
HAL Id: hal-03468340
https://hal.science/hal-03468340v1

Submitted on 7 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting Process Events for the Integration of
Collaborative Software Development Tools

Komlan Akpédjé Kedji, Redouane Lbath, Bernard Coulette, Mahmoud Nassar

To cite this version:
Komlan Akpédjé Kedji, Redouane Lbath, Bernard Coulette, Mahmoud Nassar. Exploiting Process
Events for the Integration of Collaborative Software Development Tools. International Journal of
Software Engineering and Knowledge Engineering, 2012, 6 (4), pp.79-88. �10.3923/jse.2012.79.88�.
�hal-03468340�

https://hal.science/hal-03468340v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12330

To link to this article : DOI :10.3923/jse.2012.79.88
URL : http://dx.doi.org/10.3923/jse.2012.79.88

To cite this version : Kedji, Komlan Akpédjé and Lbath, Redouane
and Coulette, Bernard and Nassar, Mahmoud Exploiting Process
Events for the Integration of Collaborative Software Development
Tools. (2012) International Journal of Software Engineering and
Knowledge Engi, vol. 6 (n° 4). pp. 79-88. ISSN 0218-1940

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12330/
http://oatao.univ-toulouse.fr/12330/
http://oatao.univ-toulouse.fr/12330/
http://dx.doi.org/10.3923/jse.2012.79.88
mailto:staff-oatao@listes-diff.inp-toulouse.fr

1

Exploiting Process Events for the Integration of Collaborative

Software Development Tools

1

K.A. Kedji,
1
R. Lbath,

1
B. Coulette and

2
M. Nassar

IRIT, University of Toulouse, Toulouse, France
2

SIME, Mohamed V University, Rabat, Morocco

Corresponding Author: KomlanAkpedje Kedji, Humanité 1-Apt 219 BP 34776, Cedex 9, 31047 Toulouse, France

ABSTRACT

"Hooks" are an important part of tool integration in software engineering. They allow any

development tool to broadcast a development event to some subscribing tools. Most of the

existing software development tools have a rich catalog of well-defined events which can be

exploited by

third parties. This allows any tool to have a complete view of the development environment,

without forcing the team to adopt a monolithic, all-encompassing tool. However, process-support

tools have

been rather weak as contributors to such integration strategy, giving preference to a style of

integration where the process-support tool is the central orchestrator of the development

environment. This study argues that not only do process support-tools have a rich catalog of events

of interest to third party tool but the availability of such events can also significantly improve the

overall level of development support. It thus proposed formalism for modeling process events,

identified a set of process events of interest for other development tools and described an

implementation of the approach in a process server.

Key words: Process-support, tool integration, collaborative development, software engineering

environment

INTRODUCTION

Dealing with the complexity of software development requires adequate tool-support. The

multitude of development concerns that need to be addressed (configuration management, defect

tracking, communication, testing, deployment, etc.) raises the problem of integration, which

comprises, among others, data integration and control integration (Wasserman, 1990). Data

integration, on the one hand, is concerned with how any tool can, on its own initiative, request

some information about the aspect of software development managed by another tool. For example,

a dashboard tool can query a test management tool for the results of tests executed on an arbitrary

date. Control integration, on the other hand, deals with hot reactions to a happenstance, an event,

in a software development tool. For example, a defect ticket status change is an event for which

reactions can range from the simple notification email to the automatic execution of some specific

test cases (Kiper, 1987; Wasserman, 1990).

This study is focused on control integration. It first demonstrates how events are used as

lightweight control integration mechanisms by development tools and applies that understanding

to process-support tools. This leads to a conceptualization of events for process models and the

identification of process-events of interest to other development tools. It then proceeds to describe

the implementation of a process server capable of broadcasting such events, in the context of

GALAXY, a French research project carried out by a consortium of academics and industry

partners, with the goal of improving collaboration support for complex projects using the

model-driven engineering approach.

There is an extensive literature on tool integration in software engineering environments. The

following paragraphs, on the one band, survey some contributions to the understanding of common

integration strategies. On the other band, existing reviews of process-support tools are shown to

confirm their poor support for integration with other software engineering tools.

Kiper (1987) discussed some pioneering ideas about tool integration. Cooperation (control

integration), communication (data integration) and commonality (presentation integration) have

been distinguished. The study also identified parameters by which the integration capabilities of

a tool can be measured, namely, granularity, cohesion and harmony. The current widely used

terminology and hierarchy of platform, presentation, data, control and process integration bas been

introduced by Wasserman (1990) and a layered structure for software tools bas been derived from

it (shared repository, abject management, functionality, user interface, presentation).

Reviewing the state of the art in tool integration Wicks (2004) surveyed several tapies related

ta tool integration, among which process-based tool integration. The author notes how the lack of

flexibility and adaptability prevents such solutions from being offered commercially in the

marketplace. In a later study (Wicks and Dewar, 2007), the authors, while proposing a research

agenda for tool integration, observed that defect tracking, change management and configuration

management are usually far better integrated than project management, requirements

management, analysis, design and implementation. The authors suggest that this is due ta business

decisions (for example, because a team previously failed to deliver to customers the required

software components for a specific software release). This study puts forth the alternate hypothesis

which links how much an activity is integrated ta how easily it allows dispatching events that

structure it.

Ambriola et al. (1997), Gruhn (2002) and Matinnejad and Ramsin (2012) are investigations

of the capabilities of existing PSEEs. The tool integration assessment by Ambriola et al. (1997)
shows that the surveyed PSEEs (OIKOS, EPOS and SPADE) consider control integration as a

matter of controlling other tools (not the other way around) and is mainly about invocation. As

such, these tools do not concern themselves with broadcasting process events to other development

tools but react to events broadcasted by other tools. Sorne environments like Provence

(Krishnamurthy and Barghouti, 1993) try ta be as least intrusive as possible, by listening to

external events at the file system level (on files manipulated by other tools), while still not

broadcasting any events themselves. Gruhn (2002) argued that deriving support for tool

integration is one of the goals of a PSEE, which supports the idea that the PSEE is responsible for

the integration of the work environment. Matinnejad and Ramsin (2012) compared seven PSEEs

for features classified into intrinsic PSEE requirements (enactment, consistency, flexibility, etc.),

criteria derived from proposed PSEE critiques (deviations, human-dimension, new technology

adoption) and general requirements. Among the general requirements is the ability of a PSEE to

provide extension points for tool integration. However, all three projects that score well on that

criterion (SPACE, Transforms and the Model-Driven integrated approach) are specific ta the

support of model-driven engineering. As such, their integration capabilities are a natural result of

the control they have on the kind of tools used in such style of development (model edition,

transformation engines, etc.). In other words, the relative ease with which such Process-centered

software engineering environment (PSEEs) can work with external tools is a direct consequence

of the fact that such external tools have been explicitly designed ta support an MDE workflow.

Therefore, such integration style does not apply to generic software engineering tools.

EVENTS IN SOFTWARE DEVELOPMENT SUPPORT TOOLS

Software Configuration Management (SCl\1) tools, bug trackers, continuous integration servers,

mailing-lists, discussion rooms, etc., can each generate events which correspond to an interesting

occurrences.

Events in an SCM tool for example include a commit on a repository, creation of a development

branch, merging two branches, sending (push) or receiving (pull) a series of commits to or from a

remote repository, etc.

In bug trackers, the lifecycle of bug reports can be naturally described as a series of events,

which correspond to transitions. Examples are creating a bug report, verifying a report, assigning

a report to a developer, marking a report as a duplicate, commenting on a report, proposing a fix,

confirming a fix, closing or reopening a report, etc.

Mailing-lists can also generate events, corresponding to adding or deleting subscribers, creating

new discussion threads, etc. For software projects which, like the Linux Kernel Project, use

mailing-lists to ex change p atches, further analysis of mailing-list messages reveals other events like

the availability of a new patch. Likewise, on special mailing-lists set up for continuous integration

systems for example, each message is an event corresponding to a build success or failure.

A wide range of automation solutions can be built by wiring the events exposed by the

aforementioned development tools. For example, it is common to have software agents automatically

analyze commit messages, looking for references to bug tracking tickets identifiers and take the

appropriate action on behalf of the user, like closing a report or commenting on it. The same

mechanism allows the reception of a series of commits (on an official repository) to trigger

automated deployments, announcements in chat rooms, or company dashboard refreshes.

Integration solutions which exploit events (commonly named "hooks") generated by software

development tools are decentralized by design, as they do not rely on a central tool. Each tool can

broadcast interesting events as it sees fit and other tools can subscribe to those events. This departs

from the workspace integration style traditionally implemented by process-centered software

engineering environments (PSEEs), where the PSEE acts as a central control hub, listening to

events on some tools and reacting by invoking some other tools. This study argues that such

common design decision is responsible for the slow adoption of PSEEs and instead proposes that

process-support tools broadcast interesting events, just like any other tool (Kedji et al., 2012a). The

proposal increases the integration capabilities ofprocess-based tools by enabling other tools to react

to process events.

MODELING DEVELOPMENT PROCESS EVENTS

The CMSPEM (Collaborative Model-Based Software and Systems Process Engineering

Metamodel) (Kedji et al., 2011) metamodel has been defined as an extension of the SPEM

(Software and Systems Process Engineering Metamodel) standard. CMSPEM introduces finer

grained concepts like Actor (a single project participant), ActorSpecificWork (a work item assigned

to a single Actor) and ActorSpecificArtifact (a private copy of a work product). These concepts

enable, on the one hand, a more precise description of the various relationships which embody

collaboration, such as a trainer-trainee relationship between two actors. On the other hand, these

extensions result in a more natural mapping between process-related concerns (like a work item)

and concepts manipulated in other development tools (like a commit in a version control system of

a bug report in an issue tracker). An in-depth discussion of structural concepts (Fig. 1) in CMSPEM

is clone by Kedji et al. (2011, 2012b). The rest of this section focuses on behavior modeling.

1
RoleUse

1 (From SPEM::ProcessWithMethodsl

.

1
RoleUse

(From SPEM::ProcessStructurel

+AssociatedRoleUse
.� ..

-•

1 .. * Affected.Actor

1

+LinkedActor 1 Actor 1 +LinkedActor

+FirstActor' 'l 1' "+-SecondActor

. .

1

.

WorkProductU se
1 (From SPEM::ProcessStructure)

+AssociatedTaskUse 1 1 + AssociatedWorkPr oductUse
1 TaskAssionment 1 1 ActorRelationship 1 1 Artifactüwnership 1

. .

+Contrib utingActorSpecificWork l..*

1 ArtifactUse 1 • • •
1 �+LinkedActorSpecificWork +LinkedActorSpec1ficArt1fact

W1 l..* +RepresentingActor SpecificArtifact

1 ActorSnecificWork 1 1 •I . li ActorSnecificArtifact 1

+ SecondActorSpecificWor� \ 1� +LinkedActorSpecificWork +LinkedActorSpecificArtifact
1 +FirstActorSpecificWork +FirstActorSpecificArtifact 1 1 +SecondActorSpe ci:ficArtifact

. .
. .

1 ActroSnecficTaskRelationshin 1 1 ActroSnecficArtfactRelationshin 1

Fig. 1: Structural concepts in the CMSPEM metamodel. The stars and numbers are the standard

multiplicities of UML class diagrams

CONCEPTS FOR BEHAVIORAL MODELING

In CMSPEM, the behavior of process models at enactment time is handled using an action and

reaction approach: Something happens and subscribers are notified so they can react to it. Model

elements which can raise events are called "event sources" and those which can listen to events

(and react to them) are called "event listeners". Event listeners are notified only for the events they

subscribe to and this is conceptualized as an "event subscription" (Fig. 2). Last, "event bubbling"

enables flexible event subscription, by making it possible to consider a set of model elements as a

logical group.

Event: Event (from UML::CommonBehaviors::Communications) is an occurrence of something of

interest that may trigger a reaction, if an appropriate EventSubscription has been defined. Events
rhave parameters and parameter values describe the event. Events a e raised by EventSources and

received by EventListeners provided the appropriate EventSubscription exists prior to the

occurrence of the event.

EventSource: An EventSource 1s a model element which can generate events. Generally

speaking, an EventSource triggers an event to inform possible listeners of a change in its internal

state.

EventListener: An EventListener is a model element which can react to events. A listener can

receive events and react to them. To be able to receive an event, a listener must have already

subscribed to it prior to its occurrence (through an EventSubscription). Only events of the types

subscribed to are sent to an event handler.

EventSubscription: This is a conceptualization of the subscription made by an event listener, to

a group of events, on an event source. Events of the specified type, which occur after the

+DispatchedEvent I Event (from UML::CommonBehaviors::CommunicationJ
•

1 +Event

1 +EventSubscription
+EventSubscription I EventSubscriotion i+EventSubscription

• •

•

IEventSource 1 1 1.. * 1 EventListener 1 +EventSource +EventListener
7

1 Classifier (from UML) 1 � 1

Fig. 2: Event-related metaclasses in CMSPEM. UML concept names are in blue, the stars and

numbers are the standard multiplicities of UML class diagrams

subscription, are sent to the event listener, if and only i f, they are raised by the specified event

source. For each combination of event type and event source, several event subscriptions can be

defined.

EVENT HANDLING

The event handling mechanism is the process which starts when an event is generated and

ends when the execution of all registered event listeners has ended. For the purpose of explaining

this mechanism, the concepts of "containment hierarchy" and "event bubbling" need to be

defined.

Containment hierarchy: A simple containment link is defined between model elements in

CMSPEM. Each model element has at most one "parent" element. Elements with no parent element

are said to be "top-level elements". If an element Ais the parent of an element B, B is said to be a

"child element" of A. An element Ais said to be an "ancestor" of an element B if and only if Ais the

parent of B, or there exists an element C such that C is the parent of B and Ais the

ancestor of C.

Event bubbling: An event can be handled, not only by handlers defined on the event source but

also by listeners defined on any ancestor of the event source. This is because an event triggered on

an element will also be triggered on all its ancestors. The event is said to "bubble" upwards. This

mechanism is inspired by event handling as clone in the "Document Object Madel" in browsers.

Event bubbling is necessary to account for the evolutionary nature of software processes, where

the model can be enriched at any time with new model elements. To be able to listen to an event,

one must specify the element which generates such event. This makes it impossible to specify that

a listener is to receive an event which may be emitted by a model element that is not yet present

in the model. Concretely, a listener can ask to be notified any time some attribute is changed on

any ActorSpecificWork that is "contained" in some specific TaskUse. Without event bubbling, this

can only be clone for ActorSpecificWorks that are already present in the model. With event

bubbling, the listener can simply listen to the event on the TaskUse, as all events generated by any

present of future ActorSpecificWork will reach the TaskUse. When an event is bubbling towards

its containers, any container on which relevant listeners have not been defined will simply not

react.

The event handling mechanism: The generation and hanclling of events can be illustrated with

the following sample event handling sequence (Fig. 3).

E is an event type and e is a specific event of type E. Ll and L2 are event listeners. 81 and 82

are event sources and 82 is an ancestor of 81. 8ubl and 8ub2 are event subscriptions. The steps

needed, from event subscription to event handling, in a typical scenario, are as follows:

Step 1: 8ubl is defined as an event subscription on 81, for events of type E, with the listener set

to Ll. 8ub2 is an event subscription on 82, for events of type E, with the listener set to L2.

The order in which the subscriptions 8ubl and 8ub2 are defined does not matter. The only

requirement is that 8ubl and 8ub2 are defined before the event e occurs

Step 2: The event e (of type E) occurs and 81 is its original source

Step 3: Defined event subscriptions with the source set to 81 are checked. For each subscription

whose event type is set to E, the associated listener is called, with the parameters of the

specific event e. In this case, Ll is the only listener which matches. If several listeners were

defined, they would be called in the order of definition

Step 4: All the listeners called in the previous step finish execution. In this case, the execution of

Ll returns

Step 5: If the listener Ll did stop the propagation of the event e, event handling stops here. If not,

the event bubbles upwards

Step 6: The event e is sent to the parent element of 81, for hanclling. The procedure in step 3 is

repeated for all subscriptions defined on the parent element (that is, subscriptions for

which the source was set to the parent element). When handling on the parent element

returns, the event bubbles upwards once more

Step 7: Eventually, the event reaches the ancestor 82 of 81. Event subscriptions with the source

set to 82 are checked. For each subscription with the event type set to E, the associated

listener (in this case, L2) is called. Each listener called is provided with the event

parameters

S2
(EventSource)

Sl's parent
(EventSource)

L2
(EventListener)

LI
(EvcntListcncr)

Sub 2
(EventSubscription)

EventSource: S2
EventListener: L2

Event: E

Sub 1
(EventSubscription)

EventSource: S2
EventListener: L2

Event: E

Fig. 3: 8ample event hanclling sequence. Blue arrows show the flow of execution during event

handling

Events can have arbitrary parameters, depending on their type. However, for the generic

purpose of event handling and event bubbling, two standard parameters are always transmitted

to handlers:

• Source: This is the element (EventSource) on which the listener was defined. When an event

bubbles up, this parameter is continually updated: its value is always set to the element on

which the currently processed listeners were defined
• OriginalSource: This is the element where the event actually occurred, prior to any bubbling.

For each event, this parameter stays the same, even when the event is sent to listeners defined

on ancestors, during event bubbling. When an event is initially generated by an event source,

OriginalSource and source are identical. They differ only during event bubbling, as the event

is handled by listeners defined on ancestors of the original event source

EXPLOITING PROCESS EVENTS FOR SOFTWARE DEVELOPMENT SUPPORT

The formalism defined in the previous section can be exploited to make process support tools

participate in the integration of software development tools. To this end, a set of interesting

development events are identified, with a description of how such events can be used, in an

implementation of a process server, to enhance tool-support in software development activities.

PROCESS EVENTS

A process model which is continually updated to reflect how work is actually being carried out

in a software proJect (people join and leave teams, tasks are started and finished, etc.) bas a lot of

information of interest to other development tools. We identified the following hierarchy of

interesting events that could be raised on a process model and processed by external tools:

• ActorEvent: Any event generated by an actor
• NewActorEvent: A new actor bas been added to the model
• ActorAvailabilityChangeEvent: A previously available actor becomes unavailable, or

a previously unavailable actor becomes available. An actor can, for example, become

unavailable because he/she is on a sick leave
• ActorSpecificWorkEvent: Any event generated by an actor specific task

• NewActorSpecificWorkEvent: A new actor specific task bas been added to the model
• ActorSpecificWorkStartEvent: The execution of an actor specific task bas started
• ActorSpecificWorkEndEvent: The execution of an actor specific task ends

• ActorSpecificArtifactEvent
• NewActorSpecificArtifactEvent: A new actor specific artifact bas been added to the

model
• ActorSpecificArtifactChangeEvent: The content of an actor specific artifact bas

changed. This can simply mean that a file bas been modified
• ActorSpecificArtifactRemovalEvent: An actor specific artifact bas been removed from

the model
• RelationshipEvent: Any event generated by a relationship (ActorRelationship,

ActorSpecific W orkRelationship, ActorSpecificArtifactRelationship, ArtifactOwnership,

TaskAssignment, ArtifactUse)
• NewRelationshipEvent: A new relationship bas been added to the model

• Relationship ValidityChangeEvent: A relationship is disabled or enabled. Disabling a

relationship is a practical way of informing tools to temporarily disregard it
• RelationshipRemovalEvent: A relationship has been removed from the model

IMPLEMENTATION AND USE OF PROCESS EVENT HANDLING IN THE CMSPEM

SERVER

To make it possible for CMSPEM models to generate the previously identified events, a process

engine (based on ECLIPSE/EMF, in Java) which acts as a central server, communicating with

process modeling tools and other development tools over HTTP, has been implemented.

The CMSPEM server is responsible for updating the authoritative version of a process model,

following a request made from a process editor (typically, by the team manager). The server also

exposes a REST-style API, which enables third party tools to subscribe to process events. When an

event occurs on the process model, the CMSPEM server notifies tools with existing (matching)

subscriptions using web hooks (Fig. 4). Further, description of the architecture of the

CMSPEM server and its application to a scenario from AKKA Technologies (an European

engineering and consulting firm, partner of the Galaxy project) is provided by Kedji et al.

(2012a).

Using the CMSPEM server, some integration scenarios become possible. For example, the

descriptions of a set of defect tickets can list the task (ActorSpecificTask) that is responsible for

fixing those particular defects. A subscription can thus be made, by the bug tracker, to the

CMSPEM server, for the ActorSpecificTaskEndEvent on the referenced ActorSpecificTask. When

the ActorSpecificTask ends (for example, the developer marks it as clone), the CMSPEM server will

notify the bug tracker, so that the linked defect tickets can be marked as "resolved", with the

appropriate context information (who changed the task status, when, etc.). This automation frees

developers from some manual bookkeeping work and enhances the contextual information

-Î
Load Editior 3

o, N �"8';1 Mode!
::-s ·i:: � (runtime) �

'Ô'
Load Editior 2

"il il � .,,, -�
Mode! ool

::,s ·i::
� (runtime) �

'Ô' Load Editior 1
- "

� o, N .,,, -�
Mode! 0-;;;

::,s ·i::
� (runtime) "

Read

Mode!
(serialized)

(illeaJ "C"••l

\ � '=d

� (sO""") T�((

Save
SRR

� �
(shutdown)

Process engine

�
Mode!
(runtime)

Read SRR

7 Notifications
CR

(Tool2

Read
(local update)

Fig. 4: Abstract architecture of the CMSPM server. A CR (Change request) is a model update

transmitted from a model editor (editorl, editor2 and editor3 in the example) to the

CMSPEM server, SRR (subscribe, raise event, read model) denotes how third party tools

(tooll and tool2 in the example) use the CMSPEM server API: They can subscribe to events,

raise custom events and retrieve any information from the model

available on defect tickets. This improvement is made possible by the fact that the CMSPEM server

exposes process events, thus allowing other development tools to react to them.

CONCLUSION

This study made the case for events as a basic mechanism for software engineering tool

integration. This study showed how this strategy is prevalent in ex:isting tools and then proposed

to apply the same strategy to the integration of process-support tools with other tools. To this end,

it extended the SPEM OMG standard with an event-handling formalism, suitable for the

description of collaborative processes. It described how this formalism can be used to expose process

events to third party tools.

The Galaxy project is the broader context of this contribution and is concerned with supporting

collaborative development of complex systems using the MDE approach. The end result of the

project is a software development environment which comprises model editors, a communication

engine, a project repository (the Galaxy Server), a pluggable process engine, etc. The CMSPEM

server described in this study is a process engine, based on events, which can interact with the rest

of the Galaxy framework. The engine has been applied to a subset of the standard process of the

"Software and Systems" pole of AKKA Technologies is available in a previous study.

Future work, on the one hand, consists in applying the CMSPEM formalism to existing open

source projects, so as to demonstrate, on practical cases, how well process-events can be wired with

other development events and the benefits of exposing process events to all software development

tools. On the other hand, this contribution questions the assumption that process-related

preoccupations are special in software engineering and should thus be solved on a higher level of

abstraction than the one used for other development preoccupations (like configuration

management and defect tracking). This is a first step in a broader study on the relationships

between, on the one hand, the perceived abstraction level at which a development concern occurs

(platform issues, implementation issues, planning issues, etc.) and, on the other hand, the strategies

(data integration only, control integration with fire-and-forget notifications, control integration with

hooks that can cancel the current action, etc.) suitable for integrating tools addressing that

particular concern with other software development tools.

ACKNOWLEDGMENT

The authors would like to thank the French ANR Galaxy Project which provided funding for

this research.

REFERENCES

Ambriola, V., R. Conradi and A. Fuggetta, 1997. Assessing process-centered software engineering

environments. ACM Trans. Software Eng. Methodol., 6: 283-328.

Gruhn, V., 2002. Process-centered software engineering environments, a brief history and future

challenges. Annal. Software Eng., 14: 363-382.

Kedji, K.A., B. Coulette, M. Nassar, R. Lbath and M.T.T. That, 2011. Collaborative processes in the

real world: Embracing their essential nature. Proceedings of the International Symposium on

Madel Driven Engineering: Software and Data Integration, Process Based Approaches and

Tools and Colocated with ECMFA 2011 Conference, June 6-7, 2011, Birmingham, UK.

Kedji, K., R. Lbath, B. Coulette, M. Nassar, L. Baresse and F. Racaru, 2012a. Supporting

collaborative development using process models: An integration-focused approach. Proceedings

of the International Conference on Software and System Process, June 2-3, 2012, Zurich,

Switzerland, pp: 120-129.

Kedji, KA., B. Coulette, R. Lbath and M. Nassar, 2012b. Modeling ad-hoc collaboration for

automated process support. Proceedings of the 4th International Conference on Software

Quality, Process Automation in Software Development, January 17-19, 2012, Vienna, Austria,

pp: 205-216.

Kiper, J., 1987. The integration of software development tools. Technical Report No. 87-001,

Miami University.

Krishnamurthy, B. and N. Barghouti, 1993. Provence: A process visualization and enactment

environment. Proceedings of the 4th European Software Engineering Conference

Garmisch-Partenkirchen, Software Engineering, September 13-17, 1993, Germany,

pp: 451-465.

Matinnejad, R. and R. Ramsin, 2012. An analytical review of process-centered software

engineering environments. Proceedings of the 9th Annual IEEE International Conference and

Workshops on Engineering of Computer Based Systems, April 11-13, 2012, Novi Sad, Serbia,

pp: 64-73.

Wasserman, A., 1990. Tool integration in software engineering environments. Proceedings of the

International Workshop on Environments and Software Engineering Environments,

September 18-20, 1989, Chinon, France, pp: 137-149.

Wicks, M. and R. Dewar, 2007. A new research agenda for tool integration. J. Syst. Software,

80: 1569-1585.

Wicks, M., 2004. Tool integration in software engineering: The state of the art in 2004.

http://www.macs.hw.ac.uk/cs/techreps/docs/files/HW-MACS-TR-0021.pdfs

