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Abstract

Leaves falling in air and bubbles rising in water provide daily examples of
nonstraight paths associated with the buoyancy-driven motion of a body in
a fluid. Such paths are relevant to a large variety of applicative fields such as
mechanical engineering, aerodynamics, meteorology, and the biomechanics
of plants and insect flight. Although the problem has attracted attention for
ages, it is only recently that the tremendous progress in the development
of experimental and computational techniques and the emergence of new
theoretical concepts have led to a better understanding of the underlying
physical mechanisms. This review attempts to bring together the main re-
cent experimental, computational, and theoretical advances obtained on this
fascinating subject. To this end it describes the first steps of the transition in
the wake of a fixed body and its connection with the onset and development
of the path instability of moving bodies. Then it analyzes the kinematics
and dynamics of various types of bodies along typical nonstraight paths and
how the corresponding information can be used to build low-dimensional
predictive models.
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1. INTRODUCTION

Bodies with widely different sizes, weights, and shapes may describe various periodic or chaotic
nonstraight paths when rising or falling under the effect of gravity in a fluid otherwise at rest.
Understanding the origin and nature of these nonstraight paths has continuously been a focus of
concern arising from many domains, such as meteorology [hailstone growth (Kry & List 1974)],
sedimentology [suspension time of sedimenting particles and its consequences on bed erodibility
and roughness (Stringham et al. 1969)], and the mechanics of insect flight [aerodynamic forces ex-
perienced by flying insects, in particular in hovering flight (see Wang 2005)]. In ecology, plume and
winged seeds spreading out from trees also are capable of various aerial movements (Augspurger
1986, Burrows 1975, Lentink et al. 2009), resulting in a differential dispersal capacity, considered
as key to the coexistence of plants. Besides these natural situations, buoyancy-driven body paths are
closely related to several fundamental questions in aerodynamics and marine engineering, espe-
cially to the understanding of autorotation (Lugt 1983) and of vortex-induced vibrations on loosely
tethered bodies (Williamson & Govardhan 2004). They are also widely encountered in engineer-
ing processes involving dispersed two-phase flows. In these, path oscillations are found to be robust
to perturbations affecting the surrounding fluid, such as turbulence (Ford & Loth 1998) or inter-
actions with neighboring bodies (Riboux et al. 2010), making results obtained for isolated bodies
relevant to multiphase flows (Magnaudet & Eames 2000). Since the early days of fluid mechanics,
some of the greatest names in physics, especially Leonardo (see Prosperetti et al. 2003, Prosperetti
2004), Newton (1687) (see also Viets & Lee 1971), Kirchhoff (1869), Maxwell (1853), and Eiffel
(1912), have contributed to identify the distinctive features of buoyancy-driven body paths, such as
the existence of periodic and irregular motions, the influence of the body shape, the drag modifica-
tion due to nonstraight paths, and the connection with the movements induced in the surrounding
fluid. They also partly set the theoretical basis on which further studies were built. The problem
was tirelessly investigated during the twentieth century. Nevertheless, it was only recently that
the three-pronged approach of sophisticated optical techniques [high-speed imaging and particle
image velocimetry (PIV)], direct numerical simulation (DNS), and to some extent, hydrodynamic
instability theory led to decisive improvements in our understanding of this class of phenomena.

The aim of this review is to provide an overview of the current knowledge that has resulted
from the various streams of investigation and of the new issues that arose from them. We restrict
our attention to the case of homogeneous bodies with simple geometries, essentially nominally
two-dimensional bodies such as plates and circular cylinders whose span is much larger than any
other characteristic dimension and axisymmetric bodies such as spheroids and disks of various
thicknesses. For such bodies falling or rising under the effect of buoyancy in a Newtonian fluid
at rest at infinity, the problem is governed by three control parameters, namely the body-to-fluid
density ratio p; the Archimedes number A7, which is basically a Reynolds number built on some
characteristic length scale d of the body and on the gravitational velocity scale V', = (|1 — plg d)"*
(where g denotes gravity); and a geometrical parameter x characterizing the geometric anisotropy
of the body. Although the body velocity is an outcome of the experiment, it is also useful to
introduce the Reynolds number Re based on the mean vertical velocity of the body U, as the
phenomena to be discussed below basically take place at moderate values of this parameter, typically
10? < Re < 10*, which clearly corresponds to flow regimes in which the wake past the body plays a
dominantrole. The various situations investigated in the literature are mapped outin the parameter
space (p, x, Re) in Figure 1. This figure reveals that an even coverage of the parametrical space is
clearly missing, with the conditions investigated to date being quite different. This is partly why
a division based on the geometrical type of body considered, although undesirable in principle,
remains the most appropriate and is used throughout this review.
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The interplay between the body degrees of freedom and the wake dynamics is at the heart of
this article, with the fundamental role of vorticity production at the body surface as the backdrop.
We discuss the various aspects of wake-induced loads associated with wake instabilities and their
consequences on the body path, as well as the reverse effect of the body degrees of freedom on the
wake dynamics. Section 2 summarizes the various possible causes of path oscillations. Section 3
provides an overview of the first stages of the transition in the wake of a fixed body, a necessary step
to better understand the occurrence and the first stages of oscillatory motions of freely moving
bodies, as discussed in Section 4. The relationship between the kinematics and dynamics of the
body, and their relationship with the wake dynamics, is the subject of Section 5. A significant
part of this section deals with recent attempts at building low-dimensional models of forces and
torques acting on the body, capable of reproducing the observed paths. Section 6 summarizes the
main points raised in the review and provides some suggestions for future research.

2. CAUSES OF PATH OSCILLATIONS

The dynamics of a rigid body immersed in a Newtonian fluid at rest at infinity results from
the coupling between the body motion and the surrounding flow field, which is a solution of
the Navier-Stokes equations satisfying initial and boundary conditions both at the body surface
and far from it. The minimal description of the fluid flow that can be considered reduces to the



loads—forces and torques—it exerts on the body. These hydrodynamical efforts include added in-
ertia (also often referred to as added mass) contributions resulting from the instantaneous reaction
of the fluid to a body displacement (translation and/or rotation), which are determined entirely by
the body shape and do not depend on the vorticity generated at its surface, nor on that which may
eventually exist in the core of the fluid. This property of added inertia effects makes it possible to
separate them unambiguously from contributions to the force and torque induced by the presence
of vorticity around the body (Howe 1995). Therefore, the classical Kelvin-Kirchhoff equations
expressing linear and angular momentum conservation for the coupled fluid/body system when
the flow around the body is assumed irrotational may actually be extended to any incompressible
flow containing vorticity. For a rigid body with three mutually orthogonal symmetry planes and
moving in a fluid at rest at infinity, these extended Kelvin-Kirchhoff equations expressed in a
reference frame having its origin fixed with respect to the laboratory but axes rotating with the
body read

@I+ £)- T 4 @ x (14 4)- U = F, + (5~ g, (1a)

(pJ+D).‘Z_S:+QX[(ﬁJ+D)-Sl]+Ux(A-U)=Fw, (1b)

where U is the velocity of the body center of mass, € is the body rotation rate (i.e., the angular
velocity vector), and T denotes the identity tensor (Mougin & Magnaudet 2002a). The force and
torque per unit mass of fluid, F,, and T, result from the existence of vorticity in the flow and do not
have a general closed-form expression. The second-order added inertia tensors A and D entirely
characterize the force and torque resulting from the instantaneous fluid reaction to a translational
and a rotational acceleration of the body, respectively. Similar to the body inertia tensor J, A and
D depend only on the body geometry and can be computed once and for all for a nondeformable
body by considering the short-time response of the flow to a given body acceleration (Magnaudet
& Eames 2000, Mougin & Magnaudet 2002a).

When the right-hand side is zero, the system in Equation 1 has been known since Kirchhoff
(1869) to generate path oscillations for nonspherical bodies, as the corresponding added mass
tensor A is not isotropic, thus inducing couplings between the force and torque balances
(Figure 2a); the corresponding paths have been shown to be generally chaotic (Aref & Jones
1993, Kozlov & Onischenko 1982). The vortical loads F,, and T',, depend on the entire history of
the fluid motion and in general are not fully determined by the degrees of freedom of the body.
It is only in some particular situations that they can be modeled as integro-differential operators
of U and @, leading, for instance, to the well-known closed-form expression for the unsteady
drag on a rigid sphere in the low-Reynolds-number regime (Landau & Lifschitz 1987).

The physical causes of path instability can be separated into two classes. The first class is
related to the way the hydrodynamical forces and torques evolve when a disturbance is applied
to the body degrees of freedom. An example is given by the oscillations predicted by potential
flow theory (Figure 24). However, the corresponding predictions are hardly realistic because
the predicted frequency generally differs much from that of the observed path oscillations (it is
typically higher by an order of magnitude for light bodies). A similar motion can also be generated
when the right-hand sides of the system in Equation 1 involve anisotropic contributions, such as
an anisotropic drag, as well as more complex rotational loads, such as those related to a nonzero
circulation around the body. The second class involves the wake instability that occurs beyond
a critical Reynolds number even if the body is translating with constant speed and orientation.
In contrast with the former class, the latter does not require any couplings with the degrees of
freedom of the body. However, as soon as flow instability induces a modification of the vortical
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Periodic motion of short cylinders (= thick disks): (#) body contours and paths computed from potential flow theory and
(b) experimental contours and paths for Re = 250 (4r = 90). The short tick lines indicate the direction of the body symmetry axis.
Note that the bodies and paths are drawn with different scales. Figure taken from Fernandes et al. (2005), reprinted with permission

from the American Institute of Physics.

efforts F,, and I',,, the body motion in turn is altered, and the fluid/body system eventually tends
toward a new equilibrium solution satisfying the system in Equation 1. In particular, when an
axisymmetric body rises or falls along a straight vertical path, the loss of the axial symmetry in its
wake results in the occurrence of asymmetric vortical loads that make it rotate and move sideways.
When the Reynolds number is large enough, the wake of any fixed solid body becomes unsteady,
and vortices are shed downstream. When such a body is free to move, a modification of the
formation and detachment of the vortices (especially of the shedding frequency) is expected. For
all bodies discussed here (which are assumed to exhibit spatial symmetry properties and to have
a uniform density), path instability turns out to be closely related to the first bifurcation of the
wake. An overview of the first wake bifurcations of a fixed body is therefore a prerequisite to a
better understanding of the occurrence of oscillatory motions when the body moves freely.

3. WAKE INSTABILITIES OF FIXED BODIES

The most extensively studied scenario of wake transition past a fixed bluft body is certainly that of
a long, nominally two-dimensional, circular cylinder held perpendicularly to the incoming flow.
As is well known, the wake first becomes unsteady through an absolute instability associated with a
Hopf bifurcation at a critical Reynolds number Re ~ 47, leading to the shedding of the celebrated
von Kédrmdn vortex street at a Strouhal number St & 0.14 (Re and St are based on the incoming
velocity U, diameter 4, and frequency f). The next bifurcation occurs for Re ~ 190 and leads to
the onset of three-dimensionality. These two steps have been reviewed in detail by Williamson
(1996) and in the context of vortex-induced vibrations by Williamson & Govardhan (2004).
Among three-dimensional bodies, the sphere was naturally chosen as a canonical geometry in
a number of studies. Modern investigations of wake instability past a fixed sphere started with the



SS: stationary state

global stability analysis of Natarajan & Acrivos (1993) and was succeeded by the DNS of Ghidersa
& Dusek (2000), Johnson & Patel (1999), Thompson et al. (2001), and Tomboulides & Orszag
(2000) and the detailed experiments of Ormieres & Provansal (1999), which altogether yielded a
consistent scenario of the first steps of the transition. In contrast with the circular cylinder, the
first bifurcation encountered in the sphere wake is a steady one occurring at Re = Re,; ~ 212 [the
physical mechanism by which this instability occurs and the reason why its nature is fundamentally
different from that of two-dimensional wakes have been explored by Magnaudet & Mougin (2007)].
This bifurcation leads to a stationary state (SS) that is no longer axisymmetric but retains a planar
reflectional symmetry with respect to a longitudinal plane passing through the sphere center. The
angular orientation of this plane in principle is arbitrary but is generally selected by the holding
device in real experiments. Using dye injection (Figure 34), this mode manifests itself through a
tilting of the recirculation region and the shedding of two filaments. In DNS (Figure 34') or in
PIV results, its structure is more easily evidenced through the streamwise (or trailing) component

Figure 3

Vortex shedding modes in the wake of a sphere (#, #/, b, &) and of an infinitely thin disk (c, ¢, 4, 4'), illustrated
with streamwise vorticity isosurfaces (', ¥/, ¢, d), streamwise vorticity contours in a cross-plane (¢), and
experimental (#, ) and numerical (4') dye lines. Experiments with a sphere courtesy of A. Przadka and S.
Goujon-Durand. Numerical dye lines adapted from Meliga et al. (2009), courtesy of P. Meliga.



of the vorticity, which reveals two steady counter-rotating vortices. (Although the streamwise
vorticity component is useful to evidence the symmetries of the wake, it is actually much weaker
than the azimuthal component associated with the primary toroidal vortex.) This bifurcated state
is also characterized by the existence of a transverse or lift force pointing in a direction contained
within the symmetry plane.

A secondary Hopf bifurcation subsequently occurs at Re = Re,; ~ 273, leading to a periodic
state called reflectional symmetry preserving (RSP) by Fabre etal. (2008) as it retains the symmetry
plane selected by the previous bifurcation. This periodic regime is characterized by a Strouhal
number St = 0.127 for Re =~ Re,;. Close to the threshold, it manifests itself in small-amplitude
peristaltic oscillations of the longitudinal vortices (Gumowski et al. 2008). The oscillations then
grow in magnitude, and for Re ~ 285, dye lines reveal the shedding of large-amplitude hairpin
vortices aligned in the same direction (see Figure 3b) (Przadka etal. 2008). The lift force associated
with this mode oscillates in magnitude about a nonzero mean, while its direction remains constant.
Numerical simulations (Figure 35’) reveal that the wake contains vortical structures of alternating
sign and different magnitudes, the weakest ones being invisible in experiments making use of dye
injection (Thompson et al. 2001). As the Reynolds number is further increased, a tertiary Hopf
bifurcation occurs for Re =~ 320 (Bouchet et al. 2006), leading to the occurrence of a secondary
frequency about three times smaller than the primary frequency. The wake then becomes irregular
but retains a planar symmetry up to Re ~ 355, beyond which it becomes fully three dimensional
and chaotic (Mittal 1998).

Itis worth noting that early dye visualizations performed with liquid drops (Magarvey & Bishop
1961a,b) and rigid spheres (Magarvey & MacLatchy 1965) falling in a liquid qualitatively revealed
most of the correct transition scenario. In particular, the structure of the first two bifurcated
states was correctly captured. The density ratios involved in these experiments were such that the
bodies underwent only tiny displacements in the range of Reynolds numbers close to the first two
bifurcations, making the results qualitatively relevant to the description of the transition past a
fixed sphere.

The infinitely thin disk held perpendicular to a uniform incoming stream is the second axi-
symmetric body of fundamental interest in the present context. DNS (Fabre et al. 2008) revealed
that, whereas the first bifurcation (which takes place at Re,; ~ 115) is similar to that of the
sphere wake, thus leading to an SS mode with a reflectional symmetry as predicted by Natarajan
& Acrivos (1993), the next steps of the transition are qualitatively different. For Re = Re,, ~ 121,
a secondary Hopf bifurcation occurs. However, unlike the case of the sphere, the resulting state is
a reflectional symmetry-breaking mode, associated with a lift force oscillating in direction rather
than in magnitude [a similar behavior was also reported for the flow past a hemisphere by Kim
& Choi (2003)]. Axial vorticity isosurfaces (Figure 3¢) show that this mode no longer exhibits
planar symmetry but rather consists of vortical structures of opposite signs twisted around each
other. Isocontours of axial vorticity in a cross-plane located in the near wake (Figure 3¢’) reveal
a characteristic pattern that led Auguste et al. (2010) to refer to this state as the yin-yang mode.
For Re = Re; ~ 140, the flow experiences a third bifurcation, which leads back to a state
exhibiting a symmetry plane. However, the corresponding state, referred to as a standing wave
mode, differs from the RSP mode because the lift force lies in a different symmetry plane and
oscillates abouta zero mean. Streamwise vorticity isosurfaces (Figure 3d) reveal that the wake then
consists of vortical structures of alternating sign but identical magnitude. Dye lines (reconstructed
numerically in Figure 34') reveal large-amplitude hairpin vortices with alternate directions. The
next event consists of the emergence of a secondary frequency about three times smaller than the
dominant one for Re ~ 170, but a truly chaotic and three-dimensional state seems to occur only
for Re ~ 225 (Auguste 2010).

RSP: reflectional
symmetry preserving
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Critical Reynolds numbers characterizing the onset of instabilities of short cylinders of aspect ratio x. Re, is
the steady bifurcation of the flow past the fixed body (DNS), Re,, is the Hopf bifurcation of the flow past the
fixed body (DNS), and Re, is the onset of the path oscillation of the freely rising body (experiments); the
dashed line is an empirical fit of Re.(x). Figure taken from Fernandes et al. (2007), reprinted with permission
from Cambridge Univ. Press.

Geometries with intermediate aspect ratios have also been considered. Fernandes et al. (2007)
numerically investigated the first two bifurcations of short cylinders (= thick disks) with diameter
d, thickness b, and aspect ratio x = d /b in the range x € [2, 10] (see Figure 4). They showed that,
for reasons explained below, the two thresholds can be made independent of x by introducing
a rescaled Reynolds number Re* = Re/(1 + x~'). With this renormalization, the first (steady)
bifurcation occurs at Re*, = 116, and the second (Hopf) bifurcation occurs at Re*, ~ 126. Auguste
et al. (2010) investigated in detail the bifurcation sequence for a short cylinder with x = 3 (see
Supplemental Video 1; follow the Supplemental Material link from the Annual Reviews home
page at http://www.annualreviews.org). This specific geometry turned out to be particularly
rich, as all four modes described above are successively encountered, together with a fifth mode
with two frequencies and no symmetry plane. An extensive parametric study dealing with oblate
spheroids and short cylinders in the range x € [1, oo[, Re € [100, 300] was recently carried out by
Chrust et al. (2011). It basically confirms the findings summarized above and delimits the domain
of existence of each state in the (x, Re) plane. Although the detailed bifurcation sequence greatly
varies from one body to another, the first bifurcation always leads to an SS mode with a symmetry
plane, and the second bifurcation is always of Hopf type, leading either to an RSP mode (for
thick bodies with x < 4) or to a reflectional symmetry-breaking mode (for thinner bodies with
X9

Theoretical investigations have also recently been carried out to better understand the wake
instability of fixed axisymmetric bluff bodies. The linear stability analysis of the axisymmetric
base flow [for a rigid sphere and a thin disk (Natarajan & Acrivos 1993) and for a fixed oblate
spheroidal bubble (Yang & Prosperetti 2007)] predicts the existence of two unstable eigenmodes



with azimuthal wave numbers 7z = £1. These modes are steady and periodic, respectively, and
are clearly associated with the first two bifurcations. However, linear analysis is unable to explain
the differences observed in the bifurcation sequence between thin (y — o00) and thick [x = O(1)]
bodies. In contrast, Fabre et al. (2008) showed that a simple dynamical system of amplitude
equations describing the weakly nonlinear interactions of the two leading eigenmodes is able to
reproduce the bifurcation scenario for both spheres and disks. A similar dynamical system for the
infinitely thin disk was also derived using weakly nonlinear stability analysis and adjoint methods
(Meliga et al. 2009), demonstrating remarkable agreement with the DNS results of Fabre et al.
(2008). The extension of these ideas to the entire class of body geometries considered in this
review is a promising direction of research. However, this approach can apply only to situations
in which the first two bifurcations are sufficiently close to each other because the theory on
which it leans assumes that the two dominant modes are nearly simultaneously neutral. For thick
bodies such as a sphere, this is no longer the case, and a better starting point is to perform a
global stability analysis using the three-dimensional, nonaxisymmetric steady state as base flow
(Pier 2008).

Although not directly relevant to practical situations, the question of the wake instability of a
fixed bubble with a prescribed shape was investigated in detail, in view of its possible connections
with the path instability of rising bubbles (Magnaudet & Mougin 2007, Yang & Prosperetti
2007). The problem is also of fundamental interest because of the different nature of the dynamic
boundary condition obeyed by the flow at a bubble surface as compared with the usual no-slip
condition. Indeed, owing to the usually large viscosity ratio between the outer and inner fluids, and
provided no impurity contaminates the interface, the outer flow almost obeys a zero-shear-stress
condition at the bubble surface. Therefore, the outer fluid slips along the surface, but vorticity
is still generated on it, owing to its nonzero curvature (Batchelor 1967). More precisely, at the
surface of an oblate bubble of aspect ratio x, the maximum vorticity ,,,, [normalized by the ratio
of the upstream velocity over the bubble equivalent diameter d,, = (69/7)"/?, with ¢ denoting the
bubble volume] is almost independent of the Reynolds number for large-enough Re (a specificity
due to the shear-free boundary condition) but depends critically on x as @, o x*? for large-
enough x (Magnaudet & Mougin 2007). The question is then to determine whether and under
which conditions this vorticity may lead to an instability in the wake. By performing a series of
DNS in which the bubble aspect ratio was progressively increased, Magnaudet & Mougin (2007)
found that wake instability first occurs for x = x.,.. ~ 2.2 for Re ~ 500. When Re and x are varied
independently, the critical curve Re,(x) that bounds the domain within which the flow is unstable
exhibits a lower branch Re = Re,;(x) and an upper branch Re = Re,,(x), with the unstable range
[Re.s, Re,,] quickly increasing with the distance to the threshold x — x.,,,. Within the unstable
range, the first two bifurcated flows correspond to the SS and RSP states found for a rigid sphere.
Examination of the variations of the maximum vorticity at the bubble surface along both branches
of the curve revealed that the wake becomes unstable when y (i.e., the bubble oblateness) is large
enough for w,,,, to exceed the threshold @, ~ 25+8.6 x 10~ Re. Interestingly, for a solid sphere
[at the surface of which @,,,.(Re) o< Re'/?], this condition is met for Re &~ 210, which corresponds
to the threshold of the first, stationary bifurcation.

This correspondence suggests that for the wake to become unstable, a critical amount of
vorticity needs to be generated at the body surface, irrespective of the dynamic boundary condition
(no-slip versus shear-free) obeyed by the flow. [This proves to be true for two-dimensional wakes
as well, as shown by Legendre et al. (2009).] The reason that the aforementioned renormalization
by Re* makes the instability thresholds of short solid cylinders independent of y is similar, as it
was observed that the strength of the vorticity generated at the surface of such bodies essentially
behaves as 1/(1 + x 7).
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4. ONSET AND FIRST STAGES OF PATH INSTABILITIES

The body and flow dynamics near the transition from rectilinear motion to path oscillations have
been described in several recent studies. The case of a sphere, for which wake instability is the only
candidate to generate oscillations, has lately been investigated numerically by Jenny et al. (2004)
and experimentally by Veldhuis & Biesheuvel (2007) and Horowitz & Williamson (2010a).

Jenny etal. (2004) observed that the onset of the periodic motion occurs at a Reynolds number,
Re,, higher than that corresponding to the loss of axisymmetry of the wake of a fixed sphere (from
now on, Reynolds and Strouhal numbers are based on the mean rise/fall velocity U,,). For light
to heavy spheres, Re, increases (from Re, ~ 224 for Ar ~ 167 and 5 = 0) toward the value
corresponding to the onset of unsteadiness of the fixed-sphere wake (Re, >~ 273 for Ar ~ 196 and
p — 00). The corresponding Strouhal numbers are close to 0.05 for 5 < 2.5 and to the natural
wake frequency St = 0.127 for heavier bodies; this abrupt change in St indicates that two unstable
modes coexist in this regime, with one of them more (less) unstable than the other for 5 < 2.5
(6 = 2.5). For all density ratios, the oscillatory oblique (OO) path arises from a steady oblique
(SO) path making an angle of approximately 5° with the vertical. This SO path sets in instead
of the initial vertical rectilinear path at slightly lower Archimedes numbers (155 < Ar < 160,
i.e., 205 < Re < 212, depending on /). In this first nonvertical regime, a slow uniform rotation
of the sphere, @ ~ 0.015V,/d, where V, = (|1 — p| gd)l/ ? is the characteristic settling velocity,
was also noticed. For light spheres (5 < 1), the OO regime becomes rapidly unstable as Ar is
increased (typically at Re >~ 245 for Ar ~ 180 and p = 0.5) and is succeeded by a low-frequency
periodic path (St 2~ 0.025) vertical in the mean, a regime usually referred to as zigzag. All these
paths are planar and clearly mirror the SS and RSP states that succeed the first two bifurcations
of the fixed-sphere wake. For all density ratios, three-dimensional chaotic paths are subsequently
observed in this study at higher Archimedes numbers.

An SO regime associated with a bifid wake and displaying two counter-rotating trailing vor-
tices was also observed for p >~ 2.3 and A4r = 176 by Veldhuis & Biesheuvel (2007) using a
Schlieren visualization technique, an observation confirmed in the subsequent PIV measurements
of Horowitz & Williamson (2010a). For A = 198, these two threads of vorticity were found to
bend and connect, forming a single-sided chain of vortex rings, as it happens in the wake of a
fixed sphere in the RSP regime. This transition and the mean frequency of the subsequent path,
St ~ 0.07, are in agreement with the findings of Jenny et al. (2004). However, a fourth harmonic
(St ~ 0.25) was also markedly present in these experiments and became predominant for light
spheres (p < 1.3), at variance with the numerical results. For even lighter spheres (5 >~ 0.56),
irregular zigzag paths in which the erratic motion might be interrupted by short transients of
periodic zigzag were noticed.

Although experiments suggest that the change in the wake structure that arises at the SO-OO
transition barely affects the motion of the sphere, stronger oscillations (with an amplitude of ap-
proximately 30% of the mean value for the transverse velocity) are observed in the OO regime
in the DNS of Jenny et al. (2004). Increasing the Reynolds number beyond Re >~ 260, Horowitz
& Williamson (2010a) noticed that large-amplitude planar oscillations with frequencies about
St ~ 0.06 occurred through an abrupt, presumably subcritical, transition below a critical density
ratio p ~ 0.36. In contrast, for larger 5, only oblique paths were noticed and considered rectilin-
ear, as they displayed only irregular low-amplitude transient oscillations (with typical amplitudes
<0.15d for p > 0.5 and Re = 450) associated with a single-sided chain of vortex rings in the wake.

The latter experiments were pursued up to Re = 1.5 x 10%, and the above sharp transition was
always detected, although with two markedly different critical density ratios, namely p ~ 0.4 (0.6)
for260 < Re < 1,550 (Re > 1,550). Interestingly, although the rectilinear paths reported in these
experiments and the numerical paths predicted by Jenny et al. (2004) contrast with each other in



their common range of parameters, they also share some similarities, such as the presence of some
low-amplitude oscillations superimposed to a dominant mean transverse component. The question
therefore arises of the observability in a physical experiment of certain paths predicted for ideal
spheres. This point was partly addressed by Jenny et al. (2004), who considered slightly imperfect
spheres obtained by displacing arbitrarily the center of mass by 0.0254 from the geometric center.
For Ar = 170 (Re = 235) and p = 0.5, the path of the nonhomogeneous sphere was found
to be oblique and periodic, whereas that of the homogeneous sphere was oblique and steady.
For Ar = 200 and p = 0.5, the nonhomogeneous sphere displayed a chaotic motion instead of
a well-defined zigzag. Also, by performing careful experiments with different levels of residual
disturbances in the surrounding fluid, Horowitz & Williamson (2010a) noticed that the observed
paths may change dramatically with the background noise. Both series of results reveal the high
sensitivity of the body paths to additional effects that are still to be quantified. Especially, in certain
ranges of parameters, background noise in the surrounding fluid or a slight deviation from the
nominal homogeneity and/or isotropy of the body may have as much of an impact on the observed
paths as the loads generated by wake unsteadiness.

Wiake instability is again the only candidate for the generation of path oscillations of an infinitely
long circular cylinder moving freely in any direction perpendicular to its axis. Namkoong et al.
(2008) performed a numerical investigation of this situation for density ratios 0.5 < p < 4 and
Reynolds numbers between 65 and 185, a regime in which a fixed cylinder wake exhibits periodic
two-dimensional vortex shedding. They observed that this shedding induces a small-amplitude
periodic motion of the cylinder, in both translation and rotation, with transverse displacements
typically lower than 0.14. The Strouhal number was found to be a decreasing function of g,
with St typically 15% smaller than the Strouhal number St of the fixed cylinder for the heaviest
body. Vortex shedding occurs when the cylinder is at the mid-point of its transverse motion, a
position that also corresponds to the vanishing of the lift force. The cylinder then moves toward
its maximum transverse position at which the lift force approaches a maximum; it also rotates
about its axis in a direction determined by the cross product of its falling and transverse velocities.
By partially restraining the cylinder translation or rotation, Namkoong et al. (2008) showed that
the transverse motion of the body plays a crucial role in delaying the onset of vortex shedding and
thus reducing the Strouhal number, whereas rotation has a negligible effect.

The observations of Horowitz & Williamson (2006, 2010b) at much higher Reynolds numbers
(3,500 < Re < 7,000) bear some resemblance to these low-Reynolds-number DNS results. For
large-enough density ratios (6 > 0.54), only small-amplitude oscillations (= 0.05d for Re ~ 3,800
and p = 2.0) at the shedding frequency Str were detected in these experiments. Both series of paths
also share the same wake structure, a periodic von Karman vortex street (the so-called 2S mode of
vortex formation). Owing to the low amplitudes involved, Horowitz & Williamson (2006, 2010b)
referred to the path as rectilinear. In contrast, when the density ratio was decreased below the
critical value 5 < 0.54, they noticed the sudden occurrence of a strong oscillatory planar motion
with a displacement amplitude of the order of d, a behavior qualitatively similar to their findings
with light freely moving spheres.

The wake instability of nonspherical three-dimensional bodies depends strongly on the body
aspect ratio, and vortex formation is modified as soon as the symmetry axis of the body (if any)
makes some angle with the direction of its velocity. Moreover, nonsphericity plays a crucial role
in the left-hand sides of the system in Equation 1, as it makes the generalized inertia tensors
oI+ A and J 4+ D anisotropic and is responsible for the existence of an added mass torque that
links the translational and angular velocities of the body. The case of millimetric bubbles rising
in water (6 =~ 0), which are known to exhibit path oscillations, is of particular interest because it
has long been suspected that bubble shape oscillations coupled with the irrotational mechanisms



leading to the left-hand sides of the system in Equation 1 could be at the root of the phenomenon
(e.g., Benjamin 1987; see Magnaudet & Eames 2000 for a more complete historical perspective).
Another frequently suggested explanation relied on the role of surfactants, which can prevent
the liquid from slipping along the bubble surface, making the bubble qualitatively similar to a
light solid body. Joint experimental (Ellingsen & Risso 2001) and computational (Mougin &
Magnaudet 2002b) studies have now clarified that the path oscillation of bubbles generally is not
driven by shape oscillations, nor by surfactants, but requires only the bubble to be sufficiently
oblate for the amount of vorticity produced at its surface to exceed a critical threshold, following
the discussion of Section 3 (see Supplemental Video 2). DNS (Mougin & Magnaudet 2002b)
indicated that path instability occurs when the aspect ratio x exceeds a value very close to the
threshold ., corresponding to the onset of wake instability past a fixed bubble, emphasizing
the direct link between wake and path instabilities. An experimental confirmation arose with
experiments performed in various silicone oils (Zenit & Magnaudet 2008), in which the onset of
path instability was found to coincide with the w, criteria indicated in Section 3, once the aspect
ratio x is corrected from the slight fore/aft asymmetry of real bubbles not accounted for in the
original model. Mougin & Magnaudet (2002b) noticed that a fixed-shape bubble with x = 2.5
and Ar ~ 140 first follows a rectilinear path and then a planar zigzag, which, after several periods,
gradually turns into a helical path, in agreement with experimental observations (Ellingsen &
Risso 2001, Shew et al. 2006). By visualizing the wake all along the path, they observed that the
onset of the zigzag coincides with the breaking of the axial symmetry in the wake and the birth of
a nonzero streamwise component of the vorticity. Similar to the situation of a fixed oblate bubble,
the resulting three-dimensional wake structure essentially comprises two counter-rotating vortices
but retains a planar symmetry. The appearance of the pair of trailing vortices produces a lift force
with a magnitude of the order of the Archimedes force, which in turn induces a sideways motion
in the symmetry plane of the wake. The secondary transition from the zigzag to the helical motion
is associated with the loss of the planar symmetry.

Fernandes et al. (2007) investigated experimentally the path instability of short cylinders rising
or falling with their symmetry axis initially vertical for 5 >~ 1 and various aspect ratios 2 < x < 20.
As shown in Figure 4, the onset of periodic oscillations of thick cylinders (2 < x < 4.5) about the
vertical direction (with amplitudes of the order of 0.154) coincides with the first bifurcation of the
corresponding fixed-body wake (Re. 2~ 150 for x = 3); the frequency of the subsequent oscillatory
motion, St > 0.12, is also very close to the natural frequency of the fixed-body wake (Figure 5).
When the aspect ratio is further increased, so is the critical Reynolds number Re, corresponding to
the onset of path oscillation. In contrast, the critical Reynolds number of the first fixed-body wake
instability, Re,, still decreases with x (Figure 4). In the range [Re,;, Re,[, only small-amplitude
erratic motions of the body with short transients of periodic motion at St ~ 0.12 were noticed. This
behavior was assimilated with a rectilinear motion, as a sharp, presumably subcritical transition
to a regime with well-defined quasi-planar oscillations (with an amplitude of approximately 0.25d
and inclination angles larger than 15°) occurs at a higher Reynolds number, typically Re, ~ 190
for x > 10. The dynamics of the same bodies was later investigated in detail through DNS
by Auguste (2010). Beyond recovering the experimental thresholds and characteristics of the
aforementioned oscillatory motions, these DNS also revealed that a whole sequence of complex
paths with small-amplitude lateral displacements develops in the intermediate region [Re,;, Re.|,
which was not captured experimentally. This issue may again be attributed to the problem of the
experimental observability of certain paths that can be predicted only numerically for ideal bodies.
We note that the existence of a delayed threshold of path instability was first pointed out by
Willmarth et al. (1964), who performed experiments with very thin disks (x — o0) for which the
relative importance of the fluid and disk inertia was measured by the parameter I* = Z5x~'. In
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(@) Temporal evolution of the body translational velocity in two different reference frames (x = 10, Re = 270): the laboratory frame
(left), with vertical velocity uy/U,, (blue line) and horizontal velocity (red line), and the body frame (right), with axial velocity uy/U,, (blue
line) and transverse velocity v/ U, (red line). (b) Strouhal number versus Reynolds number. The symbols represent experimental data
for freely rising cylinders with aspect ratios x = 2, 3, 6, 8, and 10. The lines are DNS data for the flow about fixed cylinders with

X = 2 (dashed line), 6 (dotted line), and 10 (solid line). Figure taken from Fernandes et al. (2007), reprinted with permission from
Cambridge Univ. Press.

these experiments, the onset of significant periodic path oscillations occurred close to the critical
Reynolds number of the wake instability of fixed disks, Re ~ 100, for large-enough I* (>4 x 10~3)
but was found to be delayed to higher Re for disks of smaller I*.

5. KINEMATICS AND DYNAMICS OF BODIES
ALONG OSCILLATORY PATHS

Particular attention has been paid to the identification of the various paths and wake structures
associated with the bodies’ oscillations. In a few cases, a quantitative description of the body mo-
tion and of the loads acting on it also has been obtained. Different regimes of oscillatory motion
now clearly emerge, depending on the nature of the couplings between the body and fluid degrees
of freedom. From the situations investigated in the literature, four different regimes of oscillatory
motion can presently be outlined. As discussed in the previous section, wake instability is at the
origin of nonsymmetric and unsteady loads on the body that, in certain cases, merely result in
small-amplitude, possibly irregular or even chaotic, movements of the body. Occurrence of this
regime, hereafter denoted as regime A (Figure 6), is described in Section 4. In particular, it has
been observed with spheres, nominally two-dimensional cylinders and thin disks, and its detailed
investigation is more easily carried out through DNS for the reasons outlined above. A second
regime, the B regime (Figure 6), is characterized by regular harmonic oscillations of the body with
significant amplitudes. Wake vortices then control the dynamics of path instability, and their evo-
lution is intimately related to the changes in the translational and rotational velocities of the body.
A third regime, denoted as regime C (Figure 6), may occur at Reynolds numbers much larger than
the threshold of wake instability, when higher-order harmonics become important. Various oscil-
lating paths, more or less regular and possibly chaotic but with still-significant amplitudes, then



Regime A Regime B Regime C Regime D
develop in conjunction with complex wake structures. In the case of oblate or flat-enough bodies,
a highly nonlinear D regime (Figure 6) with large rotation rates may also occur at high-enough

Figure 6

Qualitative picture of the four main regimes of path instability.

Reynolds numbers, conveying a markedly different balance of the predominant hydrodynamic
loads supporting the oscillatory motions. A reliable marker of regimes B and C as opposed to
regime A is the significant increase of the drag coefficient, a well-documented trend for spheres,
bubbles, short cylinders, and disks.

This section focuses mostly on regimes B, C, and D for various types of bodies, reviewing the
main characteristics of the observed paths and, when available, the loads that support them and
the corresponding predictive dynamical models.

5.1. Long Cylinders and Spheres

The dynamics of the sphere beyond Re ~ 250 is far from being fully understood, but the vari-
ation of the drag coefficient Cp(p, Re) provided by the three available studies conveys insightful
information (C is based on the apparent weight, vertical mean velocity, and cross-sectional area
of the body). In the DNS of Jenny et al. (2004), the drag coefficient of spheres corresponding to
density ratios p > 0.5 follows the standard drag law throughout the entire range of Re investigated
(Re < 550, approximately). In contrast, for 5 = 0 (no intermediate value of p was considered in
this study), Cp almost stops decreasing for Re > 300 and keeps a value close to 0.65. A qualita-
tively similar behavior was reported by Veldhuis et al. (2009) at higher Reynolds numbers, typically
900 < Re < 2 x 10°. No deviation from the standard drag curve was observed for 5 > 0.3, but,
despite significant scatter in the results, the drag coefficients of very light spheres with p = 0.02
(which have oscillating paths with an amplitude about the sphere diameter) were found to take
an almost constant value, Cp = 0.85 £ 0.15. The findings of Horowitz & Williamson (2010a),
who covered a much broader range of Reynolds numbers, are qualitatively similar: Spheres cor-
responding to density ratios larger than the critical j of the abrupt transition they detected for
Re > 260 follow the usual drag law, whereas the drag coefficient of lighter spheres [i.e., those
corresponding to p < 0.36 (0.6) for Re < 1,550 (>1,550), which have oscillating paths with an
amplitude of approximately 0.754] is almost constant and close to 0.75 throughout the entire range
of Reynolds numbers. Therefore, although the terminology employed by the various groups to
qualify the observed paths is different, a qualitatively consistent picture emerges from these three
investigations for Reynolds numbers larger than Re.: Beyond a critical density ratio p,, they all
indicate barely a change in the drag coefficient, a probable signature of an A regime. In contrast,
path oscillations are much larger for 5 < p,, corresponding to a B or a C regime (depending on



Figure 7

Visualization of the 4R-vortex mode in the wake of a light zigzagging sphere by a combination of dye lines
and PIV-based reconstruction of the isosurface wd / U,, = 0.2 of the streamwise vorticity. Figure taken
from Horowitz & Williamson (2010a), reprinted with permission from Cambridge Univ. Press.

the distance Re — Re,), and they result in a marked increase in Cp, which is typically twice as
large as the fixed-sphere value for Re > 10°. The discrepancies in the reported paths and most
probably on the value of p, suggest that the case of the sphere, which is singular owing to its
point-symmetric character, is sensitive to tiny imperfections in the body mass distribution or to
minute errors in the simulations.

The dye visualizations and PIV measurements of Horowitz & Williamson (2010a) reveal that
in these B and C regimes, which in their experiments correspond to periodic zigzagging paths,
the wake is unsteady with four hairpin vortices generated per cycle of body motion (the so-called
4R mode; see Figure 7). A periodic streamwise oscillation with a typical amplitude 0.1-0.15d ata
frequency twice that of the transverse motion is also noticed and shown to be responsible for the
existence of the secondary vortex ring generated every half-period. Moreover, the sphere under-
goes a significant periodic rotation with an angular amplitude and acceleration of approximately
15° and ().Z(Vg2 /d) for Re = 450, respectively.

Horowitz & Williamson (2010b) also identified a C regime of nominally two-dimensional
cylinders, qualitatively similar to the above B and C regimes of the sphere for 3x10° < Re < 7x10°
and density ratios less than p = 0.54, a critical value at which they noticed the sudden occurrence
of a strong oscillatory planar motion (with displacement amplitudes of the order of 4) accompanied
by a jump in the main frequency (approximately 1.3 times smaller than St7) and a change in the
wake structure, with two vortex pairs generated per cycle (the 2P mode of vortex formation). In this



regime, the transverse displacement oscillation exhibits a significant third harmonic. Typically,
for Re = 3,800 and 5 = 0.45, the amplitude of the transverse motion is A, ~ 4, but the body
also oscillates vertically with an amplitude 4, =~ 0.3d, the phase lag between the two motions
being 45°, which corresponds to an upstream displacement when the body reaches its maximum
transverse position.

5.2. Bubbles

When wake instability sets in, the bubble velocity is provisionally not aligned with its symmetry
axis anymore. Then the wake-induced and added mass torques combine to induce its rotation and
initiate its periodic motion, which is first contained within the plane of the trailing vortices, as
revealed by the experiments of Lunde & Perkins (1997) and de Vries et al. (2002). Owing to the
time-dependent asymmetry of the fluid velocity distribution induced by the rotation, the sign of
the trailing vorticity reverses every half-period of motion (Mougin & Magnaudet 2002b, Zenit
& Magnaudet 2009). In contrast, the trailing vorticity never changes sign during the subsequent
helical regime within which the bubble rotates at a constant rate: In this regime, the two vortices
wrap up around one another in such a way that the wake structure becomes stationary in a reference
frame attached to the bubble. For both zigzag and helical paths, crest-to-crest amplitudes of the
transverse motion and maximum inclination angles reported in the literature vary in the ranges
3-5d,, (where d., is the equivalent diameter defined in Section 3) and 20°-30°, respectively, and
the frequency of the transverse motion lies in the range 0.09 < St < 0.15 (Mougin & Magnaudet
2002b). Therefore, these paths clearly correspond to a B- or C-type regime. A key feature of the
kinematics of spheroidal bubbles is that the bubble velocity and minor axis are almost aligned along
the whole path (Ellingsen & Risso 2001). This was confirmed in the DNS of Mougin & Magnaudet
(2002b) in which the drift angle between the velocity and orientation directions was found to
oscillate with an amplitude less than 2°. The axial bubble velocity component is nearly constant,
whereas the transverse velocity and inclination angle oscillate at the same frequency and nearly in
phase. The rise velocity has been consistently reported to decrease, corresponding to an increase
of the drag, during the rectilinear/zigzag and zigzag/helix transitions, although this trend is less
salient in experiments (e.g., Shew et al. 2006) than in DNS assuming a prescribed bubble shape,
presumably because of the slight deformation undergone by real bubbles during each transition.
The various forces and torques acting along the zigzag and helical paths were computed from
DNS data by Mougin & Magnaudet (2006) and from experimental data (assuming a zero drift angle
at any time) by Shew et al. 2006), allowing for a detailed analysis of the corresponding balances.
When a planar zigzag takes place in the vertical (x, y) plane, with x (y) parallel (perpendicular)
to the bubble symmetry axis, the vortical loads on the right-hand sides of the system in Equation
1 reduce to the axial and transverse vortical forces, F,, and F,,, and to the vortical torque, T,
which acts in the z direction perpendicular to the plane of motion. F,, and I',, change sign every
half-period, slightly after the bubble crosses the inflection point of its path, a direct consequence
of the temporal evolution of the vorticity in the trailing vortices. The vortical force F,,, is at
leading order balanced by the y component of the buoyancy force and of the centripetal added
mass force £ x (A - U), which are 90° out of phase. Hence F,,, determines the maximum of both the
inclination angle of the path and the bubble rotation rate. The vortical torque is almost balanced
by the restoring added mass torque U x (A - U), which results from the geometrical anisotropy
of the bubble, and this balance generates a small but nonzero transverse velocity. As the path is
symmetric and vertical on average, F,, oscillates at a frequency twice that of F,,, and T',,, with the
amplitude of these oscillations typically an order of magnitude less than those of F,,. Once the
helical motion is established, the bubble reaches a constant rise velocity, and F,,, keeps a constant



value, which balances the streamwise buoyancy force. The main difference with the zigzag regime
is that the centripetal added mass force and the transverse component of the buoyancy force now
actin two perpendicular directions y’ and 2’ corresponding to the normal and binormal to the path,
respectively. As a result, the y’ component of F,, determines the bubble rotation rate, whereas its
2’ component determines the pitch angle of the path.

5.3. Short Cylinders and Disks

A similar balance of hydrodynamical loads governs the B regime of solid short cylinders in the
ranges of parameters 2 < x < 10, 80 < Re < 350, and p ~ 1 (Fernandes et al. 2008) (see
Supplemental Video 3). The corresponding oscillatory motions consist of helical paths of low
helicity that, at leading order, can be considered planar zigzags (Fernandes et al. 2007). The main
differences with the case of oblate bubbles are that the transverse force balance now also involves
the body inertia through the centripetal contribution p® x U and that the transverse velocity
required to balance the vortical torque is much larger, owing to the smaller rise velocity allowed
by the small density contrast |5 — 1|. Also, a stronger vortical torque is observed for thin bodies,
resulting in larger transverse velocities and thus in a larger drift angle between the symmetry axis
and the velocity of the body. The aspect ratio deeply influences the characteristics of the motion
in this regime. Indeed, as shown in Figure 5, the Strouhal number evolves as x'/? and is much
smaller than the prediction provided by potential flow theory regardless of x’s value; in contrast, St
depends only weakly on Re. For x = 3, Stis close to the natural frequency of the fixed-body wake
(St &~ 0.12), but for thinner bodies (x = 10), it is almost three times larger (see Supplemental
Video 4). Moreover, the relative phase A¢ between the oscillations of the horizontal velocity and
those of the body inclination also strongly depends on x (see Figure 25) and barely evolves with
Re (Fernandes et al. 2005, 2007; Shenoy & Kleinstreuer 2010). These oscillations are nearly in
phase for thick bodies (x < 4), the symmetry axis then being nearly tangent to the path as it is
during the zigzag motion of spheroidal bubbles. As x increases, so does A¢, which exceeds 90° for
thin bodies (x > 8), so that these bodies seem to glide along their path, reaching their maximum
inclination at the turning points (see Supplemental Video 5). This behavior is reminiscent of the
fluttering motion of thin plates and falling leaves. We note that a similar continuous evolution of
A¢ was observed with oblate spheroids having aspect ratios ranging from 1.8 to 4.8 (Fernandes
etal. 2005). In contrast to A¢, the amplitude of the transverse velocity oscillations and that of the
inclination oscillations strongly depend on both y and Re. Normalizing the transverse velocity
with the characteristic scale wd (where  is the radian frequency of the body oscillations) and
introducing again the Reynolds number Re* accounting for the production of vorticity at the body
surface (see Section 3), we see that both amplitudes fall on a master curve that depends only on
Re* (Fernandes et al. 2007).

The chronology of the forces and torques acting on the body in connection with the wake
dynamics has been analyzed using PIV (Ern et al. 2007). Different vortex formation and shedding
processes were found to be related to the different types of motion observed as x changes. The
differences arise from the fact that the problem is governed by two independent timescales. On
the one hand, the oscillatory motion and the vortex shedding process are characterized by the
timescale 7, = 2rw™". On the other hand, the evolution of the vortices in the wake is governed
mostly by the advective timescale t; = d /U ,,. In particular, the phase difference between the trans-
verse vortical force F,, and the torque T',, scales with 7;, regardless of the values of x and Re. For
thick bodies, the ratio of these two timescales is merely the Strouhal number of the corresponding
fixed-body wake, whereas for thinner bodies, 7; becomes much larger than 7,. Using these ideas,
Ern etal. (2009) developed a dynamical model that reproduces the various periodic zigzag motions



of axisymmetric bodies over a wide range of x. The model is made of a differential equation and
an integro-differential relation that complement the system in Equation 1. The former equation
models the growth and saturation of the oscillatory vortical force and torque by considering them
oscillators with a characteristic time 7, to mimic the effect of the periodic vortex shedding. In con-
trast, their amplitudes are assumed to evolve on the longer timescale ;, which allows the transient
motion of the bodies after their release to be properly recovered. The second equation accounts
for the effect of the body rotation on the vortical loads, taking the form of a relation between F,,
and T',,, which depends on the body rotation rate and is consistent with the fixed-body case. This
equation yields a phase difference between F,, and T, driven by the history of the body rotation
rate, which produces the observed deviation from the fixed-body behavior when x increases.

Other types of motion have been identified at higher Reynolds numbers with thin disks (in
practice, x > 10), depending on the dimensionless moment of inertia I* = Z 5 ~'. In the case
of small I* (typically <1072), Zhong et al. (2011) observed that the planar periodic motion is not
stable and that a secondary oscillation grows in the normal direction, leading to a fully helical path
for small-enough values of I* (typically <10~ but depending on Re). These paths correspond to a
C regime in the range of Re that was considered, but a helical motion may exist in the B regime at
lower Re. Whereas a periodic shedding of hairpin vortices accompanies the planar periodic path
(Willmarth etal. 1964), Zhong etal. (2011) showed that the helical path is related to the continuous
shedding of a helicoidal vortex. Moreover, they observed that the helical path is associated with a
rotation of the body about its symmetry axis, with the corresponding angular velocity about half
those in the transverse directions. For moderate I* (9 x 107 < I* <4 x 1072), Stringham et al.
(1969) and Field etal. (1997) observed that the periodic motion becomes chaotic, a large-amplitude,
back-and-forth lateral motion alternating with some periods of tumbling (see Supplemental
Video 6). For I* larger than 4 x 1072 and large-enough Re, the tumbling regime sets in, and the
disk starts to turn continuously end-over-end while drifting horizontally. Unfortunately, almost
no quantitative information concerning the body kinematics and dynamics is available in these
regimes, except to some extent from the high-Reynolds-number (2.2 x 10° < Re < 4.4 x 10°)
experiments of Stewart & List (1983) performed with short cylinders (x = 3.6) in the range
0.4 < I* < 1.5. However, these regimes display strong similarities with those observed with thin
plates, which we now describe.

5.4. Nominally Two-Dimensional Plates

Since the early remarks of Maxwell (1853), the various oscillatory regimes of nominally two-
dimensional falling plates (with thickness A, width 4, and thickness-to-width ratio x = d/5) have
received a great deal of attention in a range of parameters far from the onset of the periodic
motion. The path generally referred to as fluttering (Figure 84), which is vertical in the mean,
corresponds to a behavior qualitatively close to that of the short cylinder with x = 10, shown in
Figure 2b. As its dimensionless moment of inertia [* is increased [I* = kpx ~'(1 + x %), where &
depends on the geometry of the cross section], the plate begins to tumble (Figure 8¢): When its
inclination angle reaches 90°, the body proceeds to complete a whole turn, while drifting in the
mean in an oblique direction.

The fluttering and tumbling regimes of freely falling nearly two-dimensional plates and cards
have been investigated experimentally by Smith (1971), Belmonte et al. (1998), and Mahadevan
et al. (1999) who checked that the Strouhal number St = f7d/V, associated with the tumbling
frequency f7 is constant, with now V, = [(p — 1)gh] 12 and in more detail by Andersen etal. (2005b)
with § ~ 2.5, 5 < x < 14, and Re = 0O(10°) (Figure 8). Similar to the findings of Field et al.
(1997) with thin disks, Andersen et al. (2005b) observed that the tumbling motion may become
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Figure 8

Three contrasted paths observed with nominally two-dimensional plates: () fluttering, () two apparently
chaotic paths obtained with the same plate, and (¢) tumbling. The line segments show the plate’s cross
section. Figure taken from Andersen et al. (2005b), reprinted with permission from Cambridge Univ. Press.

chaotic for large-enough I* and Re (see Figure 8b). A noticeable feature of this regime (which
may also happen in the fluttering regime close to the transition to tumbling) is that the center of
mass of the plate may rise during some time after the long gliding stage preceding each turning
point of the path. This elevation, confirmed by the two-dimensional DNS of Pesavento & Wang
(2004) and Andersen et al. (2005a), is accompanied by a deceleration of the plate, which makes
the near wake unstable and forces it to break up into separate vortices of size ~ 4 /2. Moreover,
the boundary layers attached to the upper and lower surfaces of the plate detach at each turning
point, leading to the shedding of a pair of counter-rotating vortices. These wake dynamics clearly
involve a synchronization of vortex shedding and body rotation and have close connections with



those encountered in the autorotation of wings about a fixed axis, a situation investigated both
experimentally (Smith 1971) and numerically (Lugt 1980, Mittal et al. 2004) and reviewed by Lugt
(1983).

The force and torque balances in Equation 1 were analyzed by Andersen et al. (2005b), using
experimental and DNS data. As in the case of short cylinders and bubbles, the restoring added
mass torque provides a much larger contribution to Equation 1b than the term proportional to the
rotational acceleration. In contrast, the axial and transverse force balances in Equation 1a strongly
differ from those discussed in the previous sections. This is because, for the set of parameters
investigated in the aforementioned references, nonlinear effects are crucial, and higher-frequency
harmonics cannot be ignored: Clearly these situations belong to the C and D regimes. When the
plate flutters, its transverse velocity is about three times larger than its mean settling velocity,
whereas when it tumbles, it follows a path inclined at approximately 35°-45° to the vertical so that
both velocity components are comparable. In such situations, the transverse linear acceleration
of the body provides a dominant contribution to the transverse force balance, whereas the added
mass terms appear negligible.

There have been several attempts to develop an empirical but realistic model of the vortical
forces and torques capable of predicting the observed features of the fluttering and tumbling
regimes as well as the corresponding transition. The two key ingredients common to all models to
date are a quasi-steady dissipative contribution (i.e., a drag force and a torque opposing rotation)
and a quasi-steady lift contribution. Models differ in the expression of these forces and torques with
respect to the kinematic degrees of freedom. In earlier versions, the circulation either was given
an arbitrary constant value (Mahadevan 1996) or was attributed the value predicted by the Kutta-
Joukowski theorem (Belmonte et al. 1998, Tanabe & Kaneko 1994). The dissipative contribution
was assumed to be linear with respect to the body translational and rotational velocities, i.e.,
to originate directly from viscosity (Tanabe & Kaneko 1994), to be quadratic, i.e., governed
by inertia (Belmonte et al. 1998), or both (Mahadevan 1996), with direction-dependent drag
coefficients in all cases. For some combination of the model parameters, the anisotropy of both the
translational added mass coefficients and the drag coefficients results in a saddle-node bifurcation
that corresponds to the transition from fluttering to tumbling (Mahadevan 1996). In the most
recent versions of these models (Andersen etal. 2005b, Pesavento & Wang 2004), the circulation is
assumed to depend in a nonlinear manner on the translational velocity so as to take stall into account
when the inclination of the plate is large. More importantly, it also comprises a contribution that
depends linearly on the rotational velocity, the role of which was found crucial for reproducing the
elevation of the plate near the turning points (Pesavento & Wang 2004). Finally, the model involves
a single drag coefficient assumed to depend nonlinearly on the inclination angle. The complete
model makes use of a total of six adjustable parameters that need to be fitted with respect to
reference situations. Another complementary viewpoint was provided by Jones & Shelley (2005)
who, using a boundary integral technique, computed the first stages of the two-dimensional inviscid
flow past a fluttering plate released from rest. They showed that unsteady vortical loads arising
from the relative motion between the plate and its wake play a dominant role in the dynamics
of the coupled system. As such loads cannot be related to the body translational and rotational
velocities in a quasi-steady manner, their findings question the generality of the semiempirical
models discussed above.

6. CONCLUDING REMARKS AND OPEN QUESTIONS

In this review we attempt to present the current state of understanding of the path oscillations
of freely moving bodies and of their connections with the dynamics of the body wake. Although



many studies are still under way, and the current coverage of the parameter space of Figure 1 is
still extremely uneven, tremendous progress has been achieved on the subject, essentially during
the past decade. We think that the main points of consensus may currently be summarized as
follows.

The onset of the path instability of a given body within a viscous fluid is closely related to
the onset of the instability of the fixed-body wake, and the corresponding two critical Reynolds
numbers are close. The kinematics and dynamics of the first path departing from the initial vertical
trajectory reflect that of the first unstable wake mode. Therefore, wake instability turns out to
be a necessary condition for path instability to occur. Nevertheless, this condition is not always
sufficient for the body to display experimentally discernible lateral displacements for Reynolds
numbers slightly beyond the threshold. In particular, spheroidal bodies and short cylinders with
moderate aspect ratios (typically x < 6) do, but thinner cylinders closer to the thin-disk limit
x — oo exhibit a significant range of Reynolds numbers we call the A regime, within which only
tiny, mostly erratic, movements are detected.

The magnitude of the vorticity produced at the body surface by the no-slip or the shear-free
boundary condition (for bubbles) appears to be a key quantity to predict the onset of the wake
instability of fixed bodies. More precisely, once properly reexpressed using a criterion based on this
quantity, such as the Reynolds number Re* for short cylinders or the w, criterion for spheroidal
bubbles and rigid spheres, the threshold of the first instability becomes independent of the nature
(no-slip versus shear-free) of the body surface and of the body aspect ratio within a given family
of shapes (e.g., spheroids, short cylinders). Consequently, the magnitude of the surface vorticity
is also relevant to the prediction of the onset of path instability when it almost coincides with that
of wake instability, i.e., for bodies that go directly from straight vertical paths to a B regime of
oscillations.

A comparison of the behavior of the various three-dimensional bluff bodies considered here,
including bubbles, indicates that for a given Archimedes number and body shape, the magnitude
of the lateral body movements increases as the density ratio decreases, although there are still
disagreements, especially for the sphere, on the critical p below which a clear B regime sets in.
The role of the body anisotropy is more subtle, as this factor is in particular responsible for added
mass effects that couple the translational and rotational body velocities, so that weakly anisotropic
bodies move with their short axis almost perpendicular to the path, whereas flat bodies tend to
glide along it.

Depending on the distance Re — Re, to the threshold, there exists a broad range of situations,
from those, close to the threshold, in which the body lateral movements essentially reflect the wake
dynamics and barely modify them (e.g., the sphere for Re > Re,), to those, far from the threshold
and hence corresponding to the C and D regimes, in which the wake is unstable anyway and the
body path drives the vortex shedding dynamics (e.g., the tumbling of nearly two-dimensional
plates). In the latter two regimes, it is not yet clear whether every new bifurcation of the wake
encountered as Re increases leaves a footprint on the path. The question is especially relevant for
strongly anisotropic bodies as in this case the connection between path and wake instabilities is
far from straightforward in those regimes, owing to the ability of such bodies to oscillate on their
own with a natural frequency that may greatly differ from that of the wake.

Before ending with some suggestions for future research, we stress that the problem is demand-
ing, whatever methodology is used to tackle it. Laboratory experiments require extreme care to
control the residual motions in the surrounding fluid and to reduce undesired inhomogeneity in
the body. DNS requires the development of specific algorithms capable of solving properly the
coupled body-fluid problem and of dealing with the outflow boundary condition, both with an ac-
curacy compatible with the usual requirements of stability problems. In particular, few techniques,



based mostly on boundary-fitted grids, address the first item satisfactorily enough to allow an ex-
ploration of the initial stages of path instability (e.g., Jenny & Dusek 2004, Mougin & Magnaudet
2002a). Finally, theoretical stability analyses of the coupled fluid-body problem combine the usual
difficulties of stability studies in strongly nonparallel flows with the presence of the new degrees
of freedom and hence the new eigenmodes brought by the body (Fabre et al. 2011). Despite these
intrinsic difficulties, the challenge is worth taking up to address the most important questions that
are still open and to fill the gap between some of the most different situations investigated to date.
In our view, future efforts should focus especially on the following issues.

A systematic exploration of the parameter space is clearly missing. Although it is certainly not
worth covering the whole space, a reasoned exploration is required to fully understand the effect
of each control parameter of the system and the specificities related to each family of geometries.
This exploration should be based on a suitable combination of detailed laboratory experiments and
DNS, which, provided the numerical technique satisfies the criteria mentioned above, is currently
more efficient to deal with situations involving tiny body displacements, especially the A regime.
Some situations are also probably worth revisiting to resolve current controversies (e.g., light
spheres close to the threshold between regimes A and B).

Linear and weakly nonlinear stability studies including the body degrees of freedom are still
in their infancy. Although what can be learned from them is limited to the neighborhood of the
threshold, they are the right tool to get a clear view of the nature of the first unstable modes, of
the underlying physical mechanisms, and on the way these modes interact to produce new wake
and path structures. Despite their limited range of validity, they may also be suitable guides to
build models on rational bases.

The mechanisms by which the geometry and frequency of path oscillations are selected are
not properly understood in a number of cases. This is especially clear in, but not limited to,
situations in which no real vortex shedding takes place, such as bubbles followed by a double-
threaded wake. In such a situation, why is, for instance, a periodic zigzag motion, vertical in the
mean, selected instead of an oblique path? Well-defined helical paths (such as those observed with
bubbles or disks in certain regimes) also raise specific questions, as they do not directly result
from the spatial organization of the fixed-body wake at the corresponding Reynolds number but
rather from the intimate couplings between the wake and an already oscillating path. The way
the transition to such paths occurs, especially the nature of the corresponding bifurcation(s), and
the reorganization of the wake dynamics it implies are mostly unknown presently and need to be
clarified.

The quest for general low-order models capable of predicting the observed paths over a wide
range of Reynolds numbers, body geometries, and density contrasts should be actively pursued.
Although such models will probably always involve a few adjustable parameters, the fundamental
question is now to determine the content and minimum number of physically relevant ingredients
that they should contain, as well as their mathematical structure, especially to go beyond the
quasi-static assumption of most of the approaches available to date. Such models will probably
involve additional differential equations to mimic the wake dynamics.

Finally, future work will need to consider situations of higher complexity than the motion of
a single body in an unbounded fluid at rest at infinity, which has been the common framework
of all studies reviewed here. Practical situations frequently involve the presence of walls, the
existence of an inhomogeneous underlying flow, and the coexistence of several or even many bodies
close to each other. In such situations, several interaction mechanisms may dramatically modify
the conditions for path instability to occur and alter the subsequent body paths. They need to be
carefully investigated and accounted for in future models.
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