CNRS, CLLE, ISCPIF Bruno Gaume
email: gaume@univ-tlse2.fr

Alexandre Delanoe
email: alexandre.delanoe@iscpif.fr

Alp Mestanogullari

Alexandre Delanoë

Introducing a mesoscopic scale with Conf luence in Modularity, to improve graph clustering resolution

Keywords: 4, 1 Implémentation: Alp et Alexandre

Given a graph G = (V, E) and two vertices i, j ∈ V , we introduce Conf luence(G, i, j), a vertex mesoscopic closeness measure which brings together vertices from the same link-dense region of the graph G, and separates vertices coming from two distinct dense regions.

Conf luence becomes a useful tool to avoid the resolution problems of the standard M odularity(G, Γ) measure for a given clustering Γ, as evidenced by our comparative study between these two measures on toy graphs. We additionally present a heuristic to nd a partitional clustering of a graph that tentatively optimizes a clustering quality function derived from Conf luence, comparing the new heuristic's behaviour to the state of the art Louvain and Inf omap methods on real terrain networks, while introducing a way to control the size of the resulting clusters along the way. 1 Contents 1 Introduction 2 Modularity 2.1 Limits of Modularity . 3 Avoiding M odularity limits by introducing a mesoscopic scale 3.1 Conuence, a vertices mesoscopic closeness measure

Introduction

Terrain networks are real world networks that model data gathered by eld work, in diverse elds such as sociology, linguistics, biology, or graphs from the internet.

Most terrain networks contrast with articial graphs (deterministic or random) and share four similar

properties [START_REF] Watts | Collective Dynamics of Small-World Networks[END_REF], Albert and Barabasi, 2002, Newman, 2003]. They exhibit:

p 1 : A low density (not many edges);

p 2 : Short paths (the average number of edges L on the shortest path between two vertices is low); p 3 : A high clustering rate C = 3 × number of triangles number of connected triplets (locally densely connected subgraphs can be found whereas the whole graph is globally sparse); p 4 : A heavy-tailed degree distribution (the distribution of the degrees of the vertices of the graph can be approximated by a power law).

Clustering a terrain network consists in grouping together in modules vertices that belong to the same densely connected region of the graph (property p 3), while keeping separate vertices that do not (property p 1). The dierence with a classication task is that the number of groups is not known in advance.

Let G = (V, E) be a graph:

-Module: A module γ of G is a non-empty subset of the graph's vertices: γ = ∅ and γ ⊂ V ; -Clustering: A clustering Γ of G is a set of modules of G such that γ∈Γ γ = V ; -Partitional clustering: If ∀γ i , γ j ∈ Γ, (i = j) ⇒ (γ i ∩ γ j = ∅), then Γ is a partitional clustering of G, where modules of G are not allowed to overlap. Given such a Γ we can dene an equivalence relation Γ ∼ on the set of vertices: ∀u, v ∈ V, (u

Γ ∼ v) ⇔ (∃γ ∈ Γ such that u ∈ γ and v ∈ γ);
-Clustering quality function: A clustering quality function Q(G, Γ) is an R-valued function whose goal is to measure the adequacy of the modules with the densely connected regions of terrain networks (property p 3).

In order to establish a good partitional clustering for a graph G = (V, E), given a clustering quality function Q, it would in theory be sucient to build all the possible partitionings of the set of vertices V , and to pick a partitioning Γ such that Q(G, Γ) is optimal. This method is however obviously impractical, since the number of partionings of a set of size n = |V | is equal to the n th Bell number, a sequence known to grow exponentially [Knuth, 1968].

Many graph clustering methods therefore consist in dening a heuristic that can nd in a reasonable amount of time a clustering Γ that tentatively optimises Q(G, Γ) for a given clustering quality function Q. Several partitional clustering methods, such as Louvain [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF], use the M odularity quality function suggested in 2004 by Newman and Girvan [START_REF] Newman | Finding and evaluating community structure in networks[END_REF].

In section 2 we present the M odularity quality function, describing its limits in section 2.1. To avoid these limits, section 3 revisits the denition of M odularity to introduce a mesoscopic scale, with a vertices mesoscopic closeness measure Conf luence, that we dene in section 3.1. We then compare the clusterings which maximize this new quality function with the ones that maximize M odularity, on a few small toy graphs, in section 3.3.

We then describe, in section 4, a new heuristic to optimize this new quality function on bigger graphs, comparing in section 4.2 the results with those obtained using two of the most used state of the art heuristics: Louvain [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF] which tries to maximize M odularity, and Inf omap, among the most elegant and ecient heuritics, which tries to maximize the quality function described in 2008 by [START_REF] Rosvall | Maps of random walks on complex networks reveal community structure[END_REF].

Finally, in section 5, we describe a way to control the size of the modules and conclude in section 6.

Modularity

The modularity of a partitional clustering for a graph G = (V, E) with m = |E| edges is equal to the dierence between the proportion of links internal to modules of the clustering, and the same quantity in a null model, where no community structure is expected. The null model is a random graph G N ull with the same number of vertices and edges, as well as the same distribution of degrees as G, where the probability of having an edge between two vertices x and y is equal to

d G (x).d G (y) 2m , with d G (i) = |{v ∈ V /{i, v} ∈ E}| is the degree of vertex i in G.
Let G = (V, E) be a graph with m edges and Γ a partitioning of V . The modularity of Γ can be dened as follows.

M odularity(G, Γ) = 1 2m γ∈Γ i,j∈γ P edge(G, i, j) -P edge(G N ull , i, j)

(1)

Where P edge(G, x, y) is a symmetrical vertex closeness measure equal to the probability of {x, y} being an edge of G, that is:

P edge(G, i, j) = 1 if {i, j} ∈ E, 0 otberwise.
(2)

P edge(G N ull , i, j) = d G (i).d G (j) 2m (3)
In equation 1, the rst term 1 2m is purely conventional, so that modularity values all live in the [-1, 1] interval, but plays no role when maximizing modularity, since it is constant for a given graph G.

We then dene Q P edge as Newman and Girvan's quality function, to be maximized:

Q P edge (G, Γ) = γ∈Γ i,j∈γ P edge(G, i, j) -P edge(G N ull , i, j) = γ∈Γ i,j∈γ 1 -d G (i).d G (j) 2m if {i, j} ∈ E, -d G (i).d G (j) 2m otherwise. (4)
A good partitional clustering Γ as per 4 is one that groups in the same module vertices that are linked (especially ones with low degrees, but also to a lesser extent ones with high degrees), while avoiding as much as possible the grouping of non-linked vertices (especially ones with high degrees, but to a lesser extent ones with low degrees).

Limits of Modularity

Several authors [Fortunato andBarthelemy, 2006, Kumpula et al., 2007] showed that optimizing M odularity leads to merging small modules into larger ones, even when those small modules are well dened and weakly connected to one another. To address this problem, some authors [Reichardt andBornholdt, 2006, Arenas et al., 2008] dened multiresolution variants of M odularity, adding a resolution parameter to control module sizes.

For instance [START_REF] Reichardt | Statistical mechanics of community detection[END_REF]] introduces a parameter λ ∈ R in equation 4:

Q λ = γ∈Γ i,j∈γ 1 -λ. d G (i).d G (j) 2m if {i, j} ∈ E, -λ. d G (i).d G (j) 2m otherwise. (5
)
where λ is a resolution parameter: the higher λ is, the smaller the modules get (high resolution).

However, in [START_REF] Lancichinetti | Limits of modularity maximization in community detection[END_REF], the authors show that ... multiresolution Modularity suers from two opposite coexisting problems: the tendency to merge small subgraphs, which dominates when the resolution is low; the tendency to split large subgraphs, which dominates when the resolution is high. In benchmark networks with heterogeneous distributions of cluster sizes, the simultaneous elimination of both biases is not possible and multiresolution Modularity is not capable to recover the planted community structure, not even when it is pronounced and easily detectable by other methods, for any value of the resolution parameter. This holds for other multiresolution techniques and it is likely to be a general problem of methods based on global optimization.

... real networks are characterized by the coexistence of clusters of very dierent sizes, whose distributions are quite well described by power laws [START_REF] Clauset | Finding community structure in very large networks[END_REF], Radicchi et al., 2004].

Therefore there is no characteristic cluster size and tuning a resolution parameter may not help.

3 Avoiding M odularity limits by introducing a mesoscopic scale In equation 4, with regards to a graph G:

P edge(G, i, j) = 1 if {i, j} ∈ E, 0 otherwise.
is a local (microscopic) vertices closeness measure relative to G;

P edge(G N ull , i, j) = d G (i).d G (j)
2m is a global (macroscopic) vertices closeness measure relative to G.

To avoid limits described in section 2.1, we introduce in equation 4 an intermediate mesoscopic 1 vertices closeness measure relative to G: Conf luence(G, i, j) that we dene below.

Conuence, a vertices mesoscopic closeness measure

If G = (V, E) is a reexive 2 and undirected graph, let us imagine a walker wandering on the graph G: at time t ∈ N, the walker is on one vertex i ∈ V ; at time t + 1, the walker can reach any neighbouring vertex of i, with uniform probability. This process is called a simple random walk [Bollobas, 2002]. It can be dened by a Markov chain on V with an 1 A mesoscopic scale is an intermediate scale between a local microscopic scale and a global macroscopic scale. 2 i.e. each vertex is connected to itself. If such self-loops do not exist in the data, they may be added without loss of information.

n × n transition matrix [G]: [G] = (g i,j) i,j∈V with g i,j =    1 d G (i) if {i, j} ∈ E, 0 otherwise. (6
)
Since G is reexive, each vertex has at least one neighbour (itself) and [G] is therefore well dened. Furthermore, by construction, [G] is a stochastic matrix: ∀i ∈ V, j∈V g i,j = 1. The probability P t G (i j) of a walker starting on vertex i and reaching vertex j after t steps is:

P t G (i j) = ([G] t) i,j (7)
Propsition 1 Let G = (V, E) be a reexive graph with m edges, and G null = (V, E null) its null model such that the probability of the existence of a link between two vertices i and j

is e i,j = d G (i).d G (j) 2m . ∀t ∈ N * , ∀i, j ∈ V, P t G null (i j) = d G (j) 2m (8)
Proof by induction on t : (a) True for t = 1:

∀i, j ∈ V, P 1 G null (i j) = e i,j . 1 d G (i) = d G (i).d G (j) 2m . 1 d G (i) = d G (j) 2m
(b) If true for t then true for t + 1:

∀i, j ∈ V, P t+1 G null (i j) = k∈V P t G null (i k).P 1 G null (k j) = k∈V P t G null (i k). d G (j) 2m = d G (j) 2m . k∈V P t G null (i k) = d G (j) 2m . k∈V d G (k) 2m = d G (j) 2m (a) & (b) ⇒ 8
On a graph G = (V, E) the trajectory of a random walker is completely governed by the topology of the graph in the vicinity of the starting node: after t steps, any vertex j located at a distance of t links or less can be reached. The probability of this event depends on the number of paths between i and j, and on the structure of the graph around the intermediary vertices along those paths. The more short paths exist between vertices i and j, the higher the probability P t G (i j) of reaching j from i.

On the graph G null the trajectory of a random walker is only governed by the degrees of the vertices, and no longer at all by the topology of the graph in the vicinity of the starting node.

We want to consider as close each pair of vertices {i, j} having a probability of reaching j from i after a short random walk in G, greater than the probability of reaching j from i in G null . We therefore dene the t-conuence Conf t (G, i, j) between two vertices i, j on a graph G as follows:

Conf t (G, i, j) =    0 if i = j, P t G (i j)-P t G null (i j) P t G (i j)+P t G null (i j) = P t G (i j)- d G (j) 2m P t G (i j)+ d G (j) 2m otherwise. (9
)
Propsition 2 Let G = (V, E) be a reexive graph with m edges, and G null its null model such that the probability of the existence of a link between two vertices i and j is e i,j =

d G (i).d G (j) 2m . ∀t ∈ N * , ∀i, j ∈ V, Conf t (G N ull , i, j) = 0 (10)
Proof :

If i = j, the result follows directly from denition 9.

If i = j, Conf t (G N ull , i, j) = P t G N ull (i j)- d G N ull (j) 2m P t G N ull (i j)+ d G N ull (j) 2m
(by denition 9)

= P t G N ull (i j)- d G (j) 2m P t G N ull (i j)+ d G (j) 2m (by denition of G N ull) = d G (j) 2m - d G (j) 2m d G (j) 2m + d G (j) 2m (by proposition 1) = 0 To prove that Conf t (G, • , •) is symmetric, we rst need to prove proposition 3. Propsition 3 Let G = (V, E) be a reexive graph. ∀t ∈ N * , ∀i, j ∈ V, P t G (i j) = d G (j) d G (i) .P t G (j i) (11)
Proof by induction on t :

(a) True for t = 1:

∀i, j ∈ V, if {i, j} / ∈ E, then P 1 G (i j) = 0 and P 1 G (j i) = 0, therefore P 1 G (i j) = d G (j) d G (i) .P 1 G (j i) = 0 otherwise P 1 G (i j) = 1 d G (i) = d G (j) d G (i) . 1 d G (j) = d G (j) d G (i) .P 1 G (j i) (b) If true for t then true for t + 1: ∀i, j ∈ V, P t+1 G (i j) = k∈V P t G (i k).P 1 G (k j) = k∈V P t G (k i). d G (k) d G (i) .P 1 G (k j) = k∈V P t G (k i). d G (k) d G (i) .P 1 G (j k). d G (j) d G (k) = k∈V P t G (k i).P 1 G (j k). d G (j) d G (i) = d G (j) d G (i) k∈V P 1 G (j k).P t G (k i) = d G (j) d G (i) .P t+1 G (j i) (a) & (b) ⇒ 11 Propsition 4 Let G = (V, E) be a reexive graph. ∀t ∈ N * , ∀i, j ∈ V, Conf t (G, i, j) = Conf t (G, j, i) (12)
Proof :

If i=j : it follows directly from denition 9.

If i = j : Conf t (G, i, j) = P t G (i j)-P t G null (i j) P t G (i j)+P t G null (i j) = P t G (i j)- d G (j) 2m P t G (i j)+ d G (j) 2m = d G (j) d G (i) .P t G (j i)- d G (j) 2m d G (j) d G (i) .P t G (j i)+ d G (j) 2m = (d G (j) d G (i) .P t G (j i)- d G (j) 2m). d G (i) d G (j) (d G (j) d G (i) .P t G (j i)+ d G (j) 2m). d G (i) d G (j) = P t G (j i)- d G (i) 2m P t G (j i)+ d G (i) 2m = P t G (j i)-P t G null (j i) P t G (j i)+P t G null (j i) = Conf t (G, j, i)
Conf luence actually denes an innity of symmetrical vertex closeness measures, one for each random walk length t. For clarity, in the rest of this paper, we set t = 3 and dene Conf (G, i, j) = Conf 3 (G, i, j).

Most terrain networks exhibit the properties p 2 (short paths) and p 3 (high clustering rate). With a classic distance such as the shortest path between two vertices, all vertices would be close to each other in a terrain network (because of property p 2). On the contrary, Conf luence allows us to identify vertices living in the same higher density zones of G (property p 3):

If i, j are in the same high local density region:

P 3 G (i j) > P 3 G null (i j), thus Conf (G, i, j) > 0 (13)
If i, j are in two distinct high local density regions:

P 3 G (i j) < P 3 G null (i j), thus Conf (G, i, j) < 0 (14)

Introducing a mesoscopic scale in Modularity

To avoid the limits of M odularity described in section 2.1, we propose Q Conf , a new clustering quality function, which introduces a mesoscopic scale into M odularity through Conf luence:

Q Conf (G, Γ) = γ∈Γ i =j∈γ Conf (G, i, j) + P edge(G, i, j) -P edge(G null , i, j)
By the denitions of Conf (equation 9) and P edge (equations 2 and 3) :

Q Conf (G, Γ) = γ∈Γ i =j∈γ P 3 G (i j)- d G (j) 2m P 3 G (i j)+ d G (j) 2m + 1 -d G (i).d G (j) 2m if {i, j} ∈ E, -d G (i).d G (j) 2m otherwise.
Leading us to the following denition of Q Conf :

Q Conf (G, Γ) = γ∈Γ i =j∈γ          P 3 G (i j)- d G (j) 2m P 3 G (i j)+ d G (j) 2m + 1 -d G (i).d G (j) 2m if {i, j} ∈ E, P 3 G (i j)- d G (j) 2m P 3 G (i j)+ d G (j) 2m -d G (i).d G (j) 2m otherwise. (15)
To make it easier to interpret Q Conf , we dene the GooDness of a clustering Γ for a graph G = (V, E):

GooDness(G, Γ) = 1 2|E| .Q Conf (G, Γ) (16)
and the ConF ness of a set of vertices γ ∈ Γ for a graph G = (V, E): [START_REF] Brandes | On modularity clustering[END_REF], and the same holds for computing a clustering that maximizes Q Conf .

ConF ness(G, γ) = 1 |γ|.(|γ| -1) i =j∈γ Conf luence(G, i, j) (17) 3.3 Optimality for Q Pedge versus optimality for Q Conf A partitional clustering ∆ is optimal for a quality function Q i: For all partitioning Γ of V , Q G, ∆) Q G, Γ) . Computing a ∆ that maximizes Q P edge (G, ∆) is N P -complete [
However, when the number of vertices of a graph G = (V, E) is small, the problem of maximizing the modularity can be turned into a reasonably tractable Integer Linear Program (see [START_REF] Brandes | On modularity clustering[END_REF]): We dene n 2 decision variables X ij ∈ {0, 1}, one for each pair of vertices {i, j} ∈ V . The key idea is that we can build an equivalence relation on V (i ∼ j i X ij = 1) and therefore a partitioning of V . To guarantee that the decision variables give rise to an equivalence relation, they must satisfy the following constraints:

Reexivity: ∀i ∈ V, X ii = 1; Symmetry: ∀i, j ∈ V : X ij = X ji ; Transitivity: ∀i, j, k ∈ V :    ∀i, j, k ∈ V : X ij + X jk -2.X ik ≤ 1; ∀i, j, k ∈ V : X ik + X ij -2.X jk ≤ 1; ∀i, j, k ∈ V : X jk + X ik -2.X ij ≤ 1.
With the following objective functions to maximize:

For Q Pedge : i,j∈V X ij . P edge(G, i, j) -P edge(G N ull , i, j) For Q Conf : i =j∈V X ij . Conf (G, i, j) + P edge(G, i, j) -P edge(G null , i, j) (18)
On four small aticial graphs, G 1 toy , ... G 4 toy , we compare optimal clusterings ∆ G P edge and ∆ G Conf respectively computed for Q P edge and Q Conf , with results illustrated in Figure 1.

The optimal clusterings for Q Conf do not necessarily have a higher resolution than with Q P edge , they can even have a lower resolution3 :

• Fig. 6 • ∆

P edge = δ 2 Conf ∪ δ 3 Conf : • ∆ G 1 toy Conf = δ 1 Conf ={0, 4, 5, 6} 0.10 , δ 2 Conf ={1, 2, 3} 0.18 , δ 3 Conf ={7, 8} 0.18 ; • ∆ G 1 toy P edge = δ 1 P edge ={1, 2,
∆ G 3 toy Conf is dierent from ∆ G 3 toy Pedge , with δ 1 Conf = δ 2 P edge ∪ δ 3 P edge and δ 1 P edge = δ 2 Conf ∪ δ 3 Conf : • ∆ G 3 toy Conf = δ 1 Conf ={0, 1, 2, 3, 4,
G 4 toy Conf = ∆ G 4 toy P edge = δ 1 ={0,

A heuristic by edges conuence

We describe in this section a heuristic for tentatively maximizing Q Conf . To this end, we start with a variant on Conf , named Conf r, where the conuence between two adjacent vertices is computed by removing the edge between them 4 :

Conf r(G, i, j) = Conf (G, i, j) if {i, j} / ∈ E, Conf (G = (V, E -{i, j}), i, j) otherwise. (19
)
Conf r gives us an ordering on the edges {i, j} ∈ E of the graph. In particular, sorting the edges by decreasing Conf r(G, i, j) forms the basis of a new strategy for constructing the cluster's modules, Hbec (Heuristic by edges conf luence), described 5 in algorithm 1. On G 5 toy , the graph depicted in Figure 2, Hbec yields the following clusters: Hbec(G 5 toys) = {0, 1, 3, 4, 5}, {6, 7, 8, 9, 10}, {2} . It is interesting to note how vertex 2 is left isolated in its own cluster by Hbec, whereas it joins the {6, 7, 8, 9, 10} module in the optimal clustering for Q Conf : ∆ G 5 toy Conf = {0, 1, 3, 4, 5}, {2, 6, 7, 8, 9, 10} . 4 A comparative study of Conf r with over 80 similarity measures between vertices of a graph has been done by Emmanuel Navarro in his thesis, looking into the sensitivity of various methods to the density of graphs, paths of length 1 and the degrees of vertices, among other aspects. This thesis is available at https://oatao.univ-toulouse.fr/12024/1/navarro.pdf. The study shows that, among the 80 similarity measures considered, Conf r(G, i, j) is the only one that, even though it does not systematically regroup pairs of vertices {i, j} ∈ E, is correlated to the local edge density around vertices i and j, while being independent of the global density of the graphs.

5 Dierent edges might happen to have the exact same Conf r value, making the process non-deterministic in general, because of its sensitivity on the order in which the edges with identical Conf r values are processed. A simple solution to this problem is to sort edges by rst comparing their Conf r values and then using the lexicographic order on (i, j) when Conf r values are strictly identical. Indeed, when a vertex is linked to two or more distinct dense regions of a graph, Hbec tends to leave that vertex isolated due to its Conf r-centered strategy, which does not push the said vertex towards one of those regions over the other. It is therefore desirable to add one last step to the process, to get even closer to the optimal clustering by trying to merge more modules with a greedy algorithm:

FastGreedy(Hbec(G)) : we iteratively merge pairs of modules resulting from Hbec(G) when the union of modules is locally optimal with respect to Q Conf , stopping when merging any pair of the remaining modules would not result in an increase of Q Conf .

We call Kodex(G) the complete algorithm, including the nal FastGreedy step. We

Implementation

Our implementation of Kodex reects the high-level description from the previous sections and is therefore split into three main parts: pre-computing the conuence of all the edges of the graph (and sorting the said list of edges in decreasing conuence order), doing a rst clustering pass (H bec), and the nal greedy step. Let G = (V, E), and n = |V |.

Edges conuence:

First, construct the reexive sparse adjacency matrix of the input graph, Adj(G) ∈ M n (R), represented using the Compressed Sparse Column format, supported by the vast majority of sparse linear algebra libraries, by supplying the appropriate routine with all the (i, j, 1) triplets, where {i, j}

∈ E or i = j. That is, Adj(G) i,j = 1 if i, j ∈ E or i = j, 0 otherwise .
Then compute the corresponding transition matrix, T (G), assuming a uniform probability of reaching any neighbor from a given vertex. This amounts to setting all nonzero values of a column j to 1

deg G j . That is, T (G) i,j = 1 deg G (j) if i, j ∈ E, 0 otherwise .
Algorithm 1 Hbec(G) Heuristic by edges conuence for optimizing

Q Conf Input: G = (V, E) an undirected graph Output: C a partitional clustering of G for i ∈ V do mod i {i} v i i q 0 Υ ∅ While Υ = E do {i, j} arg max {x,y}∈E-Υ Conf r(G, x, y) (a) Υ Υ ∪ {{i, j}} if v i = v j then
i and j are not in the same module

q candidate q + 2. x∈mi y∈mj Conf (G, x, y) + P edge(G, x, y) -P edge(G null , x, y) (b)
if q q candidate then q q candidate mod i mod i ∪ mod j for y ∈ mod j do

v y v i m j ∅ C ∅ for i ∈ V do if mod i = ∅ C C ∪ {mod i } return C
Then compute the proxemy matrix, P (G) = T (G) 3 .

Next, we iterate over the list of edges {a, b} ∈ E, constructing another list:

Dene T (G -{a, b}) to be the same as T (G) except for the entries at (a, b)

and (b, a) that should be set to 0, to emulate the removal of the link between vertices a and b, and an update to the other entries of the two relevant columns to reect a decrease by 1 in the degree of vertices a and b, to account for the freshly removed link.

That is,

T (G -{a, b}) i,j =    0 if {i, j} = {a, b} 1 deg G (j) if j = a or j = b but i / ∈ {a, b} T (G) i,j otherwise Dene e b ∈ R n as (e b) i = 1 if i = b, 0 otherwise , ideally using a sparse repre- sentation.
Multiply T (G -{a, b}) and e b , and multiply the result by T (G -{a, b}), and again, as many times as the length of the random walk is, which has been 3 in most of this paper. That is, for t = 3, we compute: T (G -{a, b})T (G -{a, b})T (G -{a, b})e b . We call the resulting vector w

∈ R n Finally, compute conf a,b = wa- deg G (a)-1 nnz(Adj(G))-2 wa+ deg G (a)-1 nnz(Adj(G))-2
where nnz is a function returning the number of non-zero entries in a sparse matrix, typically provided by sparse linear algebra libraries. Return (a, b, conf a,b).

Sort the list of (a, b, conf a,b) according to conf a,b , in decreasing order, breaking equalities by discriminating on the lexicographic ordering on a and then b.

Hbec

We create a clustering with all vertices isolated in their own 1-point cluster. Clusters are represented with associative maps from cluster identiers to sets of vertex identiers, i.e clust[i] = {a, b, c} means that vertices a, b, c are in cluster number i, while maintaining another associative map from vertex identiers to cluster identier, i.e index[i] = c means that vertex i belongs to cluster c. We additionally maintain a mapping from cluster identiers to scores, score[i], to avoid save some computations that we will keep reusing, instead of performing them from scratch every time.

We set the score of our clustering, clust s core to 0 initially. We iterate over the sorted list of edges from the previous phase. When processing entry (a, b, conf a,b):

We compute the clustering quality improvement we would get by merging clusters index[a] and index[b]:

score(index[a] and index[b]) = i∈clust[index[a]],j∈clust[index[b]] f (i, j) (20)
where f is dened as:

f (i, j) = P (G) i,j -deg G (i) nnz(Adj(G) P (G) i,j + deg G (i) nnz(Adj(G) + Adj(G) i,j - (deg G (i) -1)(deg G (j) -1) nnz(Adj(G)) -n If score(index[a] and index[b])-score[index[a]]-score[index[b]] > 0, we merge index[b] into index[a]: * clust s core := clust s core + score(index[a] and index[b]) -score[index[a]] - score[index[b]] * clust[index[a]] := clust[index[a]] ∪ clust[index[b]] * score[index[a]] := score(index[a] and index[b]) * For all i ∈ clust[index[b]], we set index[i] := index[a].
Otherwise, we move on to the next edge.

Once all the edges have been processed, clust describes a partitional clustering of G.

Final greedy step

For all pairs of non-empty clusters resulting from Hbec, compute the sum described in equation 20, using an associative container of some sort to record the mapping between the pair of cluster identiers and the resulting score.

If there is a pair of clusters for which the sum yields a strictly positive number (i.e a pair that would improve the quality of the clustering, if merged), merge them, updating the scores computed in the rst step to account for the merge, wherever one of those clusters is involved.

Repeat until no such pair of clusters exists anymore.

Tests

We compare three heuristics for computing a partitional clustering:

Louvain : The Louvain method [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF] is the state of the art heuristic that tentatively maximizes M odularity;

Infomap : The Inf omap method is a heuristic for tentatively maximizing the quality function described in 2008 by [START_REF] Rosvall | Maps of random walks on complex networks reveal community structure[END_REF]. This quality function is based on the minimum description length principle [Grünwald, 2007].

It consists in measuring the compression ratio that a given partitioning Γ provides for describing the trajectory of a random walk on a graph. The trajectory description happens on two levels. When the walker enters a module, we write down its name. We then write the vertices that the walker visits, with a notation local to the module, so that an identical short name may be used for dierent vertices from dierent modules. A concise description of the trajectory, with a good compression ratio, is therefore possible when the modules of Γ are such that the walker tends to stay in them, which corresponds to the idea that the walker is captured when it enters a good module, which is supposed to be a densely linked region that is only weakly connected to other modules. The quality 6 of a partitional clustering is the compression ratio that Γ provides for describing the trajectory of a random walker on G; Kodex : The heuristic described in section 4 that tentatively maximizes Q Conf .

Louvain, Infomap and Kodex on four G toys graphs

We start by testing Louvain, Inf omap and Kodex on the four G toys graphs of section 3.3.

The results are summarized in Figure 3.

On these four G toys graphs, Louvain nds the optimal modules with respect to Q P edge while Kodex nds the optimal modules with respect to Q Conf . On G 2 toy and G 3 toy , Inf omap and Kodex agree on the clustering, both nding the optimal modules with respect to Q Conf . However, on G 1 toy and G 4 toy , Inf omap collects all the vertices into a single module, because there is no way to compress the description of the path of a random walker on either of those graphs.

Indeed, G 4 toy has been articially constructed as follow: G 4 toy = (V, E) where V is the union of 3 sets of 8 vertices, γ 1 = {0, ..., 7}, γ 2 = {8, ..., 15}, γ 3 = {16, ..., 23}, and edges are randomly drawn using two dierent probabilities: we use a probability of 0.5 for drawing an edge between two vertices from the same γ i , and a probability of 0.25 when the two vertices come from dierent sets. Vertices from a given γ i are expected to have as many internal links (within γ i) as they have links to vertices from the two other sets. At every single step, the random walker is equally likely to leave a γ i or stay within it, which eectively prevents any path compression to take place in G 4 toy . G FrSynV : The Dicosyn resource comes from a collaboration between IBM and the CNRS laboratory ATILF http://www.atilf.fr/. Starting with seven classical French dictionaries (Bailly, Benac, Du Chazaud, Guizot, Lafaye, Larousse and Robert), they extracted synonymic relationships, and the resulting graph G F rSyn was then symmetrized and split by P oS into three graphs: G F rSynV for verbs, G F rSyn.N for nouns and G F rSyn.A for adjectives.

G Actors : The well known network of actors [START_REF] Watts | Collective Dynamics of Small-World Networks[END_REF]] has been built from the Internet Movie Database (April 1997) http://us.imdb.com; nodes are actors, and two actors are linked if they have played in a lm together [START_REF] Rossi | The network data repository with interactive graph analytics and visualization[END_REF] https://networkrepository.com/actor-collaboration.php.

G DBLP : The DBLP computer science bibliography provides a comprehensive list of research papers in computer science [START_REF] Leskovec | SNAP Datasets: Stanford large network dataset collection[END_REF].

Two authors are connected if they have published at least one paper together https://snap. stanford.edu/data/com-DBLP.html.

G Amazon : A network was collected by crawling the Amazon website. It is based on the Customers Who Bought This Item Also Bought feature of the Amazon website [START_REF] Leskovec | SNAP Datasets: Stanford large network dataset collection[END_REF]. If a product i is frequently co-purchased with product j, the graph contains an undirected edge from i to j https://snap.stanford. edu/data/com-Amazon.html. The power law estimation we give, λ(r 2) is not very accurate (see for instance [Newman, 2005]). However, giving a correct estimation of the odds that a given discrete distribution is heavy-tailed is a dicult issue ([START_REF] Goldstein | Problems with tting to the power-law distribution[END_REF], Clauset et al., 2009]), and rening the power-law estimates is beyond the scope of this paper. In order to gain some control over the size of modules, we introduce a β parameter into Q Conf , resulting in the following Q β Conf (G, Γ) quality function:

Q β Conf (G, Γ) = γ∈Γ i =j∈γ    Conf (G, i, j) + 1 -d G (i).d G (j) 2m if {i, j} ∈ E, Conf (G, i, j) -d G (i).d G (j) 2m -β * 1 -Conf (G, i, j) otherwise. = γ∈Γ i =j∈γ          P 3 G (i j)- d G (j) 2m P 3 G (i j)+ d G (j) 2m + 1 -d G (i).d G (j) 2m if {i, j} ∈ E, P 3 G (i j)- d G (j) 2m P 3 G (i j)+ d G (j) 2m -d G (i).d G (j) 2m -β * 1 - P 3 G (i j)- d G (j) 2m P 3 G (i j)+ d G (j) 2m
otherwise.

(

) Since P 3 G (i j) ∈ [0, 1], it follows that P 3 G (i j)- d G (j) 2m P 3 G (i j)+ d G (j) 2m 21
∈ [-1, 1], and therefore:

if β > 0, then -β * 1 - P 3 G (i j)- d G (j) 2m P 3 G (i j)+ d G (j) 2m
0. That is, with β > 0:

If {i, j} ∈ E, then noting changes ;

If {i, j} / ∈ E and i, j are in the same high density region, then we slightly penalize the {i, j} pair (by 13);

If {i, j} / ∈ E and i, j are in two distinct high density regions, then we strongly penalize the {i, j} pair (by 14).

Because we must avoid as much as possible that the modules contain pairs {i, j} / ∈ E (with increasing eciency as β grows), this forces modules to be smaller, as illustrated by Figure 4 on graph G 3 toy . Increasing β does not simply split modules (resulting in a hierarchical approach). This can be observed when going from β = 0.5 to β = 1.0, noticing that there

is no δ ∈ ∆ G 3 toy Q 0.5 Conf such that δ 2 Q 1.0 Conf = {0, 2, 4} ⊂ δ.
Revisiting the previous algorithm to account for the β parameter, yielding Kodex(G, β), simply amounts to replacing line (b) in algorithm 1 by: q candidate q+2.

x∈mi y∈mj

Conf (G, x, y) + P edge(G, x, y) -P edge(G null , x, y) if {x, y} ∈ E,

(1 + β).Conf (G, x, y) + P edge(G, x, y) -P edge(G null , x, y) -β otherwise. Conf ={13,14,15} 0.66 .

Table 3 shows the results for Kodex(G, β) with β = 0.0, β = 0.5, β = 1.0 on four real terrain graphs. To compare two clusterings Γ 1 and Γ 2 , of a graph G = (V, E) we dene:

P recision(Γ 1 , Γ 2) = γ∈Γ 1 {x, y} ∈ γ × γ γ∈Γ 2 {x, y} ∈ γ × γ γ∈Γ 1 {x, y} ∈ γ × γ Recall(Γ 1 , Γ 2) = γ∈Γ 1 {x, y} ∈ γ × γ γ∈Γ 2 {x, y} ∈ γ × γ γ∈Γ 2 {x, y} ∈ γ × γ F score(Γ 1 , Γ 2) = 2.
P recision(Γ 1 , Γ 2).Recall(Γ 1 , Γ 2) P recision(Γ 1 , Γ 2) + Recall(Γ 1 , Γ 2)

Figure 5 shows F score(Γ 1 , Γ 2) between clusterings Kodex(G, 0.0), Kodex(G, 0.5), Kodex(G, 1.0), Louvain(G) et Inf omap(G) on the graphs G F rSynV , G Actors , G DBLP and G Amazon . (TODO: Commenter les resultats de la table 3 et de la gure 5: Bruno)

6 Conclusions and perspectives

In this paper, we dened Conf luence, a mesoscopic vertex closeness measure based on short random walks, that we introduced into M odularity to dene Q Conf , a new clustering quality function. With four small toy graphs, we showed that optimal clusterings for Q Conf improve the resolution of optimal clusterings for M odularity.

We then introduced Kodex(G), a heuristic based on the Conf luence of edges to optimize Q Conf on a graph G. On the same four little toy graphs, we showed that Kodex nds an optimal clustering for Q Conf and that for two of those toy graphs, Kodex(G) = Inf omap(G), while on the other two, Kodex(G) identies the modules we expected while Inf omap(G) regroups all vertices into a single module.

We showed that Kodex avoids the resolution problem of Louvain on four real terrain graphs, and that the modules computed by Inf omap are closer to those computed by

Figure 1 :

 1 Figure1: Optimality with respect to Q Pedge versus optimality with respect to Q Conf . Shapes describe an optimal clustering for Q Conf (if two vertices have same shape, then they are in a same module for Q Conf). Colors describe an optimal clustering for Q P edge (if two vertices have same color, then they are in a same module for Q P edge).

Figure

 Figure 2: G 5 toys

Figure 3 :

 3 Figure 3: Clusterings with Louvain, Infomap and Kodex: shapes describe Kodex(G), colors describe Louvain(G), and blocks describe Inf omap(G).

 , Inf omap(G 1 toy) = {V }, Kodex(G 1 toy) Louvain, Infomap and Kodex on terrain graphs We now compare Louvain, Inf omap and Kodex on four state-of-the-art terrain graphs.

(a) G 3 toyFigure 4 :

 34 Figure 4: Optimal clusterings of G 3 toy for Q β=0.0 Conf , Q β=0.5 Conf , Q β=1.0 Conf : In Fig. 4(a),

Table 3 :

 3 Kodex clusterings of four terrain graphs with β = 0.0, β = 0.5, β = 1.0 -;for Number of modules ; Length of the biggest modules

Figure 5 :

 5 Figure 5: Fscore(Γ 1 , Γ 2): Comparison of clusterings Kodex(G, 0.0), Kodex(G, 0.5), Kodex(G, 1.0), Louvain(G) and Inf omap(G) on G F rSynV , G Actors , G DBLP et G Amazon .

Table 1 :

 1 Table1illustrates the pedigrees 7 of these terrain graphs, and Table2illustrates the execu- tion times, number of modules, and the length of the biggest module found by the dierent methods.. Pedigrees: n and m are the number of vertices and edges, k is the mean degree of vertices, C is the clustering coecient of the graph, L lcc is the average shortest path length between any two nodes of the largest connected component (largest subgraph in which there exist at least one path between any two nodes) and n lcc the number of vertices of this component, λ is the coecient of the best tting power law of the degree distribution and r 2 is the correlation coecient of the t, measuring how well the data is modelled by the power law.

	Graph	n	m	k	C	L lcc (n lcc)	λ(r 2)
	G FrSynV	9,147	51,423	11.24	0.14	4.20(8,993)	-1.88(0.91)
	G Actors	68,684	3,007,298	87.57	0.20	3.51(68,019)	-1.49(0.90)
	G DBLP	317,080	1,049,866	6.62	0.31	6.79(317,080)	-2.71(0.95)
	G Amazon 334,863 925,872	5.53	0.21	11.95(334,863)	-2.81(0.93)
	(TODO: Commenter les resultats de la table 2: Bruno)	
	7						

Table 2 :

 2 Clusterings of four Terrain Graphs with Louvain, Kodex, Infomap: (T) Time computation in seconds (Louvain and Infomap in C++, Kodex in Haskell (see section 4.1), (N) Number of modules, (M) Length of the biggest module and -; -;for Louvain ; Kodex ; Inf omapIn many domains such as linguistics, sociology or biology, it can be useful to look into sets of objects (documents, sentences, words, individuals, cells, ...) at dierent levels of granularity.

		G FrSynV	G Actors	G DBLP	G Amazon
	(T)	0 ; ?? ; 13	?? ; ?? ; ??	11 ; 9, 639 ; 1, 933	6 ; 7, 830 ; 1, 795
	(N)	90 ; 671 ; 575	?? ; ?? ; ??	238 ; 17, 437 ; 16, 960	234 ; 20, 703 ; 17, 292
	(M) 1, 189 ; 155 ; 173	???? ; ??? ; ???	25, 893 ; 249 ; 599	12, 783 ; 535 ; 347

Where _ , _ for the M odularity, GooDness of the clustering, and _ for the ConF ness of the modules

Note that this quality function cannot be expressed as γ∈Γ i,j∈γ sim(G, i, j), with sim(G, ., .) an R-valued symmetric similarity measure between vertices of G. We therefore left out this quality function in our study of optimality in section 3.3, not having the ability to dene the corresponding objective function to maximize in a similar fashion to what was done for Q P edge and Q Conf with the formulas 18.

Kodex than the ones produced by Louvain.

Finally, to get a handle on the size of modules, we introduced the β ∈ R parameter, resulting in the Q β Conf quality function and the Kodex(G, β) variant of the algorithm. We then showed that this approach is not hierarchical 8 . Length of Random Walks:

For clarity and simplicity, we restricted the random walks of P t G (i j) to a length of t = 3. A rst study of the impact of the length of those random walks was done in [START_REF] Gaume | Building Real-World Complex Networks by Wandering on Random Graphs[END_REF], but a deeper one should be carried to understand how the length inuences the mesoscopicity of Conf luence and its eect on Q Conf and Kodex. Indeed, if G is connected and i = j:

Conf luence is independent of the intermediate structures between the two vertices i and j ;

, Conf luence is dependent of the t-intermediate structures (t-mesoscopicity) between the two vertices i and j (see13 and 14); When t → ∞: lim t→∞ Conf t (G, i, j) = 0, Conf luence is constant 9 . For example we can build the graph G 1 toy from G 1 toy by inserting a new vertex in the middle of each edge. Figure 6 illustrates the optimal clusterings on G 1 toy and on G 1 self.memory toy for Q 0.0 Conf with t = 3 and with t = 6, allowing us to see that:

G 1 toy with t = 6: we get the modules ∆

Conf = {0, 4, 5, 6} ⊂ {0, 4, 5, 6, cut(0/4), cut(0/5), cut(0/6), cut(4/5), cut(4/6), cut(5/6)};

Conf are not necessarily subsets of the optimal modules for

Conf . 9 We can prove with the Perron-Frobenius theorem [Stewart, 1994] that if G is connected, then

2m and so by proposition 1:

δ 3 Conf = {7, 8} ⊂ {7, 8, cut(7/8), cut(3/7), cut(4/7), cut(2/8), cut(5/8)}.

On G 1 toy with t = 3: we do not get the modules of ∆

Directed graphs:

If G is a positively weighted graph by W = {w i,j such {i, j} ∈ E}, then we can apply Q Conf and Kodex by replacing equations 6 and 9 by 22 and 23 respectively:

[G] = (g i,j) i,j∈V with g i,j =

If G is a directed graph, one can also consider using a variant of page rank [START_REF] Gaume | Pagerank induced topology for real-world networks[END_REF] in place of equation 7.

Overlaps:

In order to dene a heuristic for computing clusters with potential overlaps between modules, one could consider using Hbec to isolate vertices between several dense regions of the graph (see section 4) and allowing them to belong to the modules corresponding to those dense regions, identied with the help of ConF ness (see 17).