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𝜌 ≈ 4) to those containing mostly dense textures (le , 𝜌 ≈ 2) but centered around a median vaalue of 𝜌 ≈ 3. (C) However, when performing the same analysis locally, that is, on subparts of each image, the pdf of coe cients showed a greater variability. We show here the particular values for di erent areas of the Lena image: the plume, the face, the background. While the shape of the pdf still follows a power-law, the pdfs are respectively shi ed horizontally in the plot. is variability is best described by a relative number of coe cients that are greater than a threshold measuring background noise. When merging these results together at the global scale of the image, these pdfs assemble in a similar power law.

and a large portion of the space is empty: A typical image thus contains vast areas which are containing li le information. A simple algorithm to quantify this sparseness is to consider the coding of natural images using a bank of lters resembling the Mexican-hat pro les observed in the retina of most mammals (See Supplementary Figure 6). en, it is possible to determine the e ciency of a near-to-optimal coding formalism [START_REF] Perrinet | Biologically Inspired Computer Vision[END_REF] to show that any image from a database of static, grayscale natural images may be coded solely by a few coe cients (See Figure 1 ; see SI Section 6.1 for a full description of the algorithm). Moreover, we observed that on this database, some images were sparser than others but that globally they all ed well a similar power-law probability distribution function. e exponent of this power-law provides an unique descriptor for the sparseness of sparse coe cients and we found that these coe cients were stable across the database [START_REF] Perrinet | Biologically-inspired characterization of sparseness in natural images[END_REF]. However, visual inspection of natural images show that visual information is spatially clustered. Generally, some sub-regions of the image contain dense, textural information (the plumes in Figure 1-A andB1) while some are empty (the shoulder in Figure 1-A and B2). To date, it is largely unclear how this property inherent to any natural image may be used in the early visual system and in particular in the retina. Indeed, a normative explanation for the coding of sensory in ow into spike pa erns in the optic nerve is the optimal representation of visual information [START_REF] Atick | Could information theory provide an ecological theory of sensory processing?[END_REF][START_REF] Doi | E cient Coding of Spatial Information in the Primate Retina[END_REF]. A popular technique to challenge this hypothesis is to test the system using complex stimuli [START_REF] Touryan | Analysis of sensory coding with complex stimuli[END_REF] and in the retina, this takes the form of the use of stochastic stimuli and the inversion of a model of the neural transformation [START_REF] Simoncelli | Characterization of Neural Responses with Stochastic Stimuli[END_REF]. A major result is that the receptive eld of ganglion cells captures information according to maximally informative directions [START_REF] Sharpee | Analyzing neural responses to natural signals: maximally informative dimensions[END_REF]. Various aspects of the complex processing that happens in the retina has been captured in models for describing the structure of the retina with respect to spike pa erns, from Spike-Triggered average [START_REF] Paninski | e spike-triggered average of the integrate-and-re cell driven by gaussian white noise[END_REF], Spike-Triggered Covariance and quadratic models [START_REF] Rajan | Maximally informative "stimulus energies" in the analysis of neural responses to natural signals[END_REF] to more general techniques using variants of the Linear / Non-Linear model [START_REF] Simoncelli | Characterization of Neural Responses with Stochastic Stimuli[END_REF]. However, a di culty is that these models o en assume that the noise models are dense and that introducing sparseness results in non-linear e ects which are hard to describe using these models [START_REF] Fournier | Adaptation of the simple or complex nature of V1 receptive elds to visual statistics[END_REF]. As such, a major challenge is to re ne the de nition of neural coding so that they conform to the widest variety of results.

Here, we seek to engender a be er understanding of neural coding in the retina by using a novel generative model for dynamic texture synthesis. Our rst contribution is to show that while the distribution of sparse coe cients in natural images is stereotyped, it displays a distribution of spatial sparseness parameters (see Figure 1-C). From that perspective, we motivate the generation of an optimal stimulation within a stationary Gaussian dynamic texture model. We base our model on a previously de ned heuristic coined "Motion Clouds" [START_REF] Sanz-Leon | Motion clouds: modelbased stimulus synthesis of natural-like random textures for the study of motion perception[END_REF]. Our second contribution is an e cient extension of this model which allows to parametrize the sparseness in the texture, for instance based on the measurements made on natural images. Our third contribution in this paper is to demonstrate an e ect of this sparseness on the spike pa ern of retinal ganglion cells from a diurnal rodent, the Octodon degus as recorded ex vivo on an electrode grid [START_REF] Palacios-Mu Ñoz | Role of connexin channels in the retinal light response of a diurnal rodent[END_REF]. Our last contribution is to quantify the e ciency of the neural coding in these recordings and to show that the code is more reliable with a given spatial sparseness level rather than with empty or dense stimuli. ese contributions shows that overall, the processing in the retina may be optimized to match the spatial For the sake of simplicity, sparseness is obtained here by thresholding a mask value and is given by the ratio 𝜖 of non-zero coe cients, from very sparse (𝜖 = 5.10 -6 ) to fully dense (𝜖 = 1 = 100%), and with 𝜖 parameters chosen on a geometrical scale. We show here one single frame of each dynamical stimulus. Note that, while for 𝜖 = 1 these textures are fully dense and correspond to a linearly ltered noise, the other versions correspond to progressively sparser textures as 𝜖 tends to zero. Moreover, while the textons used to synthesize these textures are arbitrary, we have chosen here to use symmetrical Mexican-hat pro les ("drops" , see Supplementary Figure 6) which are known to preferentially evoke activity in the retina.

sparseness encountered in natural scenes. Beyond the contribution to the understanding of the neural code underlying image representation, this may have long ranging applications, for instance for the optimal parametrization of stimulations in a retinal implant.

Design of the "DropLets" stimuli

From these observations, the understanding of the neural code in the retina is linked to the de nition of an adequate generative model. We propose a mathematically-sound derivation of a general parametric model of dynamic textures. is model is de ned by aggregation, through summation, of a basic spatial "texton" template 𝜙 (𝑥, 𝑦, 𝑡), eventually transformed by any arbitrary visuo-geometric transformation 𝑔 𝜆 such as zooms or rotations, which themselves are parameterized by 𝜆. e summation re ects a transparency hypothesis, which has been adopted for instance in [START_REF] Galerne | Micro-Texture Synthesis by Phase Randomization[END_REF]. In particular, this simple generative model considers independent, transparent elementary features. While one could argue that this hypothesis is overly simplistic and does not model occlusions or edges, it leads to a tractable framework of stationary Gaussian textures, which has proved useful to model static micro-textures [START_REF] Galerne | Micro-Texture Synthesis by Phase Randomization[END_REF] and dynamic natural phenomena [START_REF] Xia | Synthesizing and Mixing Stationary Gaussian Texture Models[END_REF]. In particular, the simplicity of this framework allows for a ne tuning of frequency-based (Fourier) parameterization, which is desirable for the interpretation of neuro-physiological experiments. In summary, it states that luminance 𝐼 (𝑥, 𝑦, 𝑡) for (𝑥, 𝑦, 𝑡) ∈ ℝ 2 × ℝ is de ned as a random eld [START_REF] Vacher | Advances in Neural Information Processing Systems 28[END_REF]:

𝐼 (𝑥, 𝑦, 𝑡) = ∑︁ 𝑖 ∈ℕ 𝑎 𝑖 • 𝑔 𝜆 𝑖 (𝜙 (𝑥 -𝑥 𝑖 , 𝑦 -𝑦 𝑖 , 𝑡 -𝑡 𝑖 )) (1) 
where the respective random variables parameterize respectively each texton's geometric transformation parameter 𝜆 𝑖 , scalar value 𝑎 𝑖 and positions and timings (𝑥 𝑖 , 𝑦 𝑖 , 𝑡 𝑖 ).

Intuitively, this model corresponds to a dense mixing of stereotyped, static textons as in [START_REF] Galerne | Micro-Texture Synthesis by Phase Randomization[END_REF].

As was previously mentioned [START_REF] Sanz-Leon | Motion clouds: modelbased stimulus synthesis of natural-like random textures for the study of motion perception[END_REF][START_REF] Vacher | Advances in Neural Information Processing Systems 28[END_REF], this set of Motion Clouds stimuli is equivalently de ned by:

𝐼 (𝑥, 𝑦, 𝑡) = ∑︁ 𝑖 ∈ℕ 𝑎 𝑖 • (𝑔 𝜆 𝑖 (𝜙 (𝑥, 𝑦, 𝑡)) * 𝛿 (𝑥 -𝑥 𝑖 , 𝑦 -𝑦 𝑖 , 𝑡 -𝑡 𝑖 )) (2) 
where * denotes the convolution operator. Noting the Fourier transform as F and (𝑓 𝑥 , 𝑓 𝑦 , 𝑓 𝑡 ) ∈ ℝ 2 × ℝ the frequency variables, the image 𝐼 is thus a stationary Gaussian random eld of covariance having the power-spectrum E = F(𝜙) (for a proof, see [START_REF] Vacher | Advances in Neural Information Processing Systems 28[END_REF]). It comes

F(𝐼 ) (𝑓 𝑥 , 𝑓 𝑦 , 𝑓 𝑡 ) = 𝐴 • 𝑒 𝑖 •Φ • E(𝑓 𝑥 , 𝑓 𝑦 , 𝑓 𝑡 )
where

𝐴 • 𝑒 𝑖 •Φ = ∑︁ 𝑖 ∈ℕ 𝑎 𝑖 • 𝑒 -2𝑖𝜋 (𝑓 𝑥 •𝑥 𝑖 +𝑓 𝑦 •𝑦 𝑖 +𝑓 𝑡 •𝑡 𝑖 )
corresponds to an iid random phase eld scaled by 𝐴 ∈ ℝ + . Such a eld was called a Motion Cloud (MC) and it is parameterized by the (positive-, real-valued) envelope E.

To match the statistics of natural scenes or some category of textures, the envelope Eis usually de ned as some average spatio-temporal coupling over a set of natural images. Note that it is possible to consider any arbitrary texton F -1 ( E), which would give rise to more complicated parameterizations for the power spectrum, but we decided here to stick to a simple case which is relevant to study coding in the retina. In particular, we limited ourselves to rotationally symmetric envelopes and to spatio-temporal scale transformations (zooms). e originality provided here is to introduce an explicit sparsity term in the summation. As such, this sparse Motion Clouds is similarly de ned by equation 2 but with a sparse distribution of coe cients 𝑎 𝑖 . Mathematically, the 𝑎 𝑖 are drawn from a heavytailed probability distribution function 𝑝 𝑎 such as that found in natural images (See Figure 1-C). Such assumptions were previously used for generating procedural noise in computer vision [START_REF] Lagae | Procedural Noise using Sparse Gabor Convolution[END_REF], but we focus here on the generation on a model of sparseness in images. Such endeavor was initiated by [START_REF] Sallee | Learning Sparse Multiscale Image Representations in Advances in neural information processing systems[END_REF] by de ning a mixture of a Dirac and a Gaussian distributions, but here, we derive it from the sparse coding observed in a set of natural images. First let's de ne 𝐸 the (sparse) event matrix corresponding to the events' scalar values, parameters, positions and timings forming the set of non-zero values S, that is with 𝐸 = 𝑖 ∈S 𝑎 𝑖 • 𝛿 (𝑥 -𝑥 𝑖 , 𝑦 -𝑦 𝑖 , 𝑡 -𝑡 𝑖 ). For the sake of simplicity, the sparseness parameter 𝜖 will thus denote the relative ratio of non-zero coe cients from a fully dense matrix with 𝜖 = 1 to an empty matrix with 𝜖 = 0. First note that this parameter can be trivially linked to the sparseness coe cient that we de ned for natural images as 𝜖 ∝ exp(-𝜌). We also note that we can still compute the image in Fourier space, but with a random phase eld such that

𝐴 • 𝑒 𝑖 •Φ = ∑︁ 𝑖 ∈S 𝑎 𝑖 • 𝑒 -2𝑖𝜋 (𝑓 𝑥 •𝑥 𝑖 +𝑓 𝑦 •𝑦 𝑖 +𝑓 𝑡 •𝑡 𝑖 )
Second, we note that the random phase eld is simply the Fourier transform on 𝐸:

𝐴 • 𝑒 𝑖 •Φ = F(𝐸) (3) 
Compared to the pure summation, a rst advantage of this procedure is that the computation time does not depend on the number of events. A further advantage of equation 3 in generating these stimuli is that for any given instance of the noise, we know the position (x, y, t) of each event. As they match the shot noise image of drops of rain on water, we coined this set of stimulus as "DropLets". e implementation of this texture generation is of the same order of complexity as that of Motion Clouds and allows for the easy control of the sparseness in the stimulus (See Figure 2). Once this set of "DropLets" stimuli is de ned, we may now design a protocol to stimulate the retina and explicitly study the role of sparseness.

Results: neural activity in a population of ganglion cells

To characterize the response to the DropLets stimuli with respect to di erent sparseness parameters 𝜖, we recorded ex vivo the electrophysiological activity of a retinal patch using a multi-electrode array (USB-MEA256, Multi Channel Systems MCS GmbH), mounted on an inverted microscope. Stimuli were projected at 60𝐻𝑧 using a conventional DLP projector with custom optics to focus the image onto the photoreceptor layer with a pixel size of ≈ 4.7𝜇𝑚 and an average irradiance of 70𝑛𝑊 /𝑚𝑚 2 . e images were presented using a custom so ware built upon the PsychToolbox library [START_REF] Brainard | Psychophysics Toolbox[END_REF] for MATLAB. Spike sorting was performed using the procedure described in [START_REF] Marre | Mapping a Complete Neural Population in the Retina[END_REF]. e protocol consisted of randomly interleaved 24s long, 100 × 100 pixels DropLets stimuli with 6 levels of sparseness from very sparse (𝜖 = 5.10 -6 ) to fully dense (𝜖 = 1), and with parameters chosen on a geometrical scale (see Figure 2). Each condition was repeated 11 times for a total duration of ≈ 1 hour (see SI Section 6.4 for a full description of the protocol). To analyze the activity evoked by the stimuli, rst we computed the post-stimulus raster (PSR) for every condition tested and selected the conditions that elicited robust responses, in the sense that the response was strong and similar among trials of the same condition. e conditions that elicited the largest responses correspond to the sequences with the lowest spatial frequencies tested (data not shown). Rasters show that globally, the ring rates increases with the sparseness parameter 𝜖.

alitatively, a surprising result is that for a majority of ganglion cells, the ring pa ern is heterogeneous across cells but very reproducible with di erent repetitions of the same (frozen) random texture (see Figure 3).

From the response to these selected sequences, we computed a simple Spike Triggered Average for image matrices of 100×100 pixels and 1440 frames for each condition, 2). In each raster plot, we present spikes as a function of time (x-axis, the duration of a block is 24 seconds) and for 11 di erent trials (y-axis). First, one observes that the global, mean ring rate of each cell increases with sparseness.

is was also consistent for the whole population. Second, the raster plots show that the spiking is very reproducible across trials, showing that this class of random textures could reliably evoke activity in the retina. Moreover, this pa ern is very di erent across cells, indicating that the visual signal is well multiplexed between ganglion cells. with a memory of 18 frames (≈ 25ms). Examples of the obtained results can be seen in gure 4. is method yields a good estimation of the RF for some cells, but for many of them the result can be somewhat ambiguous or too noisy, as can be seen in the gure. is can be greatly improved by computing the STA across conditions. As can be seen in gure 4, the result is comparable to the estimation obtained with a STA computed from the response from a checkerboard stimulus. However, when analyzing the temporal response, the results are not the equivalent. In the case of the DropLets, the temporal aspect of the RF is always longer or slower than for the RF computed from the checkerboard. In the current work, we did not explore the parameter that controls the lifetime of each droplet, and it appears that the one that was chosen is higher than needed. Another issue, probably a bias caused by the properties of the stimuli, is that for some cells the size of RF is overestimated in comparison with the checkerboard. is is an interesting point that will be further analyzed in future work; if the RF is indeed smaller, then it would mean that the DropLets elicit a response even when also stimulating the periphery of the RF. Another explanation would be that the STA from the checkerboard is underestimating the size of the RF, and in this case the DropLets would yield a be er estimation. Further research is already being performed to clarify this issue.

For the moment, we can conclude that it is indeed possible to estimate the RF from the response to some of the DropLets stimuli, however, there are still issues to be solved. First, and the easiest to x, is the temporality or duration of the features of the stimuli, as apparently they last longer than needed to elicit a response from the cells.

e second issue that could be solved is to optimize the size of the features. Clearly, there were a lot of sequences that did not stimulate the retina to get reliable responses, probably because the spatial frequency was too high so the features were undetectable by the retina under the experimental conditions. Finally, the most important issue would be the noise in the estimation. Even though the RF obtained from the DropLets presented a good match with the ones computed in the traditional way, in many cases the result contained additional signals that may yield con icting interpretations. One approach to remedy this would be to keep exploring the importance of the sparseness of the stimuli, following the idea that if the features are more isolated in time and space, then there would be less contamination of the STA. Another approach would be to use longer sequences or many sequences with di erent seeds, to get more spikes triggered by di erent images so the noise would be reduced when averaging them.

4 Results: role of sparseness in the e ciency of retinal processing e above computation of a STA for this class of stimuli proved that this characterization is not adapted to evaluate the inherent representation corresponding to the measured spike trains. In particular, following previous studies [START_REF] Simoncelli | Characterization of Neural Responses with Stochastic Stimuli[END_REF], it con rms that the receptive eld estimated by the STA varied with the type of stimulus (DropLets versus checkerboard), but also with the sparseness level. As we have shown above (see Figure 1), the sparseness level may change drastically in natural images and it #14 sentative retinal ganglion cells (whose number is given in green) computed from the response to the droplets (red-blue image) and compared to the t performed on that computed using a checkerboard stimuli (green ellipse ; see Supplementary Figure 8 for a characterization of the whole population). Each image represents the average over the 18 frames (≈ 25ms) preceding a spike. For many cells, our estimation of the RF is very close to the one obtained by the traditional method (albeit generally with a longer temporal pro le as can be seen in Supplementary Figure 9). Notice that the time of stimulation required is much shorter.
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10 -4 10 -2 10 0 Sparseness Inter-trial distance 10 -4 10 -2 10 0 Sparseness Inter-cell distance 10 -4 10 -2 10 0 Sparseness Reliability χ( ) Figure 5: Reliability as a function of sparseness. (A) We rst computed for each cell and sparseness level the inter-trial distance as the mean pair distance between two repetitions of the same stimulus, averaged across each block (in time) and for all pairs of trials. We show these measures for each cell as a black dot, and the evolution of the mean for the whole population of ganglion cells (blue line). We show here that this distance decreases for sparseness levels closer to zero: spike trains are more reproducible when the stimulus is sparser. (B) As a control, we also measured the inter-cell distance. For any given trial (a blue dot), it is equal to the mean across all pairs of cells of the temporally-averaged distance between the pair of cells. it shows that as 𝜖 increases, the mean over trials of the inter-cell distance also increases. (C) Finally, we compute the relative reliability as the ratio between the inter-trial distance to the inter-cell distance. is shows that reliability is optimal for a speci c range of 𝜖 values. is thus reasonable to think that the retina integrates mechanisms acquired during natural evolution to adapt to these di erent levels of sparseness. In particular, it seems that qualitatively, the spike trains are very reliable across trials for a given sparseness level if it is su cient to elicit spikes but that at a certain level, there is a larger mixing of di erent sources (as the cumulative e ect of the shot noise model in the texture generation) as we reach a dense mixing of features (𝜖 = 1). Neural e ciency in the retina is mainly characterized by the capacity of neurons to reliably represent visual information in the spike timings. As such, reliability as measured by the reproducibility of a spike train when being presented the same stimulus is of course not directly related to the e ciency of the neural code, but provides a convenient information to measure "post-hoc" the precision of spike timings with respect to a given stimulus.

To estimate quantitatively such intuition, we measured reliability as the average distance between all pairs of trials for any given condition 𝜖 (sparseness) and cell 𝑐 (over the whole population). For any pair of observed spike trains, this distance was given as the SPIKE-distance as implemented in the PySpike package [START_REF] Kreuz | Monitoring spike train synchrony[END_REF]. is measure gives for any pair ( 𝑗, 𝑘) a value 𝑆 𝑗,𝑘 between 0 and 1, where 0 is achieved if and only if the spike trains are identical. e average over the 𝑁 = 11 repetitions for any given condition, and for any given cell gives an average distance (also between 0 and 1) equal to (see Figure 5-A):

𝑆 𝑎 (𝜖, 𝑐) = 1 𝑁 (𝑁 -1)/2 𝑁 -1 ∑︁ 𝑗=1 𝑁 ∑︁ 𝑘=𝑗+1 𝑆 𝑗,𝑘 (𝜖, 𝑐)
Our goal is to compare this reliability for di erent levels of sparseness and in particular for di erent average levels of ring rate. To be invariant to such properties, we used an additional measure by measuring for each trial 𝑘 the average distance between all pairs of cells (also between 0 and 1) equal to (see Figure 5-B):

𝑆 𝑐 (𝜖, 𝑘) = 1 𝑀 (𝑀 -1)/2 𝑀-1 ∑︁ 𝑗=1 𝑀 ∑︁ 𝑘=𝑗+1 𝑆 𝑗,𝑘 (𝜖, 𝑘)
where 𝑀 = 101 corresponds to the number of cells and the pair of spike trains { 𝑗, 𝑘 } is chosen for any given xed value of 𝜖 and 𝑘. Ultimately, for any given sparseness value 𝜖, we de ne the reliability 𝜒 (𝜖) as the inverse ratio between the distance average over trials and the global distance over cells :

𝜒 (𝜖) = < 𝑆 𝑐 (𝜖, 𝑘) > 𝑘 ∈1...𝑁 < 𝑆 𝑎 (𝜖, 𝑐) > 𝑐 ∈1...𝑀
where < • 𝑗 > 𝑗 denotes the average of • 𝑗 over the di erent 𝑗. In Figure 5-C, we show a plot of 𝜒 (𝜖) for the di erent cells with respect to the sparseness level 𝜖. It shows that ratio increases (and thus that reliability increases) for the lowest values of sparseness and then saturates at a given level and nally decreases for a fully dense stimulus. From these results it appears that in the population of recorded cells, e ciency as inferred by our measure of reliability, varied as a function of sparseness. Indeed, the results show that there is a high variability in the measured z-scores for the di erent cells, but that the overall trend shows that reliability increases with sparseness until it reaches an optimal value, and then it slightly decreases for the dense texture (𝜖 = 1).

is quantitative measure is consistent with our qualitative intuition, that is, that the e ciency of the representation as measured by this reliability measure is optimal for a value of sparseness which is lower than a dense mixing of feature and that we measure here to 𝜖 = 8𝑒 -03. It should be however noted that in this experiment, we sampled only a limited number of sparseness values. Moreover, it is likely that the mechanism is implemented by a neural circuit (notably the circuitry horizontal to the retinal surface) which is most certainly adaptive and would ultimately give a di erent response when presented over a longer term with stimuli with for instance a lower average sparseness value. Finally, it remains still to be explored if a similar behavior would be observed this time for natural images with varying levels of sparseness.

Discussion

In this paper, we have characterized the di erent levels of sparseness which are present in natural images, synthesized random textures with parameterized levels of sparseness and nally, we have shown that the neural code as recorded in ganglion cells ex vivo responds di erentially to these di erent levels of sparseness. First, we have replicated the observation that natural images follow a prototypical structure for the probability density function of the coe cients that characterize them. Importantly, we have shown that on an image-by-image basis, this structure is well captured by a single parameter 𝜌 which encompass the sparseness of a given image, from a dense texture to a highly sparse con guration. Based on these results, we designed random texture which replicate this parameterization of their sparseness using the ratio of non-zero coe cients 𝜖 ∝ exp(-𝜌). We used that set of stimuli to evaluate the response on ganglion cells on an ex vivo preparation and analyzed the response of the population of neurons as a function of the sparseness parameter. Such analysis proved that the retinal neural code showed di erential response with respect to the sparseness of images and preliminary measures on e ciency suggest that it is tuned for a given level of sparseness. We have shown that there is a limit in sparseness for which the retina can respond optimally; beyond that point, the response is more or less the same, meaning that the retina is still coding the features present in the sparser sequences but is not responding to the additional features of the more dense sequences. We can relate these results to the hypothesis of optimal coding of natural scenes [START_REF] Geisler | Visual Perception and the Statistical Properties of Natural Scenes[END_REF], in which the visual system has a limited capacity to transmit information, it has adapted through evolution to a small subset of all the possible images and optimally code them, discarding the irrelevant information. us, the e ciency of the retina to code the stimuli reaches its peak at a sparseness level that would be closer to what the system has evolved to code, and when presented with stimuli containing more signals, it discards the additional information. Much research has been performed to investigate the relationship between natural images and optimal coding, although the focus has been mainly on the spatiotemporal correlations [START_REF] Pitkow | Decorrelation and e cient coding by retinal ganglion cells[END_REF][START_REF] Rikhye | Spatial Correlations in Natural Scenes Modulate Response Reliability in Mouse Visual Cortex[END_REF]. We have shown here that when keeping the spatiotemporal components constant, the modulation of the sparseness of the stimuli has an evident e ect on the retinal response, and more importantly, it allows us to see the level of sparseness beyond which the e ciency does not increase.

It is important to note that these results are the outcome of an interdisciplinary convergence between image processing (to characterize sparseness in natural images), mathematical modeling (for the synthesis of textures) and neurophysiology (for the recordings and their analysis). In particular, we demonstrated here an original framework in which neural recordings are not analyzed post-hoc, but are instead tuned by the design of parameterized stimuli. In particular, these stimuli are de ned from the analysis of natural images. One limit of this study is that we limited ourselves to a simplistic class of textons (Mexican-hat shaped pro les , see Supplementary Figure 6), both for the analysis and synthesis but that ganglion cells in the retina are known to be selective to a wider class of stimulations. However, we believe that this class of stimuli is general enough to characterize a wide range of di erent cell types. Indeed, by looking at local combinations of events (such as doublets), one could characterize di erent sub-types of ganglion cells, both static (ON, OFF), oriented or even moving, such as to characterize for instance directionally selective ganglion cells. In particular, by manipulating the statistics in the event's matrix 𝐸, one could target more speci cally each of these sub-types.

Finally, the framework proposed in this paper calls for a novel mathematical characterization of the neural code. Indeed, while the Linear / Non-Linear model underlying the computation of the STA has proven to reliably predict neural responses, this has been at the price of a complex machinery. We believe that a major limitation of this model is the fact that the spiking mechanism is modeled by an inhomogeneous Poisson process. Indeed, while mathematically tractable, it is however a poor model of the spiking mechanism observed in most cells. In particular, the di erence of behavior between the Poisson model and neurons is most prominent when using sparse stimuli such as the one present in the most important set of stimuli for an animal, that is, natural scenes. Such precise ring has been recently shown in area V1 and may originate from a canonical push-pull mechanism [START_REF] Kremkow | Push-Pull Receptive Field Organization and Synaptic Depression: Mechanisms for Reliably Encoding Naturalistic Stimuli in V1. English. Frontiers in Neural Circuits[END_REF]. Similarly, such a mechanism is likely to be present as early as in the retina but novel types of models would be necessary to uncover this aspect of neural computations.

6 Supplementary material

Sparse coding of natural images

A method for measuring the statistics of edge co-occurrences in natural images was demonstrated by Geisler, Perry, Super & Gallogly [START_REF] Geisler | Edge co-occurence in natural images predicts contour grouping performance[END_REF]. Here we extend their method in two important ways. First, we use an over-complete, multi-scale representation of edges, which is more similar to the receptive elds in the retina. Second, we use a synthesis model for the edge representation, so that the edges we detect are guaranteed to be su cient to regenerate the image with a low error. e rst step of our method involves de ning the dictionary of templates (or lters) for detecting edges. We use a log-Gabor representation, which is well suited to represent a wide range of natural images [START_REF] Fischer | Sparse approximation of images inspired from the functional architecture of the primary visual areas[END_REF]. is representation gives a generic model of edges parameterized by their shape, orientation, and scale. We set the range of these parameters to match what has been reported for the responses in rodents' retina. In particular, we set the bandwidth of the Fourier representation of the lters to 1 and ∞ respectively in log-frequency and polar coordinates to get a family of circular but scale-selective lters (see Fischer, Sroubek, Perrinet, Redondo & Cristóbal [START_REF] Fischer | Self-invertible 2D log-Gabor wavelets[END_REF] and Supplementary Figure 6 for examples of such edges). is architecture is similar to that used by Geisler, Perry, Super & Gallogly [START_REF] Geisler | Edge co-occurence in natural images predicts contour grouping performance[END_REF]. Prior to the analysis of each image, we used the spectral whitening lter described by Olshausen & Field [START_REF] Olshausen | Sparse coding with an overcomplete basis set: A strategy employed by V1?[END_REF] to provide a good balance of the energy of output coe cients [START_REF] Fischer | Sparse approximation of images inspired from the functional architecture of the primary visual areas[END_REF][START_REF] Perrinet | Coding Static Natural Images Using Spiking Event Times: Do Neurons Cooperate[END_REF].

A linear convolution model automatically provides a rotation and translationinvariant representation. Such invariance can be extended to scalings by choosing to multiplex these sets of lters at di erent spatial scales. Although orthogonal representations are popular for computer vision due to their computational tractability, it is desirable in our context that we have a high over-completeness in the representation to have a detailed measure of the association eld. Ideally, the parameters of edges would vary in a continuous fashion, to provide relative translation, rotation, and scale invariance. We chose to have 8 dyadic levels (that is, doubling the scale at each level) for the set of 256 × 256 images. Tests with a range of di erent numbers ofscales yielded similar results. Finally, each image is transformed into a pyramid of coe cients. is pyramid consists of approximately 4/3 × 256 2 ≈ 8.7 × 10 4 pixels multiplexed on 8 scales, that is, approximately .7 × 10 6 coe cients, an over-completeness factor of about 11.

is transform is linear and can be performed by a simple convolution repeated for every edge type. Following Fischer, Sroubek, Perrinet, Redondo & Cristóbal [START_REF] Fischer | Self-invertible 2D log-Gabor wavelets[END_REF], convolutions were performed in the Fourier (frequency) domain for computational e ciency. e Fourier transform allows for a convenient de nition of the edge lter characteristics, and convolution in the spatial domain is equivalent to a simple multiplication in the frequency domain. By multiplying the envelope of the lter and the Fourier transform of the image, one may obtain a ltered spectral image that may be converted to a ltered spatial image using the inverse Fourier transform. We exploited the fact that by omi ing the symmetrical lobe of the envelope of the lter in the frequency domain, the output of this procedure gives a complex number whose real part corresponds to the response to the symmetrical part of the edge, while the imaginary part corresponds to the asymmetrical part of the edge (see Fischer, Sroubek, Perrinet, Redondo & Cristóbal [START_REF] Fischer | Self-invertible 2D log-Gabor wavelets[END_REF] for more details). More generally, the modulus of this complex number gives the energy response to the edge (comparable to the response of complex cells in area V1), while its argument gives the exact phase. Such a representation is implemented Python scripts available at XXXanonymousXXX. is property further expands the richness of the representation.

Because this dictionary of edge lters is over-complete, the linear representation would give a ine cient representation of the distribution of edges (and thus of edge co-occurrences) due to a priori correlations between coe cients. erefore, starting from this linear representation, we searched for the most sparse representation. Minimizing the ℓ 0 pseudo-norm (the number of non-zero coe cients) leads to an expensive combinatorial search with regard to the dimension of the dictionary (it is NP-hard). As proposed rst by Perrinet, Samuelides & orpe [START_REF] Perrinet | Sparse spike coding in an asynchronous feed-forward multi-layer neural network using matching pursuit[END_REF], we may approximate a solution to this problem using a greedy approach.

In general, a greedy approach is applied when nding the best combination is di cult to solve globally, but can be solved progressively, one element at a time. Applied to our problem, the greedy approach corresponds to rst choosing the single lter Φ 𝑖 that best ts the image along with a suitable coe cient 𝑎 𝑖 , such that the single source 𝑎 𝑖 Φ 𝑖 is a good match to the image. Examining every lter Φ 𝑗 , we nd the lter Φ 𝑖 with the maximal correlation coe cient, where:

𝑖 = argmax 𝑗 I I , Φ 𝑗 Φ 𝑗 , (4) 
•, • represents the inner product, and • represents the ℓ 2 (Euclidean) norm. Since lters at a given scale and orientation are generated by a translation, this operation can be e ciently computed using a convolution, but we keep this notation for its generality. e associated coe cient is the scalar projection:

𝑎 𝑖 = I, Φ 𝑖 Φ 𝑖 2 (5) 
Second, knowing this choice, the image can be decomposed as

I = 𝑎 𝑖 Φ 𝑖 + R (6) 
where R is the residual image. We then repeat this 2-step process on the residual (that is, with I ← R) until some stopping criterion is met. Note also that the norm of the lters has no in uence in this algorithm on the choice function or on the reconstruction error. For simplicity and without loss of generality, we will therea er set the norm of the lters to 1: ∀𝑗, Φ 𝑗 = 1. Globally, this procedure gives us a sequential algorithm for reconstructing the signal using the list of sources ( lters with coe cients), which greedily optimizes the ℓ 0 pseudo-norm (i.e., achieves a relatively sparse representation given the stopping criterion). e procedure is known as the Matching Pursuit (MP) algorithm [START_REF] Mallat | Matching Pursuit with time-frequency dictionaries[END_REF], which has been shown to generate good approximations for natural images [START_REF] Perrinet | Role of homeostasis in learning sparse representations[END_REF].

For this work we made two minor improvements to this method: First, we took advantage of the response of the lters as complex numbers. As stated above, the modulus gives a response independent of the phase of the lter, and this value was used to estimate the best match of the residual image with the possible dictionary of lters (Matching step). en, the phase was extracted as the argument of the corresponding coe cient and used to feed back onto the image in the Pursuit step. is modi cation allows for a phase-independent detection of edges, and therefore for a richer set of con gurations, while preserving the precision of the representation.

Second, we used a "smooth" Pursuit step. In the original form of the Matching Pursuit algorithm, the projection of the Matching coe cient is fully removed from the image, which allows for the optimal decrease of the energy of the residual and allows for the quickest convergence of the algorithm with respect to the ℓ 0 pseudo-norm (i.e., it rapidly achieves a sparse reconstruction with low error). However, this e ciency comes at a cost, because the algorithm may result in non-optimal representations due to choosing edges sequentially and not globally. is is o en a problem when edges are aligned (e.g. on a smooth contour), as the di erent parts will be removed independently, potentially leading to a residual with gaps in the line. Our goal here is not to get the fastest decrease of energy, but rather to provide a good representation of edges along contours. We therefore used a more conservative approach, removing only a fraction (denoted by 𝛼) of the energy at each pursuit step (for MP, 𝛼 = 1). We found that 𝛼 = 0.5 was a good compromise between rapidity and smoothness. One consequence of using 𝛼 < 1 is that, when removing energy along contours, edges can overlap; even so, the correlation is invariably reduced. Higher and smaller values of 𝛼 were also tested, and gave classi cation results similar to those presented here.

In summary, the whole learning algorithm is given by the following nested loops in pseudo-code:

1. draw a signal I from the database; its energy is 𝐸 = I 2 , 2. initialize sparse vector s to zero and linear coe cients ∀𝑗, 𝑎 𝑗 =< I, Φ 𝑗 >, is class of algorithms gives a generic and e cient representation of edges, as illustrated by the example see Figure 1. e performance of the algorithm can be measured quantitatively by reconstructing the image from the list of extracted edges. Measuring the ratio of extracted energy in the images, 𝑁 = 9192 edges were enough to extract an average of 90% of the energy of 256 × 256 images on all sets of images. with packages NumPy (version 1.6.2) and SciPy (version 0.7.2) [START_REF] Oliphant | Python for Scienti c Computing[END_REF] on a cluster of Linux computing nodes. Visualization was performed using Matplotlib (version 1.1.0) [START_REF] Hunter | Matplotlib: A 2D Graphics Environment[END_REF]. ese python scripts are available at XXXanonymousXXX. 

0.

De ning natural images

Our goal is to study how the statistics of contrast occurrence vary across a set of natural images. It consists of the image databases (600 images each) 1 used by Serre, Oliva & Poggio [START_REF] Serre | A feedforward architecture accounts for rapid categorization[END_REF], which contain either animals at di erent close-up views in a natural se ing (which we call "animal image"), or natural images without animals, which we call "non-animal natural images".

DropLets

Designing the protocol

Designing an experiment is mainly constrained by the time available for recording and we will estimate it here to at maximum 2 hours. e protocol consists in showing a set of motion clouds with di erent parameters. Spatial frequency will be tuned from the literature for the given eccentricity in retina, while average speed (as in the above example) is always nil. e remaining parameters are the precision in spatial frequency (𝐵 𝑓 ), the precision in time (𝐵 𝑉 ) which is inversely proportional to the average life-time of the textons, and precision for orientation (𝐵 𝜃 = ∞, orientation 𝜃 is arbitrary).

• Presentation of stimuli at 60.0 (frame/second) on the 400x400 (pxl x pxl) array during 24.0 s

• xed parameters:

1 Publicly available at h p://cbcl.mit.edu/so ware-datasets/serre/SerreOlivaPoggioPNAS07. Coe cients decrease as a function of their rank of extraction (average across images ± standard deviation). is decrease is faster when using a sparse coding mechanism (Matching Pursuit, 'MP') than when just ordering the linear coe cients ('lin'). (B-inset) For the sparse coding, we controlled the quality of the reconstruction from the edge information such that the residual energy is less than 10% over the whole set of images, a criterion met on average when identifying 8192 edges per image for images of size 256 × 256 (that is, a relative sparseness of ≈ 9% of activated coe cients). On the le we show the ON cells and on the right the OFF cells. e large plot is the map of the location of each receptive eld. We show the ellipses corresponding to the best ts on the RFs' shapes. Adjacent to them are the histograms of the distribution of height and width, and in the corner is the distribution of the eccentricity of the ellipses ed to the RF.

-𝑠 𝑓 0 = 0.05 mean spatial frequency tuned for optimal neural tuning, -𝐵 𝑠 𝑓 = 0.075 is the spatial frequency bandwidth tuned for optimal neural tuning, proportional to 𝑠 𝑓 0 = 0.05, -𝐵 𝑉 = 0.5 is the temporal frequency bandwidth tuned for optimal retinal tuning,

-𝐵 𝜃 = ∞ implements circular symmetry, as such, 𝜃 is arbitrary

• parameters:

-𝑁 𝑠𝑝𝑎𝑟𝑠𝑒 = 6 degrees of sparseness, distributed on a log-scale of base 𝑠𝑝𝑎𝑟𝑠𝑒 𝑏𝑎𝑠𝑒 = 200000.0, resulting in the sparseness vector 𝑠𝑝𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 = [5.00000000𝑒-065.74349177𝑒-056.59753955𝑒-047.57858283𝑒-038.70550563𝑒-021.00000000𝑒 + 00] -resulting in the following number of components: [72, 827, 9500, 109131, 1253592, 14400000]

-𝑁 𝑡𝑟𝑖𝑎𝑙 = 11 di erent repetitions

Figure 1 :

 1 Figure 1: Sparse coding of images in the retina follows regular statistics at the global, not the local scale: (A) An instance of the reconstruction of a natural image ("Lena") with the list of extracted image elements overlaid -see SI Section 6.1 for a full description of the algorithm. Edges outside the dashed circle are discarded to avoid artifacts. Parameters for each element are its position, scale and scalar amplitude. (B) When observing on an image-by-image basis the probability distribution function (pdf) of the coe cients's amplitude, each follows a generic power-law pdf, only controlled by a sparseness parameter 𝜌 for each of the natural images, higher values of 𝜌 denoting more sparse structures. (B-inset) e distribution of these sparseness parameters shows some variability of values from the most sparsely distributed (right,

Figure 2 :

 2 Figure2: DropLets stimuli: Based on the Motion Clouds framework, we design DropLets as random phase textures similar to Motion Clouds but where, similarly to the variety observed in a set of natural images, the distribution of coe cients is parameterized by di erent levels of sparseness. For the sake of simplicity, sparseness is obtained here by thresholding a mask value and is given by the ratio 𝜖 of non-zero coe cients, from very sparse (𝜖 = 5.10 -6 ) to fully dense (𝜖 = 1 = 100%), and with 𝜖 parameters chosen on a geometrical scale. We show here one single frame of each dynamical stimulus. Note that, while for 𝜖 = 1 these textures are fully dense and correspond to a linearly ltered noise, the other versions correspond to progressively sparser textures as 𝜖 tends to zero. Moreover, while the textons used to synthesize these textures are arbitrary, we have chosen here to use symmetrical Mexican-hat pro les ("drops" , see Supplementary Figure6) which are known to preferentially evoke activity in the retina.
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Figure 3 :

 3 Figure3: Raster plots for di erent representative ganglion cells (di erent rows, labelled by the red number) as a function of sparseness 𝜖 (di erent columns, same values of 𝜖 as in Figure2). In each raster plot, we present spikes as a function of time (x-axis, the duration of a block is 24 seconds) and for 11 di erent trials (y-axis). First, one observes that the global, mean ring rate of each cell increases with sparseness.is was also consistent for the whole population. Second, the raster plots show that the spiking is very reproducible across trials, showing that this class of random textures could reliably evoke activity in the retina. Moreover, this pa ern is very di erent across cells, indicating that the visual signal is well multiplexed between ganglion cells.

Figure 4 :

 4 Figure4: Spike-Triggered Average: Estimations of the Receptive Fields of representative retinal ganglion cells (whose number is given in green) computed from the response to the droplets (red-blue image) and compared to the t performed on that computed using a checkerboard stimuli (green ellipse ; see Supplementary Figure8for a characterization of the whole population). Each image represents the average over the 18 frames (≈ 25ms) preceding a spike. For many cells, our estimation of the RF is very close to the one obtained by the traditional method (albeit generally with a longer temporal pro le as can be seen in Supplementary Figure9). Notice that the time of stimulation required is much shorter.

3 .

 3 while the residual energy 𝐸 = I 2 is above a given threshold do: (a) select the best match: 𝑖 = ArgMax 𝑗 |𝑎 𝑗 |, where | • | denotes the modulus, (b) increment the sparse coe cient: 𝑠 𝑖 = 𝑠 𝑖 + 𝛼 • 𝑎 𝑖 , (c) update residual image: I ← I -𝛼 • 𝑎 𝑖 • Φ 𝑖 , (d) update residual coe cients: ∀𝑗, 𝑎 𝑗 ← 𝑎 𝑗 -𝛼 • 𝑎 𝑖 < Φ 𝑖 , Φ 𝑗 >, 4. the nal non-zero values of the sparse representation vector s, give the list of edges representing the image as the list of couples (𝑖, 𝑠 𝑖 ), where 𝑖 represents an edge occurrence as represented by its position, orientation and scale.

Figure 6 :

 6 Figure 6: Filters used in this paper. To mimic the average pro le of receptive elds in the retina, we use rotationally symmetric lters. ese are characterized by a donut-shaped spectrum (Le ) and resemble the Laplacian of Gaussian or the Di erence of Gaussian lters in Image coordinate (Right)

Figure 7 :

 7 Figure7: Coding of natural images. Coe cients decrease as a function of their rank of extraction (average across images ± standard deviation). is decrease is faster when using a sparse coding mechanism (Matching Pursuit, 'MP') than when just ordering the linear coe cients ('lin'). (B-inset) For the sparse coding, we controlled the quality of the reconstruction from the edge information such that the residual energy is less than 10% over the whole set of images, a criterion met on average when identifying 8192 edges per image for images of size 256 × 256 (that is, a relative sparseness of ≈ 9% of activated coe cients).
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 8 Figure8: Characterizing cells using the checkerboard stimulus: Estimations of the Receptive Fields of representative retinal ganglion cells using a checkerboard stimulus. On the le we show the ON cells and on the right the OFF cells. e large plot is the map of the location of each receptive eld. We show the ellipses corresponding to the best ts on the RFs' shapes. Adjacent to them are the histograms of the distribution of height and width, and in the corner is the distribution of the eccentricity of the ellipses ed to the RF.
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Figure 9: Temporal pro les of the estimated Receptive Fields: Each pair of rows represent the STA of a representative cell. Each image is the average frame preceding each spike, at the time indicated above. e upper row is the STA computed from the response to the checkerboard stimulus and the lower row the STA computed from the response to the DropLets. As can be seen, the temporal course is much shorter for the checkerboard, mainly due to the temporal correlations of the DropLets. Ideally, the parameters will be tuned to get an equivalent response from both. For many cells, our estimation of the RF is very close to the one obtained by the traditional method (albeit generally with a longer temporal pro le). Notice that the time of stimulation required is much shorter.