
HAL Id: hal-03468312
https://hal.science/hal-03468312v1

Submitted on 22 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Synthesis and feedback on the distribution and
parallelization of FMI-CS-based co-simulations with the

DACCOSIM platform
Cherifa Dad, Jean-Philippe Tavella, Stéphane Vialle

To cite this version:
Cherifa Dad, Jean-Philippe Tavella, Stéphane Vialle. Synthesis and feedback on the distribution and
parallelization of FMI-CS-based co-simulations with the DACCOSIM platform. Parallel Computing,
2021, 106, pp.102802. �10.1016/j.parco.2021.102802�. �hal-03468312�

https://hal.science/hal-03468312v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Synthesis and feedback on the distribution and parallelization of FMI-CS-based
co-simulations with the DACCOSIM platform

Cherifa DADa,b, Jean-Philippe TAVELLAc, Stéphane VIALLEd,∗

aCentraleSupélec & UMI GT-CNRS, Metz, France
bUniversity of Lorraine & LORIA, Nancy, France

cEDF Lab Paris-Saclay, Paris, France
dCentraleSupélec, University Paris-Saclay & LRI, Metz, France

Abstract

A co-simulation applied to Smart Grids consists of grouping in the same setting models of physical components (among other
electrical ones) and models of control units (including communication devices). Combining these models needs to use a generic
and robust co-simulation environment instead of developing a specific one. In this context, we developed the DACCOSIM 2017
co-simulation platform based on FMI-CS (Functional Mock-up Interface for CoSimulation) standard to simulate the physical com-
ponents of a Smart Grid. These components represent the most CPU-consuming part of the co-simulation. However, the tasks of
FMI-CS-based applications (FMUs) are exposed as heterogeneous gray boxes with no information concerning their computation
and communication volumes. Moreover, all these FMUs frequently communicate with each other by sending a lot of small mes-
sages. Consequently, the deployment of an FMI-CS based co-simulation on a distributed architecture is a complex task carried out
by DACCOSIM 2017. This paper introduces the development of DACCOSIM-2017, and its experiment on distributed architectures.

Keywords: Distributed Co-Simulation, Multicores, Clusters, Performances, Scaling, FMI standard.

1. Introduction

The emergence of Smart Grids [1] offers new opportunities
to design today’s and tomorrow’s energy systems, from pro-
ducers to consumers through energy networks (electricity, heat,
. . .) and telecommunications, to optimize production, distribu-
tion, and consumption of electricity. This kind of system rep-
resents a concrete example of cyber-physical systems, and is
an industrial challenge for EDF1 and its subsidiary ENEDIS2.
The transformations of the energy world and the associated un-
certainties require efficient prediction tools to understand and
address the impact of the various energy scenarios on EDF’s
investments and thus best organize the modernization of the
energy system in order to: (1) guarantee efficient and high-
quality low-carbon energy production (i.e. resilient to hazards)
and (2) develop innovative services based on new uses (e.g.
self-consumption, electric vehicles. . .). From a system point
of view, a Smart Grid contains many heterogeneous cyber and
physical components that interact with each other: smart build-

?This article presents the results and lessons learned from a 5-year research
project funded by the French institute RISEGrid
∗Corresponding author: Stéphane Vialle, CentraleSupélec, 2 rue Edouard

Belin, 57070 Metz, France ; phone: +33 6 66 63 32 16 ; fax: +33 3 87 76 47
00

Email addresses: dad.cherifa@gmail.com (Cherifa DAD),
jean-philippe.tavella@edf.fr (Jean-Philippe TAVELLA),
stephane.vialle@centralesupelec.fr (Stéphane VIALLE)

1The major French electrical utility company.
2Company in charge of managing the electricity distribution network in

France.

ings (residential, tertiary and industrial), district heating net-
work, distribution electrical grid, local production (combined
heat and power plant, gas boilers, ...), telecommunication in-
frastructure, and smart operation control units ensuring build-
ings self-consumption through photo-voltaic panels on the roofs,
incentive cut offs, storage devices (thermal, batteries). But,
their implementation on the ground is difficult and the invest-
ment costs remain expensive. That’s why we must first validate
their proper functioning by co-simulation.

A co-simulation [2] is a well known technique for simulat-
ing and validating complex systems. It facilitates the work to
associate different weakly coupled models designed from het-
erogeneous development tools, in favor of evaluating their rel-
evance and the global system performance before any imple-
mentation in the field. To co-simulate a Smart Grid, the elec-
trical utility company we worked with had adopted the Func-
tional Mock-up Interface (FMI) standard [3] to normalize the
exchanges of data between all the components. The FMI project
was initiated by the ITEA2 MODELISAR project (2008-2011)
and is now kept up to date by the Modelica Association3. FMI
is based on a continuous model for simulating the whole tasks
of complex systems, e.g. Smart Grids. The adopted standard
makes possible to combine different models by encapsulating
them into gray boxes appointed FMUs (Functional Mock-up
Units) with two modes: FMU for Model Exchange mode (FMU-
ME) for strong coupling of FMUs and FMU for co-simulation
mode (FMU-CS) for weaker coupling. In the FMU-ME mode,

3https://www.fmi-standard.org/downloads

Preprint submitted to Parallel Computing March 28, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0167819121000545
Manuscript_0beffd2694e1f5a9488a58aea08b6889

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0167819121000545
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0167819121000545

an FMU simply contains a model and it is up to the user to pro-
vide a solver or to develop his own solver, while the FMU-CS
mode allows to encapsulate in the same box (FMU) a model
with a previously chosen numerical solver. We use the FMU-
CS mode because each model becomes an easy-to-use executable
while respecting intellectual property.

In general, an FMU is a zipped folder that contains a de-
scription XML file (modelDescription) for describing external
and internal variables of FMUs, and a set of binary codes de-
pending on the operating system offering the FMU calculation
functions as well as the primitives of its interface. But, unfor-
tunately, it requires defining and implementing a "Master Al-
gorithm" which (1) interfaces all FMUs of the system, (2) es-
tablishes connections and, (3) exchanges data between different
interacting models [4]. The simulation of physical components
relies on solvers that discretize continuous time in time steps,
which are either constant or variable knowing that a time step
should be large enough so the co-simulation is not dramatically
slowed down, but not too significant to avoid important approx-
imation errors [5]. Note that for EDF, real-time or Hardware In
the Loop (HIL) executions are not an objective, the main goal
being to be able to run large simulations within a reasonable
time.

Project objectives and work presented
The goal of our co-simulation project was, therefore (1) to

develop an FMI-based co-simulation platform adapted to Smart
Grids which can distribute and simulate on a distributed multi-
core PC cluster its different components, (2) to propose effi-
cient approaches for the placement of these tasks to increase
performance on multi-core PC clusters, and (3) to achieve co-
simulation scale-up.

The work presented in this paper focusses on simulating the
most computationally intensive part of the Smart Grid, which
is the co-simulation of physical devices of a power system us-
ing constant time steps. For that, we used the 2017 version of
DACCOSIM (Distributed Architecture for Controlled COSIM-
ulation), a platform to design and run simulation applications
based on FMI-CS in the form of a graph of heterogeneous FMUs,
frequently communicating. When the application has a large
number of components, we cannot launch the DACCOSIM graph
on a single physical node with a limited memory size and com-
puting power, but rather on a multicore PC cluster offering both
a large amount of memory and a set of computing cores.

A DACCOSIM graph can be represented as a periodic task
graph, repeating simulation time steps. But, inside a time step,
it becomes a direct acyclic graph (DAG): vertices are both FMUs
and master tasks, and edges are both inter-FMU and FMU-
hierarchical master communications. Some of these communi-
cations also introduce synchronizations between tasks. In this
present work, we summarize all the efforts we made for dis-
tributing efficiently and rapidly the FMI-CS-based applications
on a distributed architecture. We also identify and discuss the
various difficulties that we encountered to achieve an accurate
and efficient size-up of such applications.

This paper is structured as follows: section 2 summarizes

Framework Synchronization Distributed exec.
EPOCHS [6] Time-stepped Yes
ADEVS [7] Dedicated orchestration Limited
GECO [8] Global event-driven No

INSPIRE [9] Time-stepped Yes
C2WT [10] Time-stepped Yes

PowerNet [11] Dedicated orchestration Limited
VPNET [12] Time-stepped Limited

DACCOSIM [13] Time-stepped Yes (large scale)
MECSYCO [14] SMA event-driven Yes
MOSAIK [15] SMA event-driven Yes
HELICS [16] Event-based Yes

Table 1: Comparison between co-simulation solutions.

related works about co-simulation platforms applied to cyber-
physical systems and section 3 depicts our innovative DAC-
COSIM platform. In section 4, we evaluate the behavior of
FMU graphs on multicore PC clusters. Some methodologies
and approaches to distribute the heterogeneous FMUs on mul-
ticore PC clusters are introduced in section 5. Section 6 and 7
interpret the scaling and the size-up of small and large indus-
trial applications based on FMI-CS. The main conclusions and
discussions of current results are provided in the last section.

This research is carried out by the Research Institute for
Smarter Electric Grids (RISEGrid)4, founded by EDF and Cen-
traleSupelec, and ultimately aims to simulate the smart electric
grids of the future.

2. Related works and positioning

Co-simulations of Smart Grids use both event-based simu-
lators to simulate the telecom networks and information sys-
tems, and discretized continuous-time simulators to simulate
the physical components. These different kinds of simulators
usually exchange data through a middleware, like an HLA bus
[17], or an implementation of an FMI Master Algorithm [4],
or a mix of an HLA bus and an FMI Master Algorithm. In
any case, communications between components can be done
either directly or across a centralized communication mecha-
nism. This section introduces the solutions adopted by the main
co-simulation environments applied to Smart Grids.

2.1. Synchronization types for co-simulation
We can identify three main approaches when designing a

co-simulation:

• Time-stepped approach: Individual simulators of the global
system execute independently their simulations during
constant or variable time steps, and exchange and syn-
chronize some output values at the end of each time step
(which are determined by the Master Algorithm). FMI-
based co-simulations follow this approach. However, tak-
ing into account some events (like an alarm) appearing
during time steps requires to enhance the pure time-stepped
model of continuous time based simulators.

4https://www.centralesupelec.fr/fr/risegrid-institute-research-institute-
smarter-electric-grids

2

• Global event-driven approach: A global ordered list saves
both the state events emitted by continuous time based
simulators of physical systems (ex: alarm signals), and
the time events emitted by telecom network and informa-
tion system simulators. Then, an event logical bus drives
each event to the relevant components. HLA-based co-
simulations follow this approach.

• Dedicated orchestration approach: Some co-simulations
implement specific orchestration mechanisms, like in [11]
where two simulators call each other on-demand and run
alternatively, or in [12] where a dedicated orchestrator
interconnects and manages only two simulators.

Implementation of the last approach does not require a middle-
ware and does not facilitate the design of generic and scalable
co-simulation environments. We have therefore focused our re-
search on the first and second approaches, and the blending of
these approaches to include both event-based and time-stepped
components. Such a hybrid approach is required for the simu-
lation of cyber-physical systems like Smart Grids but it remains
complex.

2.2. Co-simulation environments applied to Smart Grids

In 2006, EPOCHS [6] was the first distributed multi-simula-
tion environment applied to the simulation of an electric power
and communication system. It was based on the HLA middle-
ware standard and mixed event-based and time-stepped compo-
nents, but delayed state event processing at the end of each time
step and lacked accuracy. Based on Discrete EVent System for-
malism (DEVS [18]), the ADEVS platform [7] improved the
synchronization algorithm of EPOCH. It successfully modelled
a power system with DEVS formalism, coupled with the NS2
telecom simulator. However, this platform was designed for
a specific application and cannot apply to more generic en-
ergy systems. At the opposite, in 2012 GECO [8] was an at-
tempt for a more accurate simulation of an electric power and
communication system. It accurately processed all events in
a global event queue without introducing a delay in the simu-
lated time. But, it was not designed on top of a generic and
distributed middleware (it implemented a dedicated orchestra-
tor), so it did not support distribution on several PCs and could
not scale largely. Approximately at the same date (2012-2013),
the INSPIRE framework [9] implemented a more detailed and
realistic co-simulation of a telecommunication network and an
electric power system, to investigate the impact of telecommu-
nication network delays. Interesting results were an encourage-
ment to use co-simulation to design electrical systems driven by
telecommunications networks. Moreover, INSPIRE was imple-
mented on top of HLA middleware, but no information was re-
ported about the distribution on several machines and the scal-
ability of the co-simulations.

In parallel, the FMI standard emerged in 2010 [3], and in
2013 researchers of the Austrian Institute of Technology (AIT)
have experimented with several strategies to mix FMI 1.x stan-
dards and HLA standard. They developed several FMI Mas-
ter Algorithms to manage and interface a set of FMUs with an

HLA event bus (the Run-Time Infrastructure - RTI), which fa-
vored the accuracy or the parallelism of the execution of the
FMUs, or supported variable stepping [19, 20, 21]. However,
they could not manage events before the end of a time step, and
no performance measurements of these FMI+HLA solutions
were reported. In 2014, the C2WT environment mixed again
HLA and FMI standards [10], and interconnected the telecom
network simulator OMNET++ with FMUs modeling continu-
ous time systems. But, the distributed control of the FMUs sup-
ported only constant time steps and again delayed some event
processing at the end of the FMU time steps. C2WT did not
address time step interruption for unexpected event processing,
which would not be acceptable in our Smart Grid use cases (ex:
unexpected alarms must be processed on time).

The development of the Mosaik 5 platform started around
2012 and aimed at designing and simulating complex large smart
grid scenarios [15]. It adopted a multi-agent system approach,
including several components to assist users in the design and
validation of their co-simulation scenarios. It relies on commu-
nication mechanisms allowing distributed executions on several
remote sites. However, the authors do not emphasize distribu-
tion on parallel architectures, nor performance measurements
at runtime. More recently, Mosaik has added FMUs as compo-
nents in its co-simulations [22]. Since 2015 MECSYCO [23]
has been exploring another multi-agent approach, including a
distributed event bus. It has been enhanced in 2016 with a
model artifact relying on the DEV & DESS formalism to in-
tegrate FMUs and to offer a sound framework for describing
hybrid systems [14]. But, the drawback of this multi-agent tech-
nology is that each time an event occurs in the system, a syn-
chronization has to be performed between all agents, causing
rollbacks to resynchronize them all. Tab. 1 summarizes some
features of these environments.

Finally, the HELICS project is participating in the mod-
ernization of the US network, by developing a co-simulation
framework [16], the first version of which was published in
2017. It aims at co-simulating very large systems (up to 100K
components), including off-the-shelf simulators, FMI and HLA
components. It relies on an ad hoc communication mechanism
or standard middleware (MPI or ZMQ), and includes a hierar-
chical and distributed broker for co-simulation control. Its time
model is based on events and time series, with a co-iteration
step before any time advancement to improve signal consis-
tency. However, no information is available on the hardware
used for the experiments, nor on possible accelerations.

2.3. Positioning of DACCOSIM

We designed the foundations of our co-simulation frame-
work (DACCOSIM) from 2013 up to 2015, with the objectives
to support (1) accurate processing of unexpected state-events
and adaptive time steps, both requiring the FMUs to roll back,
and (2) massive executions involving many FMUs deployed on
large computing clusters, requiring efficient parallel and dis-
tributed executions.

5https://mosaik.offis.de/

3

Like AIT researchers, we started experimenting with sev-
eral FMI+HLA hybrid solutions. However, in order to achieve
our objectives we preferred to develop an FMI-based solution
relying on a hierarchical and distributed Master Algorithm (see
section 3). Our first prototype was delivered in 2015 [13].

At the difference of other research projects, measuring and
achieving good performances on realistic co-simulations of en-
ergy systems has always been one of our main concerns [24,
25]. So, we designed some strategies and algorithms to dis-
tribute and load balance numerous FMUs on large PC clusters,
successfully experimented and included in DACCOSIM 2017
(see section 5).

3. Presentation of the DACCOSIM-2017 platform

DACCOSIM [13] is a physical system platform based on
the FMI for co-simulation standard (FMI-CS) used in its 2017
version. It has been developed by CentraleSupélec and EDF
R&D as part of the RISEGrid institute. DACCOSIM allows
running many heterogeneous gray boxes, called FMU-CS, on
multicore PC clusters that interact with each other. This plat-
form integrates wrappers that encapsulate FMI API, in order
to manipulate these FMUs. So, it uses the JavaFMI6 pack-
age in Windows and Linux versions. Moreover, DACCOSIM
2017 includes a user-friendly Graphical User Interface (GUI)
for designing and performing a complex system. Note that
DACCOSIM 2017 allows designing the physical system either
through a "DSL" (Daccosim Script Language) code or its GUI.

3.1. Global architecture

DACCOSIM 2017 achieves parallel and distributed co-simul-
ations, dedicated to physical systems, with a hierarchical co-
simulation master [24]. In our attempts to design, distribute
and co-simulate on cluster nodes very wide systems composed
of thousands of FMUs, we needed both to synchronize all the
communication points (for accuracy purpose) and decentralize
the usual control function of the Master Algorithm (for perfor-
mance purpose). As shown in Fig. 1, the overall architecture of
DACCOSIM consists of a set of local masters supervised by a
global master. The leaves of this architecture represent blocks
of co-simulation, containing a wrapper code connected to the
FMUs following the FMI standard. Each local master con-
trols its simulation blocks located in the same compute node.
In practice, DACCOSIM generates a set of Java codes corre-
sponding to local master codes located on the different compute
nodes, and each of them calls one or more FMUs launched by
their wrappers.

According to FMI-CS 2.0 standard, DACCOSIM notably
offers for the co-initialization of its calculation graph:

• Automatic construction of the global causal dependency
graph, built both from the FMUs internal dependencies
and the calculation graph external dependencies. An acyclic
view of the graph is generated by aggregating each cycle

6https://bitbucket.org/siani/javafmi/wiki/Home

as a super-node composed of Strongly Connected Com-
ponents (SCCs);

• The first version of a generalized distributed co-initialization
algorithm, mixing a sequential propagation method ap-
plied to the acyclic dependency graph, and a Newton-
Raphson method solving its SCCs. These co-initialization
features of DACCOSIM 2017 are not detailed in this pa-
per focusing on the co-simulation mechanisms.

And for co-simulation, DACCOSIM 2017 offers among others:

• Implementation of each FMU wrapper as two threads al-
lowing to concurrently run computations and send mes-
sages (FMU & control) while receiving incoming mes-
sages;

• Overlapped or ordered data synchronization inside dis-
tributed masters, that can operate with constant or vari-
able time steps.

• Approximate event detection while waiting for a new ver-
sion of the FMI standard able to correctly handle hybrid
co-simulations [26].

An original feature of the DACCOSIM architecture lies in
the fact that the FMU variable values to be exchanged at each
communication step are directly transmitted from the senders
to receivers without passing by a master. The masters, the
wrapped blocks (mainly FMUs with wrappers) as well as the
communication channels between them are automatically gen-
erated by DACCOSIM by translating the calculation graph de-
fined by the user via its GUI. All communications are imple-
mented using ZeroMQ7 middleware, allowing direct commu-
nications between different threads located on the same or on
different PC cluster nodes. For intra-node communications, a
mechanism of shared message queue is also available.

3.2. Execution principles
With DACCOSIM, all FMUs execute the same constant or

variable time step by applying one of two orchestration modes [24]:
Ordered or Overlapped mode, as shown in Fig. 2 and 3 (will
be detailed further). In the first mode, all FMUs of the sys-
tem start their execution in parallel, and each of them executes
successively the three substeps of the time step:

1. FMU computation substep,

2. control substep including two synchronization barriers
between all tasks,

3. FMU data-exchange substep.

This last substep is chained with the first substep of the next
time step according to a relaxed synchronization. In contrast,
the Overlapped mode is an optimization of the first mode that

7ZeroMQ, 0MQ or ZMQ is a library that communicates between the dis-
tributed compute nodes, it is based on creating a socket for each entity (like
client-server).

4

Figure 1: DACCOSIM distributed architecture.

Figure 2: Ordered Orchestration mode.

Figure 3: Overlapped orchestration mode.

runs the control and the data-exchange substeps in parallel, to
attempt to accelerate the co-simulation.

In both orchestration modes, the control substep is when the
Hierarchical Master decides if a rollback is necessary. Then,
it drives the FMUs to the next time step, or returns them to
the beginning of the current time step. The execution model of
DACCOSIM and its implementation were therefore designed to
manage the adaptation of the time stepping, the rollbacks and
the resumption of the whole co-simulation process.

In the DACCOSIM 2017 platform, the management of vari-
able time steps and events was not finalized in the Master Al-
gorithm, which is responsible for changing the time steps and
reacting to temporal events. However, the lower layer of DAC-
COSIM is ready to support advanced control algorithms. The
following section introduces the events triggering the rollback
mechanism before detailing the two orchestration modes imple-
mented in DACCOSIM.

3.2.1. Rollback mechanism triggering
In DACCOSIM 2017, the rollback mechanism can be trig-

gered for different reasons:

• a detection of too large imprecision of the FMU calcula-
tions within a variable time step. In this case, it is neces-
sary to do a rollback and redo the FMU calculations with
a reduced time step.

• the occurrence of a state-event within an FMU compu-
tation. A state-event is a discontinuity in the evolution
of FMU, for example an alarm. In this case, the rollback
mechanism will be triggered to redo the calculations with
a shortened time step, to stop the FMU computation at the
moment of the appearance of the state-event.

• the occurrence of a time-event to certain FMUs, repre-
senting a predetermined external event according to a sim-
ulation scenario (such as a control command).

For a given time step, the global master informs all local
masters to start their simulations, and each one runs its FMUs
in parallel (computation substep). At the end of this time step,
each local master collects the information coming from its FMUs
concerning the new time step for the next iteration (control sub-
step). This data will be sent to the global master that will take
one of the following decisions: (i) keep the same time step, (ii)
increase the time step when all FMU computations are accurate
enough or, (iii) decrease it and rerun this computation (rollback
mechanism) when any FMU reports inaccurate results. If there
is no rollback, each local master informs its FMUs to send and
receive data between them (communication substep).

3.2.2. Ordered orchestration mode
Ordered orchestration of a time step is illustrated on Fig.

2, and follows a relaxed synchronization mechanism. All FMU
computations are run in parallel to progress from ti up to ti+1 =

ti + h (h is a time step), and as soon as an FMU has finished
its computation substep it sends its local requirements to the
Master Algorithm (M.A.): to roll back and rerun with a smaller
time step (to increase accuracy), to continue with the same time
step, or to continue with a greater time step. Then, the M.A.
processes each received requirement but awaits all requirements

5

Figure 4: Ordered orchestration mode with rollback.

Figure 5: Overlapped orchestration mode with Rollback.

(synchronization point S 0) before taking a global decision, and
broadcasting its decision to all FMUs. After that, all FMUs wait
for the M.A. global decision, and as soon as an FMU receives
the M.A. decision (sync. point S 1), it rolls back or continues its
time step.

• If an FMU receives the command to continue (Fig. 2),
it enters its communication substep, sending its output
results to connected FMUs and waiting for the update of
all its input values (sync. point S 2). Finally, as soon as
it has updated all its inputs, it enters its next computation
substep.

• If an FMU receives the command to roll back (Fig. 4), it
restores its previous state at ti and reruns its computation
substep, but progresses from ti up to t′i+1 = ti + h′, with
h′ < h the new time step broadcasted by the M.A.

So, the only synchronization point looking like a global syn-
chronization barrier is the M.A. decision broadcast, which all
FMUs are waiting for. Other synchronization points are relaxed
ones, that stop only one task (the M.A. or one FMU). Each
task going over a relaxed synchronization point carries on with
its work independently of other tasks. Relaxed synchronization
allows increasing performance, avoiding time consuming syn-
chronization barriers, and avoiding to synchronize all FMUs
on the slowest ones (the ones with the longest computations
or communications at the current time step). Algorithms with
relaxed synchronization schemes are usually more complex to
implement and debug, but ZMQ middleware has allowed easy
and efficient implementation of these communication and syn-
chronization mechanisms between threads across a PC cluster.

3.2.3. Overlapped orchestration mode
To still reduce the communication cost, a solution consists

in overlapping some of the communications with some FMU

computations, and with the Master Algorithm decision pend-
ing. Fig. 3 illustrates these mechanisms. When an FMU has
finished its computation substep, it sends its requirements to
the M.A. and, not waiting for M.A. decision broadcast, enters
its communication substep. So, FMUs update their input val-
ues while the M.A. collects their requirements and broadcasts
its global decision. But, depending on the pending time of the
M.A decision and on the number of inter-FMU communica-
tions, each FMU can cross its synchronization points S 1 (M.A.
decision broadcast) and S 2 (all input update received) in any
order (see FMU1 and FMU2 examples on Fig. 3). So, when
both S 1 and S 2 synchronization points have been crossed, each
FMU must consider the M.A. decision:

• If the M.A. issued a command to continue, then each
FMU enters its new calculation substep (see Fig. 3), and
saved some execution time by performing its inter-FMU
communications while the M.A.’s decision was pending.

• If the M.A. has issued a rollback command, then each
FMU waits for the end of its communications, restores
its state at the beginning of the time step, and restarts its
calculation from ti to t′i+1 (see Fig. 5). In this case, the
overlap mechanism slightly increased the execution time
with unnecessary inter-FMU communications.

From a theoretical point of view, our overlapping mecha-
nism reduces the execution time when there are few rollbacks,
or when using constant time steps. But from a technical point
of view, some threads will work to send and receive messages
while some threads will achieve the end of long FMU compu-
tations (M.A. decision broadcast is no longer a synchronization
barrier). The communication threads could disturb the ongo-
ing computations and slow down the co-simulation, especially
when running more threads than available physical cores. Nev-
ertheless, our overlapped orchestration mode has appeared ef-
ficient on our co-simulation of heat transfer inside three-floor
buildings, run on a 6-core node cluster with a 10 Gb/s Ethernet
interconnect. Section 5 will show the performance achieved on
our benchmark of a power grid co-simulation.

3.3. Timing model

We can depict the execution model of DACCOSIM as a task
graph G = (V, E), where the set of vertexes V denotes the tasks
to be treated (FMUs or masters), and the set of edges E refers
to the communications between FMUs, or the communications
between the hierarchical master and the FMUs. Fig. 6 shows
an example of an FMU graph with four heterogeneous FMUs
executing a suite of time steps. All FMUs run their computation
substep in parallel during each time step.

In DACCOSIM, the execution time of each FMU encom-
passes the computation time of the FMU solver TComput, the
control time TControl (including the synchronization times), and
the communication time with other FMUs TComm. In this work,
we used the Ordered orchestration mode because it makes it
possible to model precisely and measure times of the different
substeps of each FMU. At the j-th time step (i.e. at t = j.h), the

6

Figure 6: Example of DACCOSIM graph.

co-simulation time of an FMU k is measured as follows:

TCoSimOneStepFMU(k, j) = TComput(k, j, h)+
TControl + TComm(k) (1)

TComput and TComm depend respectively on the computation com-
plexity and on the connectivity of the FMU k. But, TControl is the
same for all FMUs, because the control substep includes syn-
chronization barriers in Ordered mode. So, the co-simulation
time for a multicore node n containing Kn FMUs, processing
the computations of time step j is modeled as follows:

TCoSimOneStepNode(n, j) = max
1≤k≤Kn

TComput(k, j, h)+

TControl + max
1≤k≤Kn

TComm(k) (2)

We consider here an unsaturated execution: ∀n,Kn ≤ Cn, where
Cn represents the number of computing cores of node n. This
is a reasonable hypothesis as we track performances in our dis-
tributed co-simulations, avoiding to run several FMU per phys-
ical cores. Moreover, we will see in section 5.3 that sometimes
we need to keep: Kn ' Cn/2. So each FMU computation can
run freely on its own core, and the computation time of one
step is limited to the computation time of the longest FMU
(max
1≤k≤Kn

TComput(k, j))). Assuming we have at most one FMU per

core, we consider the interconnection network is also unsatu-
rated and the communication time of one step is limited to the
most communicating FMU (max

1≤k≤Kn

TComm(k)).

Since all local masters (and their FMUs) execute in paral-
lel on different nodes, the overall time of co-simulation of the
system for a given time step j is calculated as follows:

TCosimOneS tep(j) = max
1≤n≤N

TCoS imOneS tepNode(n, j) (3)

Where N is the total number of allocated physical nodes. And,
the overall time of the entire co-simulation is calculated by the
following equation:

TCosim =

iterations∑
j=1

TCoS imOneS tep(j) (4)

Such as "iterations" represents the number of iterations of the
whole co-simulation. In the case where we adopt a constant
time step (hi = h = TimeS tep), the number of iterations will be
calculated by iterations = D

h such as the D depicts the overall
duration of co-simulation. When using a variable time step,
the number of iterations will only be known at the end of the

Figure 7: Enerbat use-case, to model heat transfers in a set of n 3-floor buildings
with 1 + 10 × n FMUs.

co-simulation because it depends on the number of performed
rollbacks, and the execution of each time step will vary with the
step size. This model is suitable for constant time steps but not
for variable ones.

3.4. Toward reliable event management

In this section, we seek to accurately detect state-events at
a low-cost by proposing improvements to FMI version 2.0. So,
we have proposed to add new primitives in the FMI-CS stan-
dard [26] to integrate hybrid co-simulation in a pure FMI-CS
environment. Our solution does not require any model adapta-
tion and allows to couple physics models with continuous vari-
ability and controllers with discrete variability. Moreover, par-
allelism is not reduced by our approach, as all FMUs continue
to run concurrently either when processing shorter time steps,
or when executing rollbacks. Therefore, event handling by the
FMI-CS evolution we have proposed does not require changing
our parallel and distribution strategy of the FMU co-simulation
graph. However, some improvements have been adopted since,
but they did not impact the distributed execution model of DAC-
COSIM [25].

4. Hardware and software testbeds

This section introduces the industrial use-cases provided by
EDF (named Enerbat and Ideas), and the different PC clusters
used for benchmarks. The next sections will detail the run of
experiments on these testbeds.

4.1. Tested co-simulations

Enerbat is a simplified industrial case, representing heat
transfers in a set of n three-floor buildings. Each building is
modeled with two zones per floor separated by an indoor wall
(see Fig. 7). A single FMU BC is responsible for the thermal
boundary conditions (e.g. actual temperatures recorded in a
French suburb), which in our case are assumed to be the same
for all floors of each building. Another FMU CS models the
crawl space temperature for the lower floor of a building, and
each building having a specific FMU CS. The FMUs ZNx (resp.
ZSx) represent the Northern (resp. Southern) part of every floor.
Each one is designed with Modelica and based on differential
equations modeling physical phenomena such as conduction,

7

Figure 8: Ideas use-case, to model the thermal behavior and electricity con-
sumption of 1000 buildings with 1042 FMUs.

convection and solar radiation. The FMUs IWx detail the be-
havior of the wall between the floor zones depending on differ-
ent insulating properties.

All these FMUs are equation-based only, and modeled by
encapsulated arrays of records with changeable size to propose
5 levels of complexity (size/weight) for each FMU. No con-
trol or temperature regulation is considered in this benchmark,
the data exchanged between these FMUs are temperatures and
thermal flows. We designed two benchmarks running 1 + 10 ×
n FMUs. The cl5 benchmark includes high complexity level
FMUs, and exhibits negligible communication times compared
to the computation ones. The cl3 benchmark includes medium
complexity level FMUs and has significant communications.
Ideas showed in Fig. 8 is a large industrial use-case [25], that
allows to model building thermal behavior and heating system
consumptions. It includes a total of 1042 heterogeneous FMUs
exported from Dymola8 2016 FD01. It complies with the FMI-
CS standard, it has also been fully implemented in Modelica
using the OpenIDEAS library9 introduced in [27]. Neither the
electrical grid, the heating systems nor the building envelops
have been simplified.

Ideas use-case is composed of 1000 buildings connected to
low-voltage (LV) feeders, each of them including a thermal en-
velope, ventilation and heating systems and a stochastic occu-
pancy behavior. The buildings are spread over 20 low-voltage
LV feeders, each modeled as one FMU, noted I to XX on Fig. 8.
These feeders are connected to a medium-voltage (MV) net-
work that is also simulated with a single FMU. A data-reading
FMU provides real medium-voltage measurements that are im-
posed at the MV substation busbar. The electric grid frequency
is provided to different FMUs (buildings and feeders) by 20
additional FMUs. This distributed frequency FMU implemen-
tation is meant to reduce inter-node communications since the
frequency has to be dispatched to all the FMUs of the use case.
Finally, the co-simulation holds a total of 1042 FMUs exported
from Dymola 2016 FD01 in conformance with the FMI-CS 2.0
standard. A smaller use-case with fewer buildings and only 442

8A reference tool developed by Dassault Systèmes. It represents both a
modeling and a simulating tool based on the Modelica language.

9EFRO-SALK project, with support of the European Union, the European
Regional Development Fund, Flanders Innovation & Entrepreneurship and the
Province of Limburg.

FMUs, has also been designed to evaluate the scalability of our
solution.

4.2. Execution platforms
To achieve our experiments, we used three (standard) Eth-

ernet PC clusters at CentraleSupelec:

• Skynet cluster including 4-core nodes (Intel Core i7-920
CPU) at 2.6 GHz and a 1 Gb/s Ethernet network,

• Cameron cluster including 6-core nodes (Intel Xeon E5-
1650 CPU) at 3.6 GHz and a 10 Gb/s Ethernet network,

• Sarah cluster composed of dual 4-core nodes (Intel Xeon
E5-2637 v3 CPU) at 3.5 GHz (Haswell architecture) with
a 10 Gb/s Ethernet network.

Also, we used a high performance PC cluster at EDF R&D:

• Porthos cluster composed of dual 14-core nodes (Intel
Xeon E5-2697 CPU) at 2.60 GHz (Haswell architecture)
with Infiniband FDR communication network.

5. FMU graph parallelization and distribution

5.1. Difficulties related to the nature of FMU graphs
A co-simulation realized by DACCOSIM is represented as

a graph of FMUs that integrate their own solvers, but no infor-
mation can be provided a priori by the FMU on the complexity
of its calculations, or during execution on its computation load
or its volume of communications. Those FMUs are seen as
gray boxes, with load unbalanced and frequently exchanging a
lot of small data. But achieving large co-simulations requires to
run these task graphs on clusters of multicore PCs. So, achiev-
ing large and efficient co-simulation based on such tasks, poses
some challenges:

1. To implement an adapted communication layer in DAC-
COSIM.

2. To run the optimal number of FMU per multicore node
(one per processor, per physical core, per logical core ?).

3. To design efficient algorithms to distribute and load bal-
ance the computation of heterogeneous FMUs, while min-
imizing inter-node communications.

The first challenge has been dealt with the design of the
DACCOSIM architecture, and its two orchestration modes (see
sections 3.1 and 3.2). The second challenge is experimentally
studied in section 5.3 and the last one is taken up in section 5.5
when designing our FMU distribution algorithms.

5.2. Stopping the frequency auto-tuning of the computing core
In recent years, to minimize its energy consumption, a pro-

cessor adjusts the frequencies of its cores according to their
loads and its overall load. Unfortunately, these energy opti-
mization mechanisms disturbed our study because the calcula-
tion load of an FMU depends on its input values, the size of the
time step and the start time of the step. Variations in this com-
putational load have an impact on the frequency of the core,

8

Figure 9: Execution time of concurrent FMUs on a multicore node on Skynet
(upper) and Cameron (bottom) clusters.

which in turn has an impact on the computational time of the
FMU. The performances observed during the experiments fluc-
tuated a lot and masked our load balancing efforts: on Cameron
cluster, we have observed cores that could operate at 1.33 GHz
or 3.1 GHz depending on the overall load of the compute node.
When the frequency of the processors varied, it affected the per-
formances of our co-simulations and it became very difficult to
study the impact of our FMU distribution algorithms.

So, for our investigations and experiments we forced the
cores of the processors to adopt the same frequency by using the
performance mode (high frequency all the time imposed with
the Linux cpufreq-set command).

5.3. Efficiency of FMU concurrent runs on a multicore node
To identify the behavior of FMUs on a multicore PC clus-

ter, we measured the total execution time while running up to
k FMU, on a k-core node. Theoretically, this total execution
time should remain constant, or bounded by the longer FMU.
Therefore, the overall idea of this experience is to put one FMU
on a k-core node, and to gradually add other FMUs on the same
node until running k FMU on the same k-core physical node.

Fig. 9 introduces the computation time of the simulation
according to the number of FMUs on one node of Skynet and
Cameron clusters. Measures were done in realistic conditions:
a complete Enerbat use-case was co-simulated on a cluster, FMUs
were interconnected, received real input data, and run with con-
stant time steps. The Frequency of all computing cores was
fixed to the maximum and remained unchanged. The subset
of the FMUs under analysis was located on one specific node
and the durations of the computation substeps (see section 3.3)
were measured and cumulated on this node. No disk I/O or

Figure 10: Importance of the interconnection network.

communications interrupted the computation substeps. Finally,
we observe that the computation time does not remain constant
but increases up to 20% when running 3 and 4 FMUs respec-
tively on a hyperthreaded quadri-core (Nehalem 4C/8T) and a
hyperthreaded Hexa-core (Sandy Bridge 6C/12T) cluster node.
Beyond this number of FMUs, the increase becomes very sig-
nificant even when running no more than 1 FMU per core. This
phenomenon is common on multi-core processors, where the
cores share the L2 cache memory and some memory access
channels and thus interfere with each other. So, even keeping
the maximum number of FMUs MFMU lower than the number
of physical cores and fixing their frequency (see the previous
section), we have not been able to maintain the computation
time of the set of FMUs equal to the most expensive FMU.

In this work, we realized our experiments with homoge-
neous (blue color) and heterogeneous FMUs (red color) on old
processors with Nehalem and Sandy-Bridge architectures. But,
in any case, the overall computation time increases significantly
when MFMU > k/2. So, we decided to limit the number of
FMUs located on our old physical nodes to k/2, when we have
enough compute nodes to accommodate all FMUs of the sys-
tem:

MFMU 6 NbrPhysicalCores/2 (5)

On newer and more powerful processors with haswell architec-
ture (Porthos HPC cluster of EDF), we were able to push this
limit up to:

MFMU 6 NbrPhysicalCores − 2 (6)

5.4. Impact of the interconnection network
We also evaluated the impact of the network performances

on the overall co-simulation time. We performed some Enerbat
cl3 benchmarks (see section 4.1), and we carried out a size up
experiment on our 1 Gb/s and 10 Gb/s Ethernet clusters (Skynet
and Cameron). We simulated from 1 up to 5 buildings on 1 × 3
up to 5 × 3 multicore nodes, increasing both the number of
FMUs and the number of multicore PCs in the same propor-
tions, as shown in the Fig. 10. In the ideal case, we should
obtain a straight line: identical co-simulation times for all the
problems treated in order to keep perfect parallelism (see sec-
tion 6.2).

9

But, we observe through Fig. 10 that each time we increase
the size of the problem and the number of nodes, the co-simulation
time becomes longer than the previous one, especially if we use
a poor communication network (1 Gb/s). On the other hand,
the communication network of 10 Gb/s does not lead to per-
fect size up but gives better performance over the communica-
tion network of 1 Gb/s. This test shows that (1) performances
of FMU-based applications are sensitive to the interconnection
network quality and, (2) such a good quality network is required
to achieve size up on our Enerbat-cl3 benchmark.

5.5. Apportionment on multicore PC clusters

When developing DACCOSIM, one of our objectives was
to integrate algorithms of FMU placement on the computing
nodes, to easily reach a reasonable co-simulation time. Our ap-
proach is based on experimental heuristic methods and on busi-
ness expert methods. They belong to static off-line methods [28]
that define a fixed placement of tasks at the time of program
compilation. However, the gray-box facet of the FMUs forces
us to design methods not requiring detailed information.

Finally, we designed and identified the following methods,
which are applicable to medium and large use-cases and reach
reasonable co-simulation times on our benchmarks:

• Experimental heuristic-based methods: these heuris-
tics require some preliminary investigations and are de-
signed for small and medium use-cases. We have tested
a collection of simple and generic heuristics requiring ei-
ther (1) only studies of the FMU graph or (2) both FMU
graphs and benchmarks on the target cluster. We can
quote the most interesting ones: LB focuses on load bal-
ancing between compute nodes, COMS places on the
same node the tasks exchanging a lot of data, LB&COMS
maximizes communications inside each node while bal-
ancing the load between nodes.

• Family Round Robin method (FRR): when knowledge
on the co-simulation is limited and the FMU graph is too
large to quickly conduct some investigations, we use the
FRR method that does not require any study of graphs
or benchmarks. FRR method regroups FMUs into fam-
ilies with equal or similar computational loads, based
on previous experiences of the users. As an example,
building thermal calculation FMUs are always signifi-
cantly more CPU-consuming than power flow calculation
FMUs. Each family will form a list of FMUs, and each
resulting list will be distributed on the physical nodes us-
ing a round-robin algorithm. The purpose of this method
is to balance the computational load between the com-
pute nodes without knowing either the exact FMU loads
or the communication costs.

• Business Experts methods (BE): this method proposed
by the EDF team exploits business knowledge on the sim-
ulated global system. For example, it proceeds by a di-
vision of the FMU graph according to the (geographi-
cal) organization at the electrical power net. It leads to

Figure 11: FMU graph mapping on virtual and physical computing nodes.

loosely-coupled branches with similar simulation com-
plexities, to get both load balancing and limited com-
munications between computational nodes. However, the
BE method is limited by the natural structure of the FMU
graph.

5.6. Generic distribution & deployment approach

As shown in Fig. 11, the approach taken for the distribution
and deployment of DACCOSIM co-simulations on multicore
PC clusters considers: FMUs, virtual nodes (vnodes) and phys-
ical nodes (pnodes). It targets cluster with homogeneous nodes,
and goes through four steps which are:

1. Design of co-simulation graph with k FMUs, using DAC-
COSIM platform.

2. Mapping of the k FMUs on nv virtual nodes (vnodes),
by applying one of the distribution methods proposed in
the previous section to load balance the computations be-
tween the vnodes. Here, we consider k ≥ nv: at less one
FMU per vnode (no unused vnode).

3. Creation of nv Java codes corresponding to the different
local master codes (one Java file per vnode).

4. Deployment of v virtual nodes (vnode) on p physical nodes
(pnode) by balancing the number of vnodes per pnode.
computing load, using the DacRun tool10.

The DACCOSIM virtual node mechanism has not been de-
signed to overload physical nodes but to obtain good perfor-
mances on any compute node architecture. For instance, launch-
ing one vnode (i.e. one JVM) per multi-core processor (instead
of one per node) can increase performances, improving data
locality and cache memory usages (especially on NUMA11 ma-
chines).

6. First scaling experiment

In this section, we used the EDF Enerbat-cl3 benchmark
and two 17-nodes PC clusters (see section 4) to conduct our
first scaling experiment with DACCOSIM 2017. We start mea-
suring some speedup, then we investigate a size up approach,

10A parallel python tool that deploys and runs distributed DACCOSIM co-
simulations on a distributed platform, and gathers results.

11Non Uniform Memory Architecture.

10

Use-case Heuristic Best Nb. of
complexity speedup nodes

Cl5 LB 2.49 4
Cl3 LB&COMS 1.38 3

Table 2: Best speedup reached on small 1-building Enerbat benchmark.

Figure 12: Best distribution of the 11 FMUs of the 1-building Enerbat-Cl3
benchmark on 3 nodes.

and finally we evaluate DACCOSIM 2017 on a complete exper-
iment of scaling. As explained in section 3.2, no co-simulation
control algorithm using variable time steps was available in
DACCOSIM 2017. Thus, all our experiments used constant
time steps, but were run on lower-layer mechanisms compati-
ble with variable time steps.

6.1. Measurement of fixed size speedup

Definition: The fixed size speedup metric allows us to evaluate
the parallelism of a given application, considering a fixed size
of data and fixed total amount of computations. It is defined by
the following equation:

S (p) = T (1)/T (p) (7)

where T (1) represents the simulation time obtained on a single
computing resource, and T (p) depicts the one obtained on p
computing resources with an identical data set. For example,
we can compare some runs on p nodes with a run on 1 node
inside a PC cluster, or some runs on p cores with a run on 1
core inside a multi-core PC.

Depending on the obtained value, we get: (1) an ideal speedup
if S (p) = p, (2) a normal speedup, if the result is between
1 and p, (3) a slowdown, if we have a result less than 1 and,
(4) an hyper-acceleration when S (p) > p (which has always a
logical explanation). See [29] for an introduction to the hyper-
acceleration phenomenon.

Experiment: This speedup experiment focuses on the distribu-
tion of a 1-building Enerbat co-simulation, including 11 FMUs,
on several computing nodes of the Cameron cluster (see section
4). This Speedup is measured function of the number of used
nodes.

As this co-simulation is small (11 FMUs), we tested the set
of basic heuristics for FMU distribution presented in the pre-
vious section (LB, COMS, LB&COMS), and we experimen-
tally searched for the best distribution, leading to the highest
speedup. Tab. 2 shows the best speedup achieved on Cameron
cluster by running the cl3 and cl5 benchmarks according to dif-
ferent heuristics. In cl5 benchmark, when the computing load
of the FMUs is large compared to the communication costs,

Figure 13: Scaling by replication of 4 buildings on 4 × 3 physical nodes.

Nb. of Nb. of Co-simulation
buildings nodes time

1 (11 FMUs) 3 57,69 s
2 (21 FMUs) 6 64.54 s
3 (31 FMUs) 9 67.86 s
4 (41 FMUs) 12 73.43 s
5 (51 FMUs) 15 76.55 s

Table 3: Co-simulation time of n buildings on 3× n nodes of a Eth-10G cluster.

the pure load balancing strategy LB appears adapted. But, in
the case where communications are not negligible, the strat-
egy LB&COMS is (logically) the most desired. Finally, the
best distribution of the 1-building Enerbat-cl3 benchmark is
achieved on 3 nodes and is illustrated in Fig. 12.

The obtained speedup when simulating one building with
11 FMU is average: only 1.38 on 3 nodes for Enerbat-cl3 bench-
mark. This small 1-building co-simulation is too small to reach
a good speedup on a PC cluster. However, the following sec-
tions evaluate size up and scaling based on replication of this el-
ementary parallelization, and achieve significant performances.

6.2. Experiment of size up based on replication

Definition: A size up experiment handles larger applications
by using more computing resources. The size up metric checks
(1) if we succeed to process bigger problems and, (2) if we can
keep constant the co-simulation time regardless of the size of
the problem treated. This means to find out the assumption of
Gustafson’s laws [30, 31] such as:

T (q1, p1) = T (q2, p2) = ... = T (qk, pk) = C st (8)

where q presents the size of the problem and p, the number of
computing nodes.

Maintaining T (qk, pk) = C st allows to study larger problems
without disturbing the business planning. For example: running
larger co-simulations in the morning and still analyzing the re-
sults in the afternoon.

Experiment: The initial Enerbat use-case that we distributed
on 3 nodes did not exceed 11 FMUs (1 building). In this experi-
ment, we increased the number of simulated buildings, replicat-
ing the best distribution found for one building. We still used 3
nodes per building, as illustrated in Fig. 13 where each color of
FMU is associated with one computing node, while one FMU
modeling the external temperature was located on one of the
nodes and connected to almost all other FMUs.

This first size up Enerbat-cl3 benchmark exhibits interest-
ing results, already introduced on the bottom curve of Fig. 10

11

Figure 14: Scaling of Enerbat-cl3 benchmark on Eth-10G and Eth-1G clusters.

and detailed in Tab. 3: execution times remain almost con-
stant. Despite frequent small communications and the limited
speedup obtained when simulating only one building on 3 nodes,
we succeeded to obtain a good size up when simulating n build-
ings on n × 3 nodes of an Eth-10G cluster. Direct FMU-to-
FMU communications, not crossing the Master Algorithm, is
a key feature of DACCOSIM architecture (see section 3.1). It
avoids the bottleneck around a central communication supervi-
sor, which would cause a size up benchmark to fail.

6.3. Experiment of scaling based on replication

Definition: After a successful size up, we are now expecting a
good scalability when running larger applications, cumulating
speedup and size up approach. Ideal execution time on p nodes
of a q size problem is defined by:

T ideal(q, p) = T (q, 1)/p (9)

Considering a fixed problem size (q = q0), the ideal curve
T ideal(q0, p) becomes a straight line with −1 slope in log scales,
and ideal execution time curves for different problem sizes ap-
pear as parallel straight lines (see Fig. 14 left).

So, experimental times curves will be plotted and compared
to the ideal ones, and we aim to observe:

• Straight lines: a regular decrease in execution time is
obtained, which makes it possible to predict the perfor-
mance as a function of the number of nodes used (for a
given size of the problem).

• Slopes as close as possible to −1: this means that paral-
lelization is very efficient, without significant additional
parallelization costs.

• Parallel lines: this means that we observe the same paral-
lelization profiles for different sizes of problems, and that
the parallelization strategy remains effective.

Moreover, when experimental curves are close to the ideal
ones, it becomes easy to predetermine the minimal number of
computing nodes required to process a problem with a given
size respecting a time constraint. This property allows keeping
the work plan even when studying larger problems.

Experiment: In this first scaling experiment, we continued to
reuse our optimal distribution of one building (10 FMU + 1
common FMU) over a group of 3 nodes. But considering a total

12 = 1 × 12 1 × 3 12 buildings per
buildings nodes group of 3 nodes

12 = 2 × 6 2 × 3 6 buildings per
buildings nodes group of 3 nodes

12 = 3 × 4 3 × 3 4 buildings per
buildings nodes group of 3 nodes

Not experimented
12 = 4 × 3 4 × 3 3 buildings per
buildings nodes group of 3 nodes

Table 4: FMU distribution in Enerbat-cl3 scaling experiment.

of b = k × n buildings, we used b = k × 3 nodes, each group
of 3 nodes containing n buildings and the load of the groups
remaining balanced. However, we stopped when reaching a
maximum of 17 nodes available on our cluster.

For example, we carried out a co-simulation of 12 buildings
on 1 × 3 nodes (12 buildings on one node group), on 2 × 3
nodes (6 buildings per group) and on 4 × 3 nodes (3 buildings
per group), see Tab. 4. Similarly, we run a co-simulation of 5
buildings on 1× 3 nodes and on 5× 3 nodes, and we plotted the
T(b buildings, p nodes) curves.

As we can see in Fig. 14, measured performances are not
ideal. But, the curves are closed to straight lines with -1 slope:
this first scaling experiment of DACCOSIM 2017 was success-
ful. Also, we have got a good acceleration of 9.67 on Cameron
and 6.08 on Skynet by co-simulating 51 FMUs on 15 comput-
ing nodes. For instance, it has not freely allowed to load balance
computations and to use 7 or 11 parallel nodes. Our next exper-
iment, on a larger scale, will use the more generic distribution
methods introduced in section 5.5.

7. Large power network co-simulation

The Ideas industrial benchmark (see section 4.1) on the
thermal behavior of buildings and the consumption of heating
systems, presents a total of 442 or 1042 heterogeneous FMUs,
and is available in both Dymola and DACCOSIM 2017 envi-
ronments. In this section, we begin by comparing the numeri-
cal accuracies of Dymola and DACCOSIM. Then, we identify
the most efficient DACCOSIM configuration for our benchmark
Ideas and, finally, we conduct several experiments on a low cost
Eth-10G PC cluster and on a large HPC cluster from EDF.

7.1. Accuracy of numerical results
Some executions have been performed for a one-day sim-

ulation with a constant step of one minute. The co-simulation

12

Figure 15: Current from a building of the DACCOSIM co-simulation on a clus-
ter and its Dymola counterpart.

gives realistic results according to expert judgment. Moreover,
the energy consumption of the buildings follows the same trend
as the one observed on a Dymola reference simulation limited
to one 20-building feeder.

To assess the correctness of the co-simulation on a cluster,
we selected a single building of the test case and simulated it
with Dymola by injecting sampled voltage data obtained from
the cluster co-simulation. The power consumed by the build-
ing simulated with Dymola and the one co-simulated on the
cluster should be the same as the two selected buildings have
the same environment: same input voltage, same weather data
and same occupancy data. The root mean square error on the
current between those two simulations is 1.16 × 10−2 A, with
current mainly in the range 1 − 10 A. The two currents for the
one-day simulation are plotted on top of Fig. 15 with a close-up
on its bottom. The dynamic of the power consumption is well
reproduced thus the DACCOSIM co-simulation on the cluster
seems reliable.

7.2. Optimal configuration setting

Before launching a long performance measurement cam-
paign on two different clusters, we have run some limited exper-
iments on our 32-nodes Eth-10G cluster to point out the most
efficient configuration of DACCOSIM for this co-simulation.
Measured execution times are represented in Fig. 16, and allow
to identify: (1) the fastest orchestration mode (see section 3.2)
and, (2) the most adapted and efficient distribution method (see
section 5.5).

Orchestration mode: DACCOSIM can overlap inter-FMU com-
munications with longer FMU computations. But an overlap-

Figure 16: Co-simulation time of FRR vs BE methods, on a Eth-10G PC cluster.

ping strategy can speed up some applications and slow down
others, depending on many parameters (like the nodes load bal-
ancing and the communication times). In Fig. 16, we can ob-
serve the overlapped orchestration mode slows down the exe-
cution of the Ideas co-simulation on our Eth-10G cluster. But
it could be different when using an Infiniband FDR cluster.

So, we plan to use first the ordered orchestration mode for
our performance measurement campaign, and to check again
the overlapped mode on our Infiniband cluster.

Distribution method: An experiment-based heuristic for FMU
graph distributions remains hard to design when dealing with
large co-simulations on large computing platforms. For large
scale use cases, we focus on methods not requiring deep and
expensive prior study: FRR and BE methods.

We observe in Fig. 16, that the BE method gives poor ex-
ecution times for 15 and 16 nodes. This method consists in
cutting out the FMU graph, according to the technical structure
it models and the analysis of an expert user. This can result in
subgraphs with limited connections and communications, but
can also lead to load imbalance, like on 15 and 16 nodes. At
the opposite, performances achieved with the FRR method ap-
pear always satisfying even for 15 and 16 nodes, and for both
orchestration modes: the execution times are straight lines with
a slope of −0.86 in logarithmic scale. Moreover, the user simply
needs to group the FMUs into families with similar loads (see
section 5.5), which is easy to do in the Ideas use case. The FRR
method will therefore be used in our performance measurement
campaign.

7.3. Successful scale-up

We executed the Ideas use case with respectively 442 FMUs
and 1042 FMUs, applying the FFR distribution method on both
our cheap and HPC PC clusters. However, we still experi-
mented with the ordered and overlapped orchestration modes.
Fig. 17 illustrates the observed scale-up using 32 to 256 (phys-
ical) cores on Sarah, and 112 to 1792 cores on Porthos.

Experimental performances: The lower half of Fig. 17 shows
a very good scaling when using our HPC cluster (Porthos), ac-
cording to the criteria introduced in section 6.3:

13

Figure 17: Large scale experiments of Ideas use-case.

• regular and almost ideal decrease of the execution time,
close to a straight line with −1 slope,

• parallel execution time curves for medium and large con-
figurations, illustrating the same behavior when paral-
lelizing, independently of the problem size and the or-
chestration mode.

The upper half of Fig. 17 summarizes similar experiments on a
less performing cluster (Sarah):

• We still observe quasi-straight lines for execution times,
but with slopes reduced to −0.5. The communication
times are more significant on the Eth-10G network of
Sarah than on the Infiniband FDR network of Porthos.
Communications limit the parallelization efficiency on
Sarah cluster.

• Execution time curves are also parallel on Sarah cluster
for medium and large problems. Parallelization remains
insensitive to the problem size.

Thus, during the execution of the use case Ideas, DACCOSIM
succeeds to scale up on both our low-cost and high-performance
PC clusters, up to a thousand FMUs on a thousand cores.

Impact of orchestration mode: The overlapped mode was the
fastest in a previous use case on another Eth-10G cluster with
smaller nodes [24]. But in the first tests of the Ideas use case
on the Sarah cluster, it appeared slower than the ordered mode,
which is confirmed by the detailed experiments shown in the
upper half of Fig. 17.

On the Porthos cluster with the Infiniband FDR intercon-
nect, the two orchestration modes have similar performance
until a core is allocated for each FMU (lower half of Fig. 17).
When using a high performance interconnect, overlapping Ideas
communications and computations has a minor impact. How-
ever, when allocating more cores than FMUs, it becomes possi-
ble to use some cores just to host and execute the communica-
tion threads. The overlap mode then becomes totally efficient

(it no longer disrupts calculations) and performance improves
sharply. This phenomenon can be seen in Fig. 17, at the bot-
tom of the curves obtained on Porthos cluster. So, with this
use-case, the overlap mode requires fewer nodes to reach the
minimal execution time than the ordered mode.

Finally, both orchestration modes are interesting to improve
scaling, but the strategy to foresee the right one remains com-
plex and still needs investigation.

8. Conclusion and perspectives

Smart Grids occupy a strategic place in the future multi-
energy system, combining heat, gas and electricity. The IT
technologies are adding to the outdated electrical networks an
ability to improve their performance in a new context based
on increasing decentralized production and uncertainties on the
production-consumption balance. But Smart Grid development
requires large scale co-simulations, aggregating heterogeneous
components.

In this paper, we introduced DACCOSIM, our distributed
co-simulation platform, based on the FMI standard and designed
to run and scale on multi-core PC clusters. Its software archi-
tecture implements a hierarchical Master Algorithm control-
ling a graph of FMUs. Its execution model and implementa-
tion support constant or variable time steps, rollbacks of the
FMU graph, direct FMU-to-FMU communications and two or-
chestration modes. Its current co-simulation control algorithm
manages constant time steps. We achieved many experiments
to measure and optimize performances of co-simulations with
DACCOSIM on different multi-core PCs and different PC clus-
ters. Then, we designed some FMU graph distribution strate-
gies, according to the limited available information on each
FMU, and we run scalability benchmarks. Finally, a large in-
dustrial use case co-simulation with DACCOSIM succeeded to
scale up to 1042 FMUs on more than 1000 CPU cores.

Limitations and future works
A co-simulation control algorithm supporting variable time

stepping is being added in the next versions of DACCOSIM.
Within the French project ModeliScale12, we also intend to man-
age this variable stepping with methods inspired by the QSS
(Quantized State Systems) methods [32]. In parallel, the log-
ging of results is being improved with interpolation techniques
especially the Hermite interpolation.

The testbed used to challenge DACCOSIM 2017 is not large
enough to be representative of complex systems. So, we plan
to handle wider energy systems, and drive future evolutions
of DACCOSIM whose code is being industrialized still under
LGPL v3 license on a collaborative BitBucket platform13.

DACCOSIM 2017 is being redesigned into DACCOSIM-
NG (New Generation) to offer a more friendly GUI, to reach

12https://systematic-paris-region.org/success_story/
modeliscale-for-large-scale-energy-cyber-physical-systems\
-labelled-by-the-french-competitive-clusters-systematic

13https://bitbucket.org/simulage/daccosim

14

better performances and to include new functionalities [33].
Redesigning DACCOSIM and running wide systems are also
a great opportunity to feedback on the use of the FMI stan-
dard and influence the development of the next major release
of this standard expected in 2021. Two improvements that we
advocate for FMI 3.0 are the efficient treatment of hybrid co-
simulation (continuous and discrete) and the consideration of
flow causal variables for FMU-to-FMU data exchanges. These
improvements will also facilitate the implementation of vari-
able stepping in the Master Algorithm of DACCOSIM.

Acknowledgment: Authors thank Region Grand-Est for its con-
stant support, and RISEGrid institute for the PhD grant that sup-
ported this research project.

References

[1] X. Yu, Y. Xue, Smart grids: A cyber–physical systems perspective, Pro-
ceedings of the IEEE 104 (5) (2016) 1058–1070.

[2] C. Gomes, C. Thule, D. Broman, P. G. Larsen, H. Vangheluwe, Co-
simulation: A survey, ACM Comput. Surv. 51 (3) (May 2018).

[3] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauss, H. Elmqvist,
A. Junghanns, J. Mauss, M. Monteiro, T. Neidhold, D. Neumerkel,
H. Olsson, J. v. Peetz, S. Wolf, A. S. Gmbh, Q. Berlin, F. Scai, S. Au-
gustin, The functional mockup interface for tool independent exchange
of simulation models, in: Proceedings of the 8th International Modelica
Conference, 2011, pp. 105–114.

[4] M. U. Awais, P. Palensky, A. Elsheikh, E. Widi, S. Matthias, Master
for co-simulation using FMI, in: Proceedings 8th Modelica Conference,
Dresden, Germany, 2011.

[5] R. M. Fujimoto, Parallel and Distribution Simulation Systems, 1st Edi-
tion, John Wiley & Sons, Inc., New York, NY, USA, 1999.

[6] K. Hopkinson, X. Wang, R. Giovanini, J. Thorp, K. Birman, D. Coury,
EPOCHS: a platform for agent-based electric power and communication
simulation built from commercial off-the-shelf components, IEEE Trans-
actions on Power Systems 21 (2) (2006) 548–558.

[7] J. Nutaro, P. T. Kuruganti, L. Miller, S. Mullen, M. Shankar, Integrated
hybrid-simulation of electric power and communications systems, in:
2007 IEEE Power Engineering Society General Meeting, 2007, pp. 1–8.

[8] H. Lin, S. S. Veda, S. S. Shukla, L. Mili, J. Thorp, Geco: Global event-
driven co-simulation framework for interconnected power system and
communication network, IEEE Transactions on Smart Grid 3 (3) (2012)
1444–1456.

[9] H. Georg, S. C. Müller, N. Dorsch, C. Rehtanz, C. Wietfeld, Inspire: In-
tegrated co-simulation of power and ict systems for real-time evaluation,
in: Smart Grid Communications (SmartGridComm), 2013 IEEE Interna-
tional Conference on, 2013.

[10] H. Neema, J. Gohl, Z. Lattmann, J. Sztipanovits, G. Karsai, S. Neema,
T. Bapty, J. Batteh, H. Tummescheit, C. Sureshkumar (Eds.), Model-
Based Integration Platform for FMI Co-Simulation and Heterogeneous
Simulations of Cyber-Physical Systems, Vol. Proceedings of the 10th In-
ternational Modelica Conference, 2014.

[11] V. Liberatore, A. Al-Hammouri, Smart Grid communication and co-
simulation, in: IEEE 2011 EnergyTech, 2011, pp. 1–5.

[12] W. Li, A. Monti, M. Luo, R. A. Dougal, Vpnet: A co-simulation frame-
work for analyzing communication channel effects on power systems, in:
2011 IEEE Electric Ship Technologies Symposium, 2011, pp. 143–149.

[13] V. Galtier, S. Vialle, C. Dad, J. Tavella, J. Lam-Yee-Mui, G. Plessis, Fmi-
based distributed multi-simulation with daccosim, in: Proceedings of the
2015 Spring Simulation Multiconference (TMS/DEVS’15), 2015.

[14] B. Camus, V. Galtier, M. Caujolle, V. Chevrier, J. Vaubourg, L. Ciar-
letta, C. Bourjot, Hybrid co-simulation of FMUs using DEV&DESS in
MECSYCO, in: Proceedings of the Symposium on Theory of Model-
ing & Simulation, TMS/DEVS 2016, part of the 2016 Spring Simulation
Multiconference, SpringSim ’16, Pasadena, CA, USA, April 3-6, 2016,
2016, p. 8.

[15] S. Rohjans, S. Lehnhoff, S. Schütte, S. Scherfke, S. Hussain, mosaik - a
modular platform for the evaluation of agent-based smart grid control, in:
IEEE PES ISGT Europe 2013, 2013, pp. 1–5.

[16] B. Palmintier, D. Krishnamurthy, P. Top, S. Smith, J. Daily,
J. Fuller, Design of the helics high-performance transmission-
distribution-communication-market co-simulation framework, in: 2017
Workshop on Modeling and Simulation of Cyber-Physical Energy Sys-
tems (MSCPES), 2017, pp. 1–6.

[17] B. Möller, The HLA tutorial v1. 0, Pitch Technologies, Sweden (2013).
[18] B. P. Zeigler, T. G. Kim, H. Praehofer, Theory of Modeling and Simula-

tion, 2nd Edition, Academic Press, Inc., USA, 2000.
[19] M. U. Awais, P. Palensky, A. Elsheikh, E. Widi, S. Matthias, The high

level architecture RTI as a master to the functional mock-up interface
components, in: International Conference on Computing, Networking
and Communications (ICNC), San Diego, USA, 2013.

[20] M. U. Awais, W. Mueller, A. Elsheikh, P. Palensky, E. Widi, Using
the HLA for distributed continuous simulations, in: The 8th EUROSIM
Congress on Modelling and Simulation, Cardiff, UK, 2013.

[21] M. U. Awais, P. Palensky, W. Mueller, E. Widi, A. Elsheikh, Distributed
hybrid simulation using the HLA and the Functional Mock-up Interface,
in: 39th Annual Conference of the IEEE Industrial Electronics Society
(IECON), Vienna, Austria, 2013.

[22] D. S. Schiera, L. Barbierato, A. Lanzini, R. Borchiellini, E. Pons, E. F.
Bompard, E. Patti, E. Macii, L. Bottaccioli, A distributed platform for
multi-modelling co-simulations of smart building energy behaviour, in:
2020 IEEE International Conference on Environment and Electrical En-
gineering and 2020 IEEE Industrial and Commercial Power Systems Eu-
rope (EEEIC / I CPS Europe), 2020, pp. 1–6.

[23] J. Vaubourg, Y. Presse, B. Camus, C. Bourjot, L. Ciarletta, V. Chevrier,
J.-P. Tavella, H. Morais, Multi-agent Multi-Model Simulation of Smart
Grids in the MS4SG Project, in: Demazeau, Yves, Decker, K. S.,
B. Pérez, Javier, de la Prieta, Fernando (Eds.), PAAMS’15, Vol. 9086 of
Lecture Notes in Computer Science, Springer, Salamanca, Spain, 2015.

[24] C. Dad, S. Vialle, M. Caujolle, J. Tavella, M. Ianotto, Scaling of dis-
tributed multi-simulations on multi-core clusters, in: 25th IEEE Interna-
tional Conference on Enabling Technologies: Infrastructure for Collabo-
rative Enterprises, WETICE 2016, Paris, France, June 13-15, 2016, 2016,
pp. 142–147.

[25] S. Vialle, J. Tavella, C. Dad, R. Corniglion, M. Caujolle, V. Reinbold,
Scaling fmi-cs based multi-simulation beyond thousand fmus on infini-
band cluster, in: M. Association (Ed.), 12th International Modelica Con-
ference 2017, Prague, Czech Republic, 2017.

[26] J. Tavella, M. Caujolle, S. Vialle, C. Dad, C. Tan, G., M. Schu-
mann, A. Cuccuru, S. Revol, Toward an accurate and fast hybrid multi-
simulation with the FMI-CS standard, in: 21st IEEE International Con-
ference on Emerging Technologies and Factory Automation, ETFA 2016,
Berlin, Germany, September 6-9, 2016, 2016, pp. 1–5.

[27] R. Baetens, R. De Coninck, F. Jorissen, D. Picard, L. Helsen, D. Saelens,
Openideas - an open framework for integrated district energy simulations,
2015, pp. 347–354.

[28] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, R. F. Freund,
A comparison of eleven static heuristics for mapping a class of indepen-
dent tasks onto heterogeneous distributed computing systems, Journal of
Parallel and Distributed Computing 61 (6) (2001) 810 – 837.

[29] C. A. Navarro, N. Hitschfeld-Kahler, L. M. P. Mateu, A survey on par-
allel computing and its applications in data-parallel problems using GPU
architectures, Communications in Computational Physics 15 (2) (2014)
285–329.

[30] X.-H. Sun, J. L. Gustafson, Toward a better parallel performance metric,
Parallel Computing 17 (10) (1991) 1093 – 1109.

[31] J. L. Gustafson, G. R. Montry, R. E. Benner, Development of parallel
methods for a 1024-processor hypercube, SIAM Journal on Scientific and
Statistical Computing 9 (4) (1988) 609–638.

[32] E. Kofman, Quantization-Based Simulation of Differential Algebraic
Equation Systems, in: Simulation: Transactions of the Society for Mod-
eling and Simulation International 79(7):363-376, 2003.

[33] J. Évora Gómez, J. J. Hernández Cabrera, J.-P. Tavella, S. Vialle, E. Kre-
mers, L. Frayssinet, Daccosim NG: co-simulation made simpler and
faster, in: 13th International Modelica Conference 2019, Regensburg,
Germany, 2019.

15

