the larger problem. Thus, 

these unsupervised methods require some additional programming to apply the results of the ML 

model to a particular clinical problem 

One common use of ML models in CDSS’s is to automate a process that would otherwise 

be performed by a human operator, such as determining the location of a DBS electrode for 

example. Another use is to predict the outcome of the stimulation itself, allowing the clinical team 

to explore a broader array of alternatives in a non-invasive manner. 

The interest of ML to assist clinicians in healthcare has been underlined for a long time. 

Celtikci et al. [5] and Bulchlak et al. [6] conducted systematic reviews of the utilization of ML to 

assist the decision-making in neurosurgery. They highlighted how ML can outperform some 

traditional statistical methods for the analysis of retrospective data, for example by leveraging 

non-linearities in high-dimensional and large databases. Senders et al. [7] also conducted a review 

of the utilization of ML in neurosurgery. They also underlined the applicability of ML in 

neurosurgical care, notably by saying that “In the last few decades, the volume and complexity of 

bio-medical data have grown beyond the physician’s ability to extract all meaningful data patterns 

using conventional statistical methods alone. [...] The complex diagnostic and therapeutic 

modalities used in neurosurgery provide a vast amount of data that is ideally suited for ML 

models.” [7] In another review, they compared the performance of ML to human experts for 

diagnosis, surgical planning, and outcome prediction in neurosurgery [8]. They concluded that 

machine intelligence had overall superior results, but pointed out a publication bias which tends to 

overestimate the performance of ML, as negative results are less likely to be published. 

These reviews have elucidated the current and potential use cases of ML in neurosurgery, 



highlighting interesting ML applications, but none of them focused specifically on DBS. The use 

of ML in DBS is a broad area of research as the methods, data modalities and clinical problems 

addressed are numerous. In order to draw a landscape of this research field, extracting major 

trends, better identifying recurring methodological limits, we conducted a systematic review 

focused on ML in DBS, answering the broad question of how ML is currently used to address 

clinical problems in DBS. 

The next sections will present the methodology used to compile a corpus of paper to 

analyse, the data acquired from each paper, the results of said analysis, and a discussion about 

these results. 

Figure 2: Workflow to select the corpus of 73 papers to classify. 

2. Material and Methods

We performed this systematic review by following the Preferred Reporting Items for 

Systematic review and Meta-Analysis Protocols (PRISMA-P) [9] relevant and applicable 

recommendations. Figure 2 presents the workflow used to select papers for further analysis. 

Initial literature selection strategy 

We researched relevant papers in the literature through three queries on two search 

engines, on September 18th 2021: 

• PubMed, with MeSH method, with the following query: (“Machine Learning”[Mesh]

OR “Artificial Intelligence”[MeSH:noexp] OR “Neural Networks, Computer”[MeSH]) 

AND “Deep Brain Stimulation”[Mesh] 



• Google Scholar, with the following query: (“machine learning” OR “deep learning” OR

“neural networks” OR “data-driven” OR “learning-based” OR “artificial 

intelligence”)(“deep brain stimulation”) 

• Google Scholar, with the following query: (“prediction”)(“deep brain stimulation”)

We chose to use PubMed with MeSH method as it is a proven way of browsing papers in 

medical research, providing that they are tagged with the appropriate MeSH terms. We did not add 

the MeSH term ‘Deep Learning’ to the query as it is already included in the ‘Machine Learning’ 

hierarchy. We turned off automatic explosion of the MeSH term ‘Artificial Intelligence’ in order 

not to include other unrelated topics such as ‘Robotics’. We made two different queries on Google 

Scholar as it is more comprehensive than PubMed. The first one was composed of targeted 

keywords, and the second one consisted of a broader term (‘prediction’) in order to include 

additional papers that could have been missed by the first two queries. Due to the high number of 

papers returned by queries on Google Scholar, we analyzed the results page by page and stopped 

when we retained no new papers on two consecutive pages after title and abstract screening (the 

results being sorted by relevance). We decided not to merge both Google Scholar queries into a 

single as the term ‘prediction’ is broad and returned a lot of irrelevant papers. Therefore, including 

this term in the first Google Scholar query could have made relevant items sparser. 

In order to keep a fully systematic methodology, to avoid flaws in the results and to make 

our screening method reproducible, we chose not to manually include additional papers in the 

corpus. 

Selection process 

The first author screened each paper by reading the title and abstract with the following 



criteria: 

• The paper must be methodological, ı.e. validate at least one method.

• ML must be at the heart of the methodology employed.

• The paper must be validated on patients. Papers validated with synthetic data, or using a

non-human cohort were discarded. 

• It must address a clearly identified clinical problem.

• The paper must be peer-reviewed. If we couldn’t obtain the published version, the

pre-print version was used. Thesis manuscripts and reviews were discarded. 

• It must be written in English.

The number of papers returned by each query and the number of papers kept after title and 

abstract screening is indicated in Figure 2. We merged the results provided by the three queries, 

removed duplicates, and obtained a corpus of 117 papers. The first author then re-screened each 

paper by reading the full text according to the same selection criteria. 44 papers were discarded 

(notably six papers for being a preliminary version of another retained paper). 

Figure 3: Data was acquired concerning four classes: data used, clinical application, method, and 

validation. These classes can be composed of several items. 

Data obtained from each paper 

Each of the 73 papers in the final corpus was described according to four classes, as 

presented on Figure 3. The ‘data’ class describes the cohort used in the experiment, as well as the 

nature of the inputs of the ML model. We evaluated the following items: 

• The input data modality type, such as imaging or Micro-electrode Recordings (MER).



• The number of patients in the cohort.

• The pathology of the patients in the cohort, such as PD or ET.

The ‘application’ class corresponds to the clinical problem addressed. We evaluated the 

following items: 

• The stage of the DBS workflow this problem is encountered, using the instances

‘screening’, ‘planning’, ‘surgery’ and ‘post-op’, as showed in Figure 1. 

• The nature of the task that has to be addressed by the method, such as ‘classification’,

‘segmentation’, ‘regression’ or ‘clustering’. 

The ‘method’ class describes the specific ML algorithm or framework employed in the 

paper and is composed of the following items: 

• The method used to handle input data, decomposed into three sub-items: the data

compression method used (if any), whether or not an automatic feature selection method 

was employed, and if the method is feature-based in which the input data was 

transformed into a synthetic set of features requiring a significant amount of feature 

engineering. For example, we did not consider common domain transformations (such 

as the Fourier or wavelet domains) as feature-based unless additional operations were 

performed on said domain which would require additional domain knowledge (such as 

the selection of particular frequency bands). 

• The ML model used to perform the task (ie. the classification, the regression, etc.). If

several models were benchmarked, we only reported the one(s) giving the better results 

or the one(s) highlighted in the paper’s abstract, discussion and conclusion sections. 

The ‘validation’ class describes how the methods were evaluated, according to the following 

items: 



• The method employed to split the data between training and testing sets, such as

‘hold-out’ or ‘LOOCV’. 

• Whether or not the validation method is performed in a patient-wise manner, implying

that data collected from a single patient cannot be simultaneously in the training set and 

the testing set. 

• The primary metric used to evaluate the performance of the method(s). If several

metrics were used, we reported the one highlighted in the paper’s abstract, discussion 

and conclusion sections, or the one the most extensively used in the experiments. 

3. Results

Data obtained from each study was recorded on an Excel spreadsheet and is reproduced in 

Tables 1 and 2. 

Paper Data Application 

Input Modality C. size Pathology Phase Task 

Orozco et al. 

(2006) [10] 

MER PD surgery class. 

Muniz et al. 

(2009) [11] 

external sensors 45 PD post-op. class. 

Wong et al. 

(2009) [12] 

MER 27 PD surgery clust. 

Wu et al. (2010) LFP 1 PD post-op. class. 



[13] 

Guillén et al. 

(2011) [14] 

MER 4 PD surgery class. 

Shukla et al. 

(2012) [15] 

external sensors 2 PD post-op. class. 

Loukas et al. 

(2012) [16] 

LFP 1 PD post-op. class. 

Jiang et al. 

(2013) [17] 

LFP 9 PD post-op. class. 

Niketeghad et 

al. (2014) [18] 

LFP 9 PD post-op. class. 

Connolly et al. 

(2015) [19] 

LFP 15 PD post-op. class. 

Shamir et al. 

(2015) [20] 

clinical, 

imaging, 

stimulation, 

MER 

10 PD post-op. class. 

Rajpurohit et al. 

(2015) [21] 

MER 26 PD surgery class. 

Kim et al. 

(2015) [22] 

imaging 46 PD planning reg. 

Khobragade et 

al. (2015) [23] 

external sensors 1 PD post-op. class. 



Yohanandan et 

al. (2016) [24] 

external sensors 9 ET post-op. class. 

Baumgarten et 

al. (2016) [25] 

imaging, 

stimulation 

10 PD planning class. 

Liu et al. (2016) 

[26] 

imaging 100 PD planning reg. 

Kostoglou et al. 

(2016) [27] 

clinical, 

imaging, MER 

20 PD surgery class. 

Guillén et al. 

(2016) [28] 

MER 5 PD surgery class. 

Baumgarten et 

al. (2016) [29] 

imaging, 

stimulation 

20 PD planning class. 

Angeles et al. 

(2017) [30] 

external sensors 7 PD post-op. class. 

Houston et al. 

(2017) [31] 

ECoG 1 ET post-op. class. 

Milletari et al. 

(2017) [32] 

imaging 89 N/C planning seg. 

Valsky et al. 

(2017) [33] 

MER 81 PD surgery reg. 

Mohammed et 

al. (2017) [34] 

LFP 9 PD post-op. class. 

Golshan et al. LFP 9 PD post-op. class. 



(2018) [35] 

Baumgarten et 

al. (2018) [36] 

imaging, 

stimulation 

30 PD planning class. 

Khosravi et al. 

(2018) [37] 

MER 20 PD surgery class. 

LeMoyne et al. 

(2018) [38] 

external sensors 1 PD post-op. class. 

Cardona et al. 

(2018) [39] 

MER 5,4 PD surgery class. 

Khobragade et 

al. (2018) [40] 

external sensors 2 mixed post-op. class. 

Oliveira et al. 

(2018) [41] 

external sensors 38 PD inc., post. class. 

Shah et al. 

(2018) [42] 

LFP 7 PD post-op. class. 

Yao et al. 

(2018) [43] 

LFP 12 PD post-op. class. 

Golshan et al. 

(2018) [44] 

LFP 3 PD post-op. class. 

Wang et al. 

(2018) [45] 

LFP 12 PD post-op. class. 

Houston et al. 

(2018) [46] 

ECoG 3 ET post-op. class. 



Koch et al. 

(2019) [47] 

EEG 40 PD screening class. 

Kim et al. 

(2019) [48] 

imaging 80 PD planning seg. 

Chen et al. 

(2019) [49] 

LFP 12 PD post-op. class. 

Tan et al. 

(2019) [50] 

LFP 7 ET post-op. class. 

Park et al. 

(2019) [51] 

imaging 102 mixed planning seg. 

LeMoyne et al. 

(2019) [52] 

external sensors 1 ET post-op. class. 

Klempíř et al. 

(2019) [53] 

MER 58 PD surgery class. 

Stuart et al. 

(2019) [54] 

EEG 16 mixed post-op. class. 

Habets et al. 

(2019) [55] 

clinical 90 PD screening class. 

Camara et al. 

(2019) [56] 

LFP 4 PD post-op. class. 

Singer et al. 

(2019) [57] 

clinical, 

imaging 

114 PD planning reg. 

Bermudez et al. imaging 187 mixed planning class. 



(2019) [58] 

Ciecierski et al. 

(2019) [59] 

MER 115 PD surgery clust. 

Mohammed et 

al. (2020) [60] 

LFP 9 PD post-op. class. 

Hosny et al. 

(2020) [61] 

MER 17 PD surgery class. 

Farrokhi et al. 

(2020) [62] 

clinical 501 mixed screening class. 

Valsky et al. 

(2020) [63] 

MER 42 mixed surgery class. 

Baxter et al. 

(2020) [64] 

imaging 9 N/C planning reg. 

Shah et al. 

(2020) [65] 

clinical, 

imaging, TMS 

133 dystonia screening class. 

Shang et al. 

(2020) [66] 

imaging 50 PD screening reg. 

Golshan et al. 

(2020) [67] 

LFP 10 PD post-op. class. 

Khosravi et al. 

(2020) [68] 

MER 100 PD surgery class. 

Lu et al. (2020) 

[69] 

MER 16 PD surgery class. 



Peralta et al. 

(2020) [70] 

MER 57 PD surgery class. 

Yao et al. 

(2020) [71] 

LFP 12 PD post-op. class. 

Karthick et al. 

(2020) [72] 

MER 26 PD surgery class. 

Park et al. 

(2021) [73] 

MER 34 PD surgery class. 

Peralta et al. 

(2021) [74] 

clinical, 

imaging 

196 PD screening reg. 

Boutet et al. 

(2021) [75] 

imaging 67 PD post-op. class. 

Hosny et al. 

(2021) [76] 

MER 21 PD surgery class. 

Martin et al. 

(2021) [77] 

MER 57 PD surgery class. 

Martin et al. 

(2021) [78] 

MER 57 PD surgery class. 

Baxter et al. 

(2021) [79] 

imaging 10 N/C planning seg. 

Geraedts et al. 

(2021) [80] 

EEG 40 PD screening class. 

Liebrand et al. imaging 57 OCD screening class & reg. 



(2021)[81] 

Solomon et al. 

(2021) [82] 

imaging 101 mixed planning seg. 

Table 1 

Data obtained from each of the 55 papers in the corpus for the ‘data’ and ‘application’ classes. 

Paper Method Validation 

Dim. Red. Model Data splitting Patient-wise? Metrics 

Orozco et al. 

(2006) [10] 

PCA, FB HMM LOOCV no/not 

specified 

accuracy 

Muniz et al. 

(2009) [11] 

PCA, FS ANN hold-out yes AUC-ROC 

Wong et al. 

(2009) [12] 

FB unsupervised hold-out yes MAE 

Wu et al. 

(2010) [13] 

PCA, FB ANN hold-out no/not 

specified 

accuracy 

Guillén et al. 

(2011) [14] 

FB SVM k-CV no/not 

specified 

accuracy, 

kappa 

Shukla et al. 

(2012) [15] 

FB ANN hold-out no/not 

specified 

accuracy, 

sensitivity 

Loukas et al. 

(2012) [16] 

FB ANN none no/not 

specified 

accuracy 

Jiang et al. 

(2013) [17] 

FB HMM hold-out no/not 

specified 

accuracy 



Niketeghad et 

al. (2014) [18] 

PCA SVM, kNN k-CV no/not 

specified 

accuracy 

Connolly et al. 

(2015) [19] 

FB, FS SVM LOOCV no/not 

specified 

nb. errors 

Shamir et al. 

(2015) [20] 

FB SVM, RF, EL, 

NB 

LOOCV no/not 

specified 

accuracy 

Rajpurohit et 

al. (2015) [21] 

FB, FS kNN LOOCV yes accuracy 

Kim et al. 

(2015) [22] 

FB, FS EL hold-out yes MSE 

Khobragade et 

al. (2015) [23] 

FB ANN hold-out no/not 

specified 

R-ratio, 

sensitivity, 

accuracy 

Yohanandan et 

al. (2016) [24] 

FB RF k-CV no/not 

specified 

kappa 

Baumgarten et 

al. (2016) [25] 

none ANN k-CV no/not 

specified 

kappa 

Liu et al. 

(2016) [26] 

FB RF k-CV yes MAE 

Kostoglou et 

al. (2016) [27] 

FB, FS RF bootstrapping yes MCC 

Guillén et al. 

(2016) [28] 

FB ANN hold-out no/not 

specified 

accuracy 



Baumgarten et 

al. (2016) [29] 

none ANN LOOCV yes sensitivity, 

specificity, 

precision, 

NPV, kappa 

Angeles et al. 

(2017) [30] 

FB kNN k-CV no/not 

specified 

accuracy 

Houston et al. 

(2017) [31] 

FB LogReg k-CV no/not 

specified 

accuracy, 

sensitivity, 

specificity 

Milletari et al. 

(2017) [32] 

none CNN hold-out yes dice, failure 

rate, CMD 

Valsky et al. 

(2017) [33] 

FB, FS SVM, HMM hold-out yes MAE 

Mohammed et 

al. (2017) [34] 

MRM kNN hold-out no/not 

specified 

F1 

Golshan et al. 

(2018) [35] 

PCA SVM, EL LOOCV no/not 

specified 

accuracy 

Baumgarten et 

al. (2018) [36] 

none ANN LOOCV yes sensitivity, 

specificity 

Khosravi et al. 

(2018) [37] 

none SVM k-CV no/not 

specified 

accuracy 

LeMoyne et al. 

(2018) [38] 

FB ANN k-CV no/not 

specified 

accuracy 



Cardona et al. 

(2018) [39] 

FB GPR hold-out no/not 

specified 

accuracy, 

AUC-ROC 

Khobragade et 

al. (2018) [40] 

FB ANN hold-out no/not 

specified 

accuracy, 

sensitivity, 

beta ratio 

Oliveira et al. 

(2018) [41] 

t-SNE,FB SVM hold-out no/not 

specified 

accuracy, 

AUC-ROC 

Shah et al. 

(2018) [42] 

FB LogReg k-CV no/not 

specified 

AUC-ROC 

Yao et al. 

(2018) [43] 

FB, FS XGB k-CV no/not 

specified 

AUC-ROC 

Golshan et al. 

(2018) [44] 

PCA SVM not specified no/not 

specified 

accuracy, 

precision, 

sensitivity, 

AUC-ROC 

Wang et al. 

(2018) [45] 

FB LDA hold-out no/not 

specified 

accuracy, 

sensitivity 

Houston et al. 

(2018) [46] 

none LogReg k-CV no/not 

specified 

accuracy, 

sensitivity 

Koch et al. 

(2019) [47] 

FB, FS RF k-CV yes accuracy, 

AUC-ROC, 

precision, 

sensitivity 



Kim et al. 

(2019) [48] 

FB RF LOOCV yes dice, MSD, 

MAE 

Chen et al. 

(2019) [49] 

FB, FS SVM hold-out no/not 

specified 

accuracy, 

sensitivity, 

specificity 

Tan et al. 

(2019) [50] 

FB LogReg hold-out no/not 

specified 

AUC-ROC 

Park et al. 

(2019) [51] 

none CNN hold-out yes accuracy, Dice, 

IoU 

LeMoyne et al. 

(2019) [52] 

FB SVM, HMM, 

kNN, LogReg 

k-CV no/not 

specified 

accuracy 

Klempíř et al. 

(2019) [53] 

none CNN hold-out no/not 

specified 

accuracy, 

MCC, 

AUC-ROC 

Stuart et al. 

(2019) [54] 

PCA, FB, FS SVM, RF k-CV yes accuracy, F1, 

precision, 

sensitivity 

Habets et al. 

(2019) [55] 

none LogReg k-CV yes AUC-ROC, 

accuracy, 

sensitivity, 

FPR 

Camara et al. 

(2019) [56] 

FB SVM k-CV no/not 

specified 

accuracy, 

sensitivity, 



specificity 

Singer et al. 

(2019) [57] 

FB, FS SVM hold-out yes MAE 

Bermudez et 

al. (2019) [58] 

none CNN k-CV yes AUC-ROC, 

sensitivity, 

specificity 

Ciecierski et al. 

(2019) [59] 

FB unsupervised training set no/not 

specified 

sensitivity, 

specificity 

Mohammed et 

al. (2020) [60] 

FS SVM hold-out no/not 

specified 

MCC, WCE 

Hosny et al. 

(2020) [61] 

FB LSTM hold-out yes accuracy, 

sensitivity, 

specificity 

Farrokhi et al. 

(2020) [62] 

FS XGB hold-out yes AUC-ROC 

Valsky et al. 

(2020) [63] 

FB HMM hold-out yes accuracy 

Baxter et al. 

(2020) [64] 

none CNN LOOCV yes MAE 

Shah et al. 

(2020) [65] 

FS DT k-CV yes accuracy, 

sensitivity, 

specificity 

Shang et al. FB, FS GBRT LOOCV yes MAE, MSE, r 



(2020) [66] 

Golshan et al. 

(2020) [67] 

none CNN hold-out no/not 

specified 

accuracy, 

sensitivity, 

specificity 

Khosravi et al. 

(2020) [68] 

none ANN hold-out no/not 

specified 

accuracy 

Lu et al. (2020) 

[69] 

FS SVM hold-out yes accuracy, 

AUC-ROC, 

sensitivity, 

specificity, 

PPV, NPV 

Peralta et al. 

(2020) [70] 

none CNN k-CV yes BACC, 

sensitivity, 

specificity, F1 

Yao et al. 

(2020) [71] 

FB, FS GBDT hold-out no/not 

specified 

sensitivity, 

specificity, F1 

Karthick et al. 

(2020) [72] 

FB RF LOOCV yes accuracy, 

sensitivity, 

specificity, 

precision, F1 

Park et al. 

(2021) [73] 

none CNN hold-out yes accuracy, 

sensitivity, 

specificity 



Peralta et al. 

(2021) [74] 

FB SVM, ANN k-CV yes R 

Boutet et al. 

(2021) [75] 

FB LDA k-CV yes accuracy 

Hosny et al. 

(2021) [76] 

none CNN LOOCV yes accuracy, 

sensitivity, 

specificity, 

precision, F1 

Martin et al. 

(2021) [77] 

none CNN, GMM k-CV yes accuracy, 

sensitivity, 

specificity, 

BACC 

Martin et al. 

(2021) [78] 

none CNN, GMM k-CV yes sensitivity, 

specificity, 

FPR, FNR, 

BTQ 

Baxter et al. 

(2021) [79] 

none CNN LOOCV yes dice 

Geraedts et al. 

(2021) [80] 

FB, FS RF k-CV yes accuracy, 

sensitivity, 

specificity 

Liebrand et al. 

(2021) [81] 

FB SVM k-CV yes accuracy, 

AUC-ROC, 



MAE, MSE, 

sensitivity, 

specificity, r, 

2R

Solomon et al. 

(2021) [82] 

none CNN hold-out yes MAE, dice, 

MSD 

Table 2 

Data obtained from each of the 55 papers in the corpus for the ‘method’ and ‘validation’ classes. 

‘FB’ stands for ‘feature-based’. ‘FS’ stands for ‘feature selection’. 

(a) Input data modality type. 

(b) Cumulative plot showing the number of patients in each paper’s cohort. The blue dashed line 

shows the median value (17 patients). 

Figure 4: Charts presenting the results for the ‘data’ class. 

Data 

Figure 4a presents the distribution of the input modality type used by the model. 

Site-specific electrophysiological signals represent nearly half of the modality used (22 papers 

used MER recorded by micro-electrodes and 17 works used  Local Field Potential (LFP)). 

Information arising from imaging data were used 20 times. Third, external sensors were used nine 

times (eight times in the form of wearable sensors such as smartwatches and once with a force 

platform). Fourth, clinical data, such as demographics or patients’ questionnaires and clinical 

testing were used seven times. Fifth, stimulation information were only used in four papers, as well 

as global electrophysiological signals (two works used electroencephalography (EEG) and two 



works used electrocorticography). Finally, Transcranial Magnetic Stimulation (TMS) was used 

once. 

Figure 4b shows the distribution of cohort sizes. The average cohort size was 43 patients, 

with a median at 17. We counted 10 papers with cohorts larger than 100 patients, with a maximum 

at 501 and six papers that used data from a single patient. 

Most cohorts (56 occurrences) are solely composed of PD patients. Cohorts of ET patients 

come second, with a total of five occurrences. Seven papers used a more heterogeneous cohort by 

mixing patients suffering from different pathologies, by mixing PD and ET patients, and/or by also 

studying patients suffering from dystonia or Tourette’s. One paper used a cohort of patients 

suffering from dystonia, and one from OCD. Finally, three papers did not explicitly communicate 

the patients’ condition. 

Application 

Figure 5a presents the distribution of the clinical phase studied in the corpus. We can 

observe that the post-operative phase was the most extensively studied with 31 occurrences. The 

surgery phase and the planning phase came next with 21 and 13 occurrences respectively. Finally, 

the screening phase was the less studied with only nine occurrences. 

Figure 5b presents the distribution of the tasks addressed. Classification is, by far, the most 

represented with 59 papers. Regression, segmentation, and clustering are far less represented with 

eight, five, and two papers respectively. 

(a) Clinical phase corresponding to the problem. 

(b) Task performed by the method. 



Figure 5: Chart presenting the results for the ‘application’ class. 

(a) Strategy to handle input data. 

(b) Main ML model used, function of the input data modality type. 

Figure 6: Charts presenting the results for the ‘method’ class. 

Method 

Figure 6a shows the methods used to handle the input data. If several methods were 

employed, the best performing one was reported. The two main categories are feature-based 

methods and non-feature-based methods. The first category represents the contributions that 

require some initial domain knowledge and non-insignificant effort to transform (and/or filter) the 

initial input space into a more readily usable feature space. Additionally, we noted if compression 

methods and/or automatic feature selection method were used. Papers relying on feature-based 

methods were used more than 60% of the time, with 44 occurrences. In order to reduce the 

dimensionality of the input space, on average, feature selection or data compression techniques 

were used nearly 33% of the time. The raw input space was used in 20 papers, representing 27% of 

the occurrences. 

Figure 6b shows the model used, or the best performing model(s) if several were 

benchmarked. The two most commonly used models were  Support Vector Machines (SVM) and 

Artifical Neural Net-works (ANN) (mostly through the form of shallow feed-forward neural 

networks such as a Multi-Layer Perceptron (MLP)), with 18 and 13 occurrences respectively. 

More advanced and/or specialized neural networks were also used such as Convolutional Neural 

Networks (CNN) (13 occurrences) and Recurrent Neural Networks (RNN), specifically with Long 

Short-Term Memory (LSTM) (one occurrence). In order to study temporal sequences, Hidden 



Markov Models (HMM) were more regularly used than RNN with five occurrences. Random 

Forests (RF) are the fourth most commonly used models with nine occurrences, closely followed 

by logistic regression and k-Nearest Neighbors (kNN), with respectively six and five occurrences. 

Three papers used Ensemble Learning (EL) (excluding RF and gradient boosting methods) in 

order to combine the predictions of several base models. Gaussian Mixture Modeling (GMM) 

were also used three times, including two times on top of a CNN. Linear Discriminant Analysis 

(LDA) and Extreme Gradient Boosting (XGB) were used twice, and Naive Bayes (NB), Decision 

Trees (DT), Gaussian Process Regression (GPR), Gradient Boosting Decision Trees (GBDT) and 

Gradient Boosting Regression Trees (GBRT) and Gradient Boosting Regression Trees (GBRT) 

were used once. Finally, supervised learning represents the large majority of the papers, 

unsupervised models having been used only twice. 

(a) Validation strategy regarding patient splitting strategy used for validation, both for patient-wise 

and non-patient wise validation methods. 

(b) Metrics used to report the performance. Corresponding task is also indicated. 

Figure 7: Charts presenting the results for the ‘validation’ class. 

Validation 

Figure 7a presents the validation strategy with respect to how data was split between the 

training set and the testing set. A patient-wise validation strategy, employed by 36 papers, implies 

that data collected from a single patient is not simultaneously included in the training set and the 

testing set, reducing bias. 37 papers (ie. more than half) did not employ such a strategy, possibly 

containing information from a single patient in both the training and testing sets, or did not specify 



how such splitting was achieved which leaves them open to potential data leakage. 

Three different strategies were mainly used to split datapoints between training and testing 

sets. Hold-out, arguably the most common technique in the broader machine learning community, 

corresponds to separating a portion of the datapoints in a testing set at the beginning of the 

experiment in order to isolate it entirely from the training process, and was used 30 times in total, 

which makes it the most regularly used strategy. k-fold Cross-Validation (CV) (k-CV) comes 

second, with 26 occurrences in total. This strategy consists in partitioning the datapoints into k

different disjoint sets. An independent training procedure is then performed k  times, each using a 

different set as testing data and the remaining 1k   as training data. When performed correctly 

(i.e. ensuring that the training procedures are completely independent and isolating from each 

other) this has the benefit of evaluating the algorithm on all the data possible although at the 

expense of re-training the algorithm several times. Leave-one-out CV (LOOCV) is a specific case 

k-CV for very small datasets, in which k  is equal to the number of datapoints (or the number of 

patients, if the validation was done patient-wise) in the database. LOOCV is beneficial in that it 

also ensures that a maximum amount of data is present in the training set at any given time. 

LOOCV has been used 13 times. Two papers do not validate their method on a separated testing 

set, and one did not specify the validation method employed. Finally, bootstrapping refers to 

evaluation procedures in which the algorithm is trained once, but the effect of any individual 

datapoint can be isolated and removed from the model, thus allowing for said datapoint to be used 

in evaluating the reduced model. For methods that are inherently based on averaging an ensemble 

of simpler models (such as Random Forests), bootstrapping can be easily performed by removing 

the simpler models that had access to a particular datapoint in training time, and then evaluating 

the performance of the remaining simple models on said datapoint. This process is repeat and 



averaged over all datapoints to estimate the perform of the model as a whole. Due to being highly 

model-specific, bootstrapping was only used once. 

Figure 7b presents the evaluation metrics, as well as the corresponding task, for the 

proposed methods. For classification tasks, accuracy is the most consistently used metric (42 

occurrences), followed by sensitivity and specificity (28 and 19 occurrences, respectively) and 

Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) (14 occurrences). Several 

other metrics are less frequent including: precision and 1F  (six occurrences each), Cohen’s 

Kappa (four occurrences), Matthews Correlation Coefficient (MCC) (three occurrences) , False 

Positive Rate (FPR) and balanced accuracy (BACC) (two occurrences each). Finally, number of 

classification errors, Weighted Classification Error (WCE), Negative Predictive Value (NPV), 

False Negative Rate (FNR), Positive Predictive Value (PPV), Balanced Ternary Quality (BTQ), 

R -ratio and  -ratio were used only once each. The metrics mostly used for regression were 

Mean Absolute Error (MAE) and Mean Squared Error (MSE), with six occurrences and three 

occurrence respectively. Pearson’s r was used twice, and correlation coefficient (R) and coefficient 

of determination ( 2R ) were used once each. For segmentation, the Dice coefficient was the most 

consistently used metric with five occurrences, followed by  Mean Squared Distance (MSD) and 

MAE (two occurrences each). Finally, accuracy, Intersection-over-Union (IoU), failure rate and 

Contour Mean Distance (CMD) were used once each. For clustering, sensitivity, specificity and 

MAE were each used once. 

4. Discussion

4.1. Clinical problems 



Post-operative problems 

The most consistent post-operative problem addressed with ML methods is the real-time 

analysis of LFP signals recorded by macro-electrode, in the perspective of delivering adaptive 

(rather than continuous) stimulation [13, 17, 18, 34, 35, 42, 43, 44, 45, 49, 50, 56, 60, 67, 71]. 

Indeed, the ability to process and analyze LFP signals in real time could allow for the design of 

closed-loop stimulation systems that deliver the therapy only when needed, thus limiting 

undesirable side effects and extending battery life. A complementary approach was investigated 

by Loukas et al. [16] who proposed a complete system to record, process, and display LFP signals. 

Houston et al. [31, 46] designed a close-loop system using cortical activity analysis, and Shukla et 

al. [15] and Khobragade et al. [23, 40] using surface electromyography (sEMG) and accelerometer 

signals. These works towards designing closed-loop stimulation systems represent 19 of the 28 

papers focused on the post-operative phase of DBS interventions. 

The second most common post-operative clinical problem is the analysis and 

quantification of the motor symptomatology of patients with external sensors (wearable sensors 

[24, 30, 38, 41, 52] or a force platform [11]). Such automatic systems can be clinically valuable by 

providing objective, automatic and quick feedback for therapies in order to, for example, compare 

several therapy parameters and combinations. Indeed, the degree of treatment parameter tuning, 

including stimulation parameters and drug dosage, is large and can’t be assessed exhaustively, 

which may result in sub-optimal configurations. Other works have been done toward automatizing 

this post-operative phase: Connolly et al. [19] proposed a system predicting which contact is 

optimal from LFP recordings. Boutet et al. [75] proposed a method to predict whether the contact 

and stimulation voltage are optimal or not by analysing post-operative functional  Magnetic 

Resonance Imaging (MRI). Shamir et al. [20] proposed a predictive system using inputs from 



several modalities (clinical, therapy (medication and stimulation) and demographic data) in order 

to narrow the research space both for medication dosage and stimulation parameters. Lastly, Stuart 

et al. [54] used EEG to predict effective stimulation in real time. 

Surgery problems 

The second most commonly investigated phase is the surgery itself, with the clinical 

problem frequently being the inter-operative identification of the DBS target. Every paper 

addressing this problem used MER analysis [10, 14, 21, 28, 33, 37, 39, 59, 63, 68, 70, 72, 76, 77, 

78]. Instead of helping clinicians to aim for an anatomical structure, Lu et al. [69] proposed a 

method to predict, by analyzing MER, whether or not the electrode lead is inside a clinically 

predefined therapeutic site of activation. Complementarily, Wong et al. [12] proposed a method to 

project MER in a 2D plan in order for clinicians an alternative way to visualize and interpret it. 

Park et al. [73] proposed a method to predict motor outcomes six months after surgery by 

analysing MERs, which was used to find the optimal lead location during surgery. From the 

perspective of curating these signals for downstream analysis, Klempivr et al. [53] and Hosny et 

al. [61] proposed systems for artifact detection and correction. Kostoglou et al. [27] used MER 

features, a few clinical scores, demographics and contact location to predict the clinical 

improvement that could result from the stimulation of various locations, in a perspective of placing 

the electrode based on functional criteria rather than anatomical ones. 

As MERs are electrophysiological signals, these papers are similar in methodology to 

those using LFPs. 

Planning problems 



The planning phase comes third, the clinical problem being how to select the stimulation 

targets and determine the electrode trajectories prior to the operation. A first strategy is to assist the 

surgeon by automatically segmenting, or localising the subcortical structures of interest from 

pre-operative images ([22, 26, 32, 48, 51, 64, 79, 82]). Such works are important as the surgical 

targets are often small with low contrast in clinical images. An alternative strategy is to propose to 

the surgeon functional criteria instead of anatomical ones for the choice of a stimulation site. 

Baumgarten et al. [25, 29, 36] and Bermudez et al. [58] proposed clinical efficacy probability 

maps to visualize the expected clinical effects of stimulation of several locations around the 

structure of interest. Singer et al. [57] went even further in this idea by directly predicting the 

optimal electrode location without the use of intermediate representations such as anatomical 

segmentations or clinical-effect probability maps. 

Screening problems 

Finally, the least commonly addressed phase using ML is the screening phase. Oliveira et 

al. [41] proposed a method to visualize on a two-dimension space the motor symptomatology of 

the patient from electromyography sensors in order to facilitate the clinical interpretation of patient 

motor scores. Habets et al. [55] proposed a predictive system to identify weak motor responders 

from pre-operative clinical data and demographics for patient selection purposes. In the same 

screening assisting tool objectives, Koch et al. [47] proposed a system to classify patients 

regarding their cognition from EEG. Using pre-operative EEG too, Geraedts et al. [80] proposed a 

method to predict post-operative cognitive functions. Farrokhi et al. [62] attempted to find factors 

of surgery adverse outcomes, such as infections or hemorrhages. Shah et al. [65] proposed a 

method to predict DBS outcomes from pre-operative demographics, clinical tests, expert 



interpretation of anatomical abnormalities using MRI, and TMS. Shang et al. [66] proposed a 

method to predict post-operative motor outcomes with functional connectivity. Peralta et al. [74] 

proposed a method to predict 21 different clinical scores (including motor, cognitiive, and 

quality-of-life scores) three months, six months, one year, and three years after surgery by using 

pre-operative clinical tests, demographic information, and the shape of particular anatomical 

structures using T1-MRI. Finally, Liebrand et al. [81] attempted to predict DBS good responders 

from pre-operative MRI but did not obtain satisfactory results. 

4.2. Wide variety of models 

When it comes to the choice of ML model, the most widely used remains the SVM which is 

not surprising as SVMs are known to perform well and are simple to train for both classification 

and regression problems, even for small databases. Among the papers comparing several models, 

SVMs were amongst the top-performing [52, 54]. Shallow feed-forward ANNs come second, 

likely due to the recent advances in deep learning and its growing popularity in the research 

community. 

More specialized ANN structures, such as CNNs and RNNs were also used. CNNs were 

used 13 times in total, notably six times for image analysis: three times for subcortical structures 

segmentation or localisation with the VGG model [51], a modified ResNet structure [58], a custom 

structure called Hough-CNN [32] based on Hough voting, and U-net-based structures [64, 79, 82]. 

CNNs are also extensively used for MER spectrogram analysis: three times with a structure based 

on 1D separable convolutions [70, 77, 78], once with the AlexNet model [53], once with a CNN 

based on VGG16 and trained with multi-task learning [73], and once with a custom structure based 

on 1D-convolution [76]. RNNs were used once with LSTM for MER artifact detection [61]. 



We can also mention the usage of an interesting technique called EL, which consists in 

using several models in combination to make a more accurate prediction. Bagging was used eight 

times with RFs, and once by Kim et al. [22]. Gradient boosting was used four times, twice with the 

XGB model [43, 62] and twice with GBRT [66] or GBDT [71], and stacking was used by Golshan 

et al. [35] and Shamir et al. [20]. 

The methods used in the literature seem relatively independent of the input data used as 

shown in Figure 6b, which outlines a great heterogeneity of model used for each input data type, 

with the notable exception of CNNs, which were used 12 out of 13 times to analyze MER 

spectrograms and imaging data, and once to analyze LFPs. This is not a surprising result as CNNs 

are tailored to find spatial patterns automatically in high-dimensional data. Nevertheless, even 

though teh use of  Deep Learning (DL) models is becoming more and more common, other ML 

models (along with handcrafted features) still represent the majority of the methods employed. 

This is outlined by the analysis of site-specific electrophysiological signals such as MER and LFP 

where both options are possible, but where non-DL based methods are still used more than 85% of 

the time. 

One difficulty in model training and optimization that particularly affects DL-based 

methods is the extensive amount of computational time and resources required. Indeed, on top of 

being usually heavyweight, CNNs require the tuning of several architectural and training 

hyper-parameters, necessitating the training of possibly hundreds of neural networks for a typical 

research paper. This is exacerbated when k-fold CV is employed, as k  training iterations are 

performed to validate the model’s performance. To this extent, Graphics Processing Units (GPU), 

computational clusters, or external computational clouds can be necessary to train some methods. 



4.3. The prominent role of pre-processing and feature engineering for handling 

high-dimension input data 

An important consideration for ML studies is the curse of dimensionality: the greater the 

input dimensionality is, the exponentially greater the number of training samples are required to 

guarantee that data points are not too sparse in the input space. In DBS, the number of training 

samples are usually limited. Therefore, limiting the dimensionality of the input space to ease the 

training process can be an interesting strategy, even if it comes at the cost of reducing the amount 

of information available to the ML model. 

Two common strategies can be to unsupervisedly compress the data and/or to 

automatically select the features, but such approaches are not in the majority. The most common 

strategy is to transform the original, raw input space into a set of features thanks to expert 

knowledge of the domain. For example, Kostoglou et al. [27] synthesized the MER signals by 

computing domain-specific features such as the mean inter-spike interval, or the power band ratio 

of the signal in different pre-determined frequency bands. 

A minority of papers chose a fully data-driven method by straightforwardly feeding the 

model with raw data, without reducing it in the form of features, compressing it or automatically 

selecting some of them. Naturally, the 13 papers using CNNs fall under this umbrella. Indeed, the 

purpose of a CNN is to take advantage of the spatial inter-correlations in the input images by 

applying a series of learnable convolution kernels to it. Therefore, CNNs learn an optimal 

dimensionality reduction strategy in a supervised manner. Among the other occurrences are the 

three papers from Baumgarten et al. [25, 29, 36] and the paper from Habets et al. [55], because the 

number of inputs is low (respectively four stimulation parameters and 15 clinical scores and 

demographics). 



We can interestingly mention five papers which compared a feature-based method with a 

fully data-driven method. First, for STN localisation using MER’s, Khosravi et al. [37, 68] 

compared the utilization of state-of-the-art features versus the raw signal’s Fourier coefficients, 

and Hosny et al. [76] compared the utilization of state-of-the-art features versus the raw signal 

directly. Second, Baumgarten et al. [29] compared two methods for predicting the occurrence of 

Pyramidal Tract Side Effect (PTSE) during the stimulation: a  Volume of Tissue Activated 

(VTA)-based method versus a method using the raw information straightforwardly, which is the 

three-dimensional location of the contact and the stimulation voltage. All of the four papers 

showed a superiority of the fully data-driven paradigm which outperformed the 

feature-engineering approaches. Lastly, Yao et al. [71] compared the utilisation of handcrafted 

features versus a CNN for LFP signals classification, and got better results with handcrafted 

features, likely due to overfitting. 

Feature engineering could be thought of as a particular, very involved type of 

pre-processing, that is, the modification of the input data before it is presented to the machine 

learning algorithm. From this perspective, pre-processing can be seen as a matter of degree. For 

example, for machine learning methods that process MERs as input, some use a spectral 

representation of the entire signal [37, 63], whereas others use a spectrogram [61] or Haar wavelets 

[10], i.e. a mixed temporal/frequential representation, and others process the temporal signal 

directly without explicitly representing the frequency components [14]. These can be interpreted 

as a gradation between methods that require a large amount of pre-processing in order to make the 

informative components more accessible to the machine learning algorithm and others that rely 

more heavily on the algorithm itself. That being said, some amount of pre-processing appears to 

always be necessary, even for complex machine learning approaches, to ensure that the input data 



is meaningful to the particular algorithm or adheres to some pre-defined scope, however that scope 

has appeared to get broader as newer methods are developed, which is evidenced by half of the 

feature-selection-free methods being published in the last two years. 

4.4. Inter-patient variability: the elephant in the room 

Small cohorts are problematic in ML because they limit the performance of predictive 

systems (several papers [35, 49, 54, 60, 62] stated lack of data as a limitation). Furthermore, the 

pathologies treated by DBS are heterogeneous causing a high inter-patient variability, on top of 

intra-patient variability (as the clinical state of the patients can fluctuate or because the recording 

conditions may vary). Therefore, a system trained on one patient or on one recording configuration 

is not likely to have good performance on another one, or later in time, which limits its prospective 

usability. 

The contribution of Khobragade et al. [40] illustrates this phenomenon well. They gathered 

surface electromyography and accelerometer data from two patients through several trials spread 

on different sessions, with at least a week between consecutive sessions. They did two 

experiments: the first one by training one model per patient and per session, therefore testing the 

model on trials of the same sessions. For the second one, they trained one model per patient, but 

trained the model on a set of sessions and tested it on other sessions. They obtained a perfect 

accuracy for the first experiment, but the median performance dropped to 46.15%  for the second 

one. On the same extent, Rajpurohit et al. [21] reported results with a patient-specific feature 

normalization scheme (therefore not applicable prospectively), and with a patient-independent 

normalization scheme. Not surprisingly, the classification error rates of the patient-specific 

scheme are much lower (in the range of 0.0711 to 0.1353) than the patient-independent scheme 



error rates (in the range of 0.102 to 0.1979). 

The majority of the papers did not employ a patient-wise validation method [10, 13, 14, 15, 

16, 17, 18, 19, 20, 23, 24, 25, 30, 31, 28, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 49, 50, 52, 53, 

56, 59, 60, 67, 68, 71]. A large number of those papers reported performance on a single patient, 

training a different model for each patient and validating it on that same patient. This is often 

because a singular patient has multiple signals and the model uses some for training and others for 

evaluation, treating the learning of a model as a form of calibration. However, there were some 

papers that simply did not separate training and testing patients, could lead to biased measurements 

of their performance. The results reported by these contributions are interesting as preliminary 

work, but cannot safely be considered as representative of a real, prospective usage. 

Others measured their performance by employing a patient-wise validation method [11, 

12, 21, 22, 26, 27, 32, 29, 33, 36, 47, 48, 51, 54, 55, 57, 58, 61, 62, 63, 64, 65, 66, 69, 70, 72, 73, 74, 

75, 76, 77, 78, 79, 80, 81, 82]. While it does not ensure the complete absence of data leakage (that 

could occur, for example, by mixing the validation and testing sets, or by selecting or normalize 

features with the whole database), these results can be considered as more reliable, and more 

representative of prospective-usage performance. Inter-patient variability remains an open 

problem for most of the contributions and is likely only solvable thanks to extensive data 

collection. Several papers stated that the lack of variability in the cohort limits the generalizability 

of the results [20, 47], that further validation has to be done on other recording conditions or other 

centers [33, 65, 70, 77, 82] or that inter-patient variability was a limiting problem [46, 68]. 

4.5. A reproducibility and comparison problem 

Another recurring problem is the disparity in the validation methods which keeps from 



comparing the results of different contributions together. As an example, all of the following 

contributions report the results of the location of the STN with MER but differ in the validation 

process: 

• Guillén-Rondon et al. [14, 28] mixed patients and different portions of the same signals

in training and test sets, which is an identified source of data leakage, leading to likely 

overestimated performance. 

• Khosravi et al. [37] didn’t specify if the validation was done on a separated set of

patients. 

• Rajpurohit et al. [21] used a leave-one-patient-one validation strategy.

While the contributions on the same topic are proliferating, it is often difficult or 

impossible to directly compare the quantitative results presented as the methods are validated in 

such heterogeneous ways with varying levels of bias and data leakage. 

On the same extent, methods are not easily reproducible for benchmarking purposes, only 

three [41, 66, 75] mentioned having publicly shared, or being willing to share on request their 

code, their data or the features they computed on their data. 

One factor that exacerbates this issue is a lack of openly available annotated datasets that 

multiple groups could use to ensure that a higher proportion of the patient variability is captured in 

training. To the best of our knowledge, there are no openly accessible databases of MER or LFP 

signals for DBS. For images and clinical questionnaires, there is an open dataset specific to 

Parkinson’s disease, the Parkinson’s Progression Markers Initiative (PPMI) [83]. However, 

because it is not specific to DBS, it lacks annotations for DBS-specific problems, and many of the 

individuals contained in the dataset may not have received DBS at all. The creation of these open 

datasets would be an obvious area for the community to develop, especially given how much of the 



literature involves the collection of their own datasets which, if combined, would represent a 

sizeable if heterogeneous database for most ML problems associated with DBS. 

One potential impediment to such a dataset is the relatively closed nature of medical data in 

general. Centres may be wary of releasing denser types of patient data such as MR images (and 

even less dense data such as clinical questionnaires) due to concerns about the future potential for 

de-anonymisation which would be ethically problematic [84]. 

5. Conclusion

We conducted, to the best of our knowledge, the first systematic review on ML for DBS, 

and identified several common methodological threads and limitations from the analysis of a 

corpus of 73 papers. 

First, we have seen that only a few studies concern the screening phase. To us, there is a 

real opportunity for ML here because, as there exist several clinical challenges and a lot of 

complex and high-dimensional data arising from several pre-operative modalities (such as clinical 

testing, patient questionnaires, imaging data or demographics). These factors make this phase 

challenging to address but also ripe for data-driven methods providing that adequate methods are 

employed and large enough databases become available. 

Second, the majority of studies use simple models with either a few features as input or 

aggressive dimensionality reduction methods (with automatic feature selection or 

feature-engineering). While it ensures the input data is readily usable for simple models, it also 

limits drastically the information that can be leveraged by the model, and therefore limits the 

performance and the practicable complexity of the prediction task. We think more ambitious 

problems, or higher levels of performance could be achieved by employing more bottom-up, 



data-driven paradigms. Four papers comparing a feature-oriented method to a data-driven one 

support this hypothesis, showing better results for the latter approach [29, 37, 68, 76], where only 

one reported the opposite [71]. 

Third, small cohorts are often used: a lot of studies collect data that is not usually collected 

in the clinical routine, thus limiting the number of patients. Small cohorts, first, are problematic 

because they limit the generalization performance of the model and impose limits regarding the 

dimensionality of the input, because of the curse of dimensionality. Some papers overcame this 

problem by employing data augmentation when possible (for example, by splitting a ten seconds 

LFP signal into several two seconds ones). Unfortunately, this strategy does not address the second 

problem caused by small cohorts, which is that they cannot cover the large heterogeneity of the 

studied populations. Consequently, the performances reported are likely not representative of a 

prospective use of the system. Additionally, a number of contributions validated their method in a 

non-patient-wise manner which could lead to potential data leakage and thus inflated accuracy 

measures. Although the degree of this bias is not fully known, one study has found it to be 

extremely highly significant. 

Lastly, to us, more effort has to be dedicated to the validation method employed and, if 

possible, to share the code and the data to facilitate reproducibility. We found that numerous 

papers are sharing similar, if not identical objectives but have not found any that benchmark 

different approaches by comparing the performance of their method to those proposed in the 

literature. This may be a result of the aforementioned problem of reproducibiliy, as it would imply 

reproducing and evaluating them with the same database and validation method. We think this area 

of research would benefit from more uniform validation methods and explicit validation 

guidelines, and further work would be required in this direction. 



Overall, our survey indicates that ML is growing in this field, and we expect many of these 

issues to be resolved in large part with this particular research field maturing. 
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 We survey 73 recent papers on machine learning (ML) in deep brain stimulation
(DBS)

 ML has been increasingly applied in DBS to process electrical signals and MR
images

 ML in DBS is largely dominated by classification problems and traditional ML
algorithms

 Validation is heterogeneous with numerous different metrics and techniques
employed

 Many data processing problems in deep brain stimulation are still largely
unanswered
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