

Search for the maximal threshold Co content for the oxidation behaviour point of view for 25wt.% Crcontaining TaC-strengthened cast superalloys designed for use at 1200°C on long time

Patrice BERTHOD^{1,2}, Jean-Paul K. GOMIS²

¹Institut Jean Lamour (UMR CNRS 7198), University of Lorraine, Nancy, France ²Faculty of Sciences and Technologies, University of Lorraine, Vandoeuvre-lès-Nancy, France

AERONAUTICS, POWER GENERATION, INDUSTRIAL TOOLS FOR SHAPING MOLTEN GLASSES ...

NEED OF HIGH TEMPERATURE MATERIALS

Resistance against creep deformation, oxidation and corrosion at high temperature

REFRACTORY METALLIC ALLOYS

e.g. Nickel or Cobalt-based Superalloys

ELABORATION WAYS:

Powder Metallurgy, Mechanical Alloying, Additive Manufacturing, Oriented or Single crystalline solidification,

or simply classical polycrystalline foundry!

EQUIAXED POLYCRYSTALLINE ALLOYS:

Rather old metallurgical principle but intrinsic advantages (when carbides-strengthened alloys):

High toughness and resistance of the quasi-continuous dendritic network High resistance of the discontinuous interdendritic skeleton of carbides

EUTECTIC MC-TYPE TANTALUM CARBIDES POTENTIALLY VERY INTERESTING:

Tendency of TaC to develop preferentially to chromium carbides in Cr-rich Co-based alloys Script-like morphology and imbrication with matrix favoring interdendritic cohesion Good stability of the MC carbides at elevated temperatures in Co-based alloys

IN THIS WORK:

EXPLORING THE HEAT RESISTANCE OF ALLOYS DESIGNED TO BE STRENGTHENED BY TaC AND TO RESIST OXIDATION & CORROSION USING PROTECTION BY CHROMIA WITH A SPECIAL FOCUS ON THE Co/Ni RATIO FOR THE BASE ELEMENT ROLE

EXPERIMENTAL:

Exploring the microstructure evolution of Ni-rich alloys when Co is progressively added instead Ni

with a series of {25%Cr - 0.4%C - 6%Ta}-containing (Ni,Co)-based alloys, by increasing the Co/(Ni+Co) ratio from 0/5 (0C5N Ta) to 5/5 (5C0N Ta)

Elaboration of the alloys by High Frequency induction melting under Argon

Examination of the microstructures of the obtained as-cast alloys and after long exposure at high temperature (170 hours at 1200°C)

→ <u>To specify the oxidation by air and microstructure evolution for long time at $1200^{\circ}C$ </u> with as objectives some recommendations for the **Co content**

AS-CAST MICROSTRUCTURES OF THE OBTAINED ALLOYS

As-cast microstructures of the xCo – (69-x)Ni – 25Cr – 0.4C – 6Ta alloys (wt.%)

- Polycrystalline dendritic microstructures

(grey {Co & Ni}-based austenitic solid solution of Cr, C and Ta)

- Double population of carbides in the three Ni-richest alloys: black Cr_7C_3 and white TaC

- Only TaC in the three Co-richest alloys

RESULTS: H. T. oxidation / surface states, XRD on spalled off oxides

After 170h in air at 1200°C:

- More or less severe oxidation depending on the Co part in the Ni + Co quantity
- More or less severe oxide spallation during cooling versus Co / Ni + Co again
- XRD on the oxides spalled off and collected in the shuttle: more or less extended denuded and different types of oxides

RESULTS: H. T. oxidation / cross-sectional oxides examination Case of the three Ni-richest alloys

* Only rare parts of external oxide scale available for Identification / examination (but mainly chromia)

close to the scale/alloy interface

mixed with chromia

* Numerous islands of CrTaO₄ in subsurface

* CrTaO₄ obviously also present in the scale,

1CN4 Ta

RESULTS: H. T. oxidation / cross-sectional oxides examination Case of the three Co-richest alloys

- Behavior worse than for the Ni-richest alloys
- Scales more present and thicker; inwards progress of oxidation

* Here and there: loss of the chromia-

forming behavior; presence of cobalt oxides

25 µm

and of spinels

RESULTS: H. T. oxidation / compilation of the observed oxides

Alloy	X-Ray diffraction	SEM/EDS
OCN5 Ta	NiO, NiCr ₂ O ₄	/
1CN4 Ta	NiCr ₂ O ₄	/
2CN3 Ta	CoCr ₂ O ₄	/
3CN2 Ta	CoCr ₂ O ₄	(Co,Ni,Cr) _x O _y , CoCr ₂ O ₄
4CN1 Ta	CoCr ₂ O ₄	(Co,Ni)O, CoCr ₂ O ₄ , (Co,Ni,Cr) _x O _y
5CN0 Ta	CoCr ₂ O ₄	CoO, CoCr ₂ O ₄ , (Co,Cr) _x O _y , (Co,Cr,Ta) _x O _y
+ in all cases:	Cr ₂ O ₃ and CrTaO ₄	Cr ₂ O ₃ and CrTaO ₄

RESULTS: oxidation behavior / <u>Cr</u> and Ta depletion in subsurface

Chromium:

- The four Ni-richest alloys: Cr content decreased close to the oxidation front, but still high enough for the sustainability of the chromia-forming behavior

- The two Co-richest alloys: Cr content low, and even very low in some locations; imminent loss of the chromia-forming behavior or general catastrophic oxidation already started

RESULTS: oxidation behavior / Cr and <u>Ta</u> depletion in subsurface

Tantalum:

- Regular decrease in weight content when the Co part increases at the expense of Ni

- Due to oxidation but also to the initial carbide population (more TaC in the microstructure for alloys with high Co than for alloys with high Ni)

RESULTS: heat-induced modifications of the bulk microstructures

Aged microstructures of the xCo – (69-x)Ni – 25Cr – 0.4C – 6Ta alloys (wt.%)

- Decrease in volume fraction and coarsening for the Cr₇C₃
- Decrease in volume fraction and fragmentation for the TaC
- Cr, Ta and C enrichment of the matrix

SUMMARY / CONCLUSIONS

* **170 hours spent at 1200°C: very severe work conditions for such alloys** (notably the particularly high temperature!)

- * Taking that into account: rather good isothermal oxidation behavior of the three nickelrichest alloys and therefore ...
- * ... the Co content must be chosen lower than the Ni one for the HT oxidation point of view (this was confirmed in a parallel work by thermogravimetric measurements at other temperatures)

* Unfortunately: too easy loss of the protecting chromia scale when temperature decreases, even slowly; especially true for the nickel-richest alloys

* The lack in resistance against scale spallation: probably due to the subsurfacic CrTaO₄; this point remains to be significantly improved, e.g. by introduction of R.E.

- * For the HT mechanical resistance point of view: the carbide network of TaC is favoured by Co addition; Co is both favorable for TaC-strengthening and detrimental for HT oxidation !!
 - * Regardless to the carbides' types, the carbide network became deteriorated in all alloys (investigations are in progress for characterizing the real consequences on creep)

Thank you for your attention

https://apiabroad.com/intern-abroad/australia/brisbane/