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a b s t r a c t

This paper considers the asymptotic behavior in β-Hölder spaces, and under Lp losses,
of a Dirichlet kernel density estimator proposed by Aitchison and Lauder (1985) for the
analysis of compositional data. In recent work, Ouimet and Tolosana-Delgado (2022)
established the uniform strong consistency and asymptotic normality of this estimator.
As a complement, it is shown here that the Aitchison–Lauder estimator can achieve
the minimax rate asymptotically for a suitable choice of bandwidth whenever (p, β) ∈

[1, 3)× (0, 2] or (p, β) ∈ Ad, where Ad is a specific subset of [3, 4)× (0, 2] that depends
on the dimension d of the Dirichlet kernel. It is also shown that this estimator cannot be
minimax when either p ∈ [4,∞) or β ∈ (2,∞). These results extend to the multivariate
case, and also rectify in a minor way, earlier findings of Bertin and Klutchnikoff (2011)
concerning the minimax properties of Beta kernel estimators.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Compositional data refer to observations of a random vector whose components represent proportions of a whole
hose size is either irrelevant or analyzed separately; see, e.g., the book by Aitchison [2] for an introduction to this topic.
s proportions are non-negative and sum up to 1 by definition, one can write a compositional vector of length d + 1 in
he form (X, Xd+1) = (X, 1 − ∥X∥1) with X belonging to the d-dimensional simplex

Sd =
{
s ∈ [0, 1]d : ∥s∥1 ≤ 1

}
,

here ∥s∥1 = |s1| + · · · + |sd| denotes the ℓ1 norm on Rd. When all proportions are known to be strictly positive, the
ector X belongs to the interior of Sd, denoted Int(Sd).
As illustrated, e.g., by Filzmoser et al. in their book [21], compositional data arise in a wide range of fields such as

hemometrics, demography, economics, geochemistry, and survey methodology. In dimension d + 1 ≥ 3, the first and
est known approach to modeling compositional data is to transform them to the d-dimensional simplex through an

additive log-ratio map. This strategy can be used to construct a kernel on Int(Sd) by applying the logistic transformation
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to the multivariate Gaussian density; see, e.g., [3,13]. Possible alternatives include boundary kernels derived as a solution
to a variational problem [33] and products of one-dimensional asymmetric kernels [9]; see also [29,30] for a general theory
of multivariate associated kernels. For a survey of asymmetric kernel methods, including their use for compositional data
in arbitrary dimension, refer to [37].

Difficulties with the transformation approach may occur when the data are suspected to be sparse or include zeros,
ither for structural reasons, rounding or otherwise [31]. An alternative initially due to Aitchison and Lauder [3] and later
onsidered by Chacón et al. [13] is to work directly on the simplex. Their strategy consists of basing a kernel density
stimator on the Dirichlet distribution with arbitrary parameters u = (u1, . . . , ud) ∈ (0,∞)d and v ∈ (0,∞), whose

density is given, for all s ∈ Sd, by

Ku,v(s) =
Γ (v + u1 + · · · + ud)
Γ (v)Γ (u1) · · ·Γ (ud)

(1 − ∥s∥1)v−1
d∏

i=1

sui−1
i . (1)

Given a random sample X1, . . . ,Xn from an unknown density f on Sd, Aitchison and Lauder [3] suggest that a Dirichlet
kernel density estimator with bandwidth parameter b ∈ (0,∞) could then be defined, for all s ∈ Sd, by

fn,b(s) =
1
n

n∑
i=1

Ks/b+1,(1−∥s∥1)/b+1(X i), (2)

where 1 = (1, . . . , 1) is a d-dimensional vector whose components are all equal to 1.
When d = 1, the Dirichlet density in (1) coincides with the Beta density defined, for all s ∈ (0, 1), by Ku,v(s) =

Γ (u + v)(1 − s)vsu/{Γ (u)Γ (v)}. The associated estimator in (2) then corresponds to the Beta kernel density estimator
whose theoretical properties were initially investigated by Brown and Chen [12], and Chen [16]. For additional work on
this topic, see, e.g., [6–10,14,15,20,24–28,38,41].

A key feature of the Aitchison–Lauder proposal is that the shape of the kernel changes with the position s in the
simplex. This makes it possible to avoid the boundary bias problem associated with traditional estimators in which the
kernel is the same at every point. An alternative strategy in which the bandwidth parameter b is exclusively related to
the concentration of the distribution was proposed by Martín-Fernández et al. [32].

To this point, the asymptotic properties of kernel-based estimators defined directly on the simplex have been limited to
the studies of Tenbusch [39], Ouimet [36], and Ouimet and Tolosana-Delgado [37]. The first two papers were concerned
with the properties of Bernstein estimators in dimension d + 1 = 3 and above, respectively. In contrast, Ouimet and
Tolosana-Delgado [37] focused on the Aitchison–Lauder estimator, whose uniform strong consistency and asymptotic
normality were established. In particular, these authors showed that in any dimension, the estimator defined in (2)
achieves the optimal convergence rate O(n−4/(d+4)) for the mean squared error and the mean integrated squared error
when the underlying density is twice continuously differentiable on Sd.

In this paper, the performance of the Dirichlet kernel estimator defined in (2) is studied from the point of view of
asymptotic minimax theory. To this end, it will be assumed that the unknown density f is sufficiently smooth that, for
ome regularity parameter β ∈ (0,∞) and Lipschitz constant L ∈ (0,∞), f belongs to the Hölder space

Σ(d, β, L) =

{
f : Sd → R : ∀γ∈Nd

0:∥γ∥1=m ∀s,t∈Int(Sd) |Dγ f (s) − Dγ f (t)| ≤ L ∥s − t∥β−m
1

}
,

here N0 = {0, 1, . . .}, m = sup{ℓ ∈ N0 : ℓ < β}, and for every γ = (γ1, . . . , γd) ∈ Nd
0 and s = (s1, . . . , sd) ∈ Sd,

Dγ f (s) =
∂γ

∂sγ11 · · · ∂sγdd
f (s)

ith the convention that if γ = 0, the d-dimensional vector whose components are all equal to 0, then Dγ f = f .
Of interest here is whether or not the Aitchison–Lauder estimator can possibly achieve the minimax rate of convergence

on Σ(d, β, L) for any given Lp loss defined, for any p ∈ [1,∞) and estimator fn of f , by

Rn(fn, f ) =
{
E
(
∥fn − f ∥p

p

)}1/p
whenever this expectation exists. The corresponding risk of the estimator fn over the class Σ(d, β, L) is then given by

Rn(fn, d, β, L) = sup
f∈Σ(d,β,L)

Rn(fn, f )

and the minimax rate of convergence over Σ(d, β, L) is defined by

rn(d, β, L) = inf
fn

Rn(fn, d, β, L),

where the infimum is taken over all possible estimators fn of f . From Theorem 2 and Remark 3 of Bertin et al. [5], this
rate is known to be

r (d, β, L) ≍ ϕ (d, β) = n−β/(d+2β). (3)
n d,β,L n

2
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It is first shown in Section 2 that for any Lp loss with p ∈ [1, 3) and density f ∈ Σ(d, β, L) with regularity parameter
∈ (0, 2], there exists a sequence of Dirichlet kernel density estimators with suitably chosen bandwidth parameter which

chieves the minimax rate (3) asymptotically. This result is also proved for pairs (p, β) in a specific subset of [3, 4)× (0, 2]
denoted by Ad and defined in (4) in Section 2. As detailed in Proposition 1, this bandwidth parameter depends both on
the sample size, n ∈ N = {1, 2, . . .}, and on the regularity parameter β of the underlying density f . As the value of β is
typically unknown, this result is primarily of theoretical interest but could motivate the search for data-driven bandwidth
selection procedures based on cross-validation or Goldenshluger–Lepski-type procedures in this context; see Remark 2.

As shown in Section 3, however, the Aitchison–Lauder class of kernel estimators cannot achieve the asymptotic
minimax rate for densities having a high degree of smoothness, namely β ∈ (2,∞), or if the reference loss function
is Lp for some p ∈ [4,∞) when β ∈ (0, 2]. These results constitute Propositions 2 and 3, respectively. Alas, the techniques
used to prove these results are inadequate to settle the case (p, β) ∈ [3, 4) × (0, 2] \ Ad, which remains open.

The results presented here extend to all dimensions previous findings of Bertin and Klutchnikoff [6] in dimension
d + 1 = 2. These authors showed that for a suitable choice of bandwidth, Beta kernel density estimators of an unknown
density f ∈ Σ(d, β, L) can achieve the minimax rate asymptotically for any Lp loss with p ∈ [1, 3) when β ∈ (0, 2], but
not when (p, β) ∈ [2,∞)× (2,∞) or (p, β) ∈ [4,∞)× (0, 2]. The cases (p, β) ∈ [3, 4)× (0, 2] and (p, β) ∈ [1, 2)× (2,∞)
were not covered in [6]. An oversight in one of the arguments presented in that paper is corrected along the way.

In Section 4, insight into the meaning of the regularity parameter β is provided by determining its value for the classical
Dirichlet distributions, and concluding comments are given in Section 5. Throughout the paper, expectation is taken with
respect to the joint law of the mutually independent copies X1, . . . ,Xn of X . Whether explicitly or not, the bandwidth
parameter b is always assumed to be a function of the sample size except in Lemmas B.2 and C.3 and their proofs. The
notation u = O(v) means that lim sup |u/v| < C < ∞ as n → ∞ or b → 0, where the strictly positive constant C depends
on no variable unless explicitly written as a subscript. In some instances, u ≪ v is used to mean u ≥ 0 and u = O(v).
When u ≪ v and v ≪ u both hold, then one writes u ≍ v. Similarly, the notation u = o(v) means that lim |u/v| = 0 as
n → ∞ or b → 0. Subscripts indicate which parameters the convergence rate can depend on.

2. Minimax result

The following result identifies a set of Lp loss functions and a range of regularity parameter values β on the unknown
density f ∈ Σ(d, β, L) for which the minimax rate can be achieved by the Aitchison–Lauder estimator defined in (2) with
a suitable choice of bandwidth parameter b ∈ (0,∞). This choice of bandwidth depends both on the sample size n and
on the degree β of smoothness of the underlying density f .

Proposition 1. Assume that (p, β) ∈ [1, 3) × (0, 2] or that (p, β) ∈ Ad, where

Ad =

{
(p, β) ∈ [3, 4) × (0, 2] : 3 ≤ p ≤ 2 +

d
d − 1

, 2d
p − 3
p − 2

< β ≤ 2
}
. (4)

Moreover, let bn = cn−2/(d+2β) for every integer n ∈ N and some arbitrary constant c ∈ (0,∞). Then the sequence
{fn,bn : n ∈ N} achieves the minimax rate, namely

lim sup
n→∞

Rn(fn,bn , d, β, L)
rn(d, β, L)

< ∞.

The proof is deferred to Appendix A. The following comments are in order.

emark 1. In dimension d + 1 = 2, the statement of Proposition 1 extends Theorem 1 of Bertin and Klutchnikoff [6]
rom [1, 3) × (0, 2] to the set Ad. In that paper, however, the range of p was mistakenly claimed to be the interval [1, 4)
ue to a slip near the end of the proof. Indeed, upon taking into account the integrability conditions

0 ≤ p/4 + max(0, p − 2)/4 < 1, 0 ≤ p/4 < 1

hat appear in [6], Theorem 1 therein is only true for (p, β) ∈ [1, 3) × (0, 2] rather than for (p, β) ∈ [1, 4) × (0, 2].
Given that the union [1, 3)× (0, 2] ∪ Ad is strictly included in [1, 4)× (0, 2] for every integer d ∈ N, the reader might

onder what is the difficulty in extending the result of Proposition 1 to all (p, β) ∈ [1, 4) × (0, 2]. When p ∈ (0, 2], the
entered absolute pth moment of the estimator fn,b(s) can be bounded above using Jensen’s inequality, viz.

E
[
|fn,b(s) − E{fn,b(s)}|p

]
≤
[
var
{
fn,b(s)

}]p/2
.

he variance term is then relatively easy to control using the asymptotics of the gamma function.
If this upper bound were to hold for all p ∈ (0, 4), one could then extend the result of Proposition 1 to all (p, β) ∈

1, 4) × (0, 2] by using the same control on the variance term. However, when p ∈ (2,∞), this bound is no longer valid
ecause the function x ↦→ x2/p is now concave instead of convex. It has to be adjusted to take into account the supremum
orm ∥ · ∥∞ of the summands in fn,b(s) as follows:

E
[
|fn,b(s) − E{fn,b(s)}|p

]
≪p

{
∥Ks/b+1,(1−∥s∥1)/b+1∥∞/n

}p−2
var
{
fn,b(s)

}
+
[
var
{
fn,b(s)

}]p/2
.

ee (4.11) of Bretagnolle and Huber [11].
3
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Upon applying the best local bounds available on both the supremum and variance terms, and then integrating on
oth sides, see (A.6), one can see that the supremum term will impose the slightly more stringent integrability condition
< 3, but the minimax rate will still be reached for all (p, β) ∈ [1, 3)× (0, 2]. By applying a log-convex mixture between

the local and uniform bounds on ∥Ks/b+1,(1−∥s∥1)/b+1∥∞ in the above reasoning, see (A.5), one can then extend the minimax
results to also include all (p, β) ∈ Ad. It remains a mystery whether another argument could push the boundary of the
minimax results even further inside [1, 4) × (0, 2].

Remark 2. When attention is restricted to the L2 loss, Proposition 1 implies that Dirichlet estimators achieve the minimax
rate of convergence when β is known and belongs to (0, 2]. Adaptive estimators, which converge at the minimax rate
irrespective of the smoothness β , may be obtained by defining a statistical procedure akin to the one developed by
Goldenshluger and Lepski; see [22,23] and references therein. The main idea behind this method is to select a data-driven
bandwidth b̂, in a finite set B ranging from n−1/d to 1, that satisfies

b̂ = min
b∈B

{A(b) + V (b)} , (5)

where, for any δ ∈ (0,∞),

V (b) = F∞C1(1 + δ)/(nbd/2) > E
{
∥fn,b − E(fn,b)∥2

2

}
.

he latter quantity is a penalized version of the integrated variance of the estimator fn,b while

A(b) = max
b′∈B

{
∥fn,b − fn,b∨b′∥

2
2 − V (b) − V (b ∨ b′)

}
+

s an estimation of its integrated bias term. Here, the notations a∨b = max(a, b) and a+ = a∨0 are used, the density f is
ssumed to satisfy ∥f ∥∞ ≤ F∞, and C1 = 2−d√π/Γ (d/2+ 1/2) following (15) and (17) of Ouimet and Tolosana-Delgado
37], together with the integral calculation in (4.10) of Ouimet [35].

Thus, (5) can be interpreted as an empirical version of the usual bias–variance trade-off. The study of this procedure
elies on the fine control of the process ∥fn,b − E(fn,b)∥2 through the probabilities P{∥fn,b − E(fn,b)∥2 > t}, which can be
ounded above using Bernstein’s inequality for U-statistics and Hoeffding’s inequality; see [7] for more details. Using a
imilar approach, one can prove that the resulting estimator satisfies

lim sup
n→∞

Rn(fn,b̂, d, β, L)

rn(d, β, L)
< ∞

for any β ∈ (min (2, d/2) , 2]. Observe that this adaptive result only makes sense for d ∈ {1, 2, 3} and that the range of
values of β for which it holds is rather small, especially when d = 3.

3. Non-minimaxity results

The following results identify a set of Lp loss functions and a range of regularity parameter values β on the unknown
ensity f ∈ Σ(d, β, L) for which the Aitchison–Lauder estimator defined in (2) cannot possibly achieve the minimax rate
f convergence, irrespective of the choice of bandwidth parameter b ∈ (0,∞). The values (p, β) ∈ [1, 2) × (2,∞) were

not covered in the case d = 1 studied by Bertin and Klutchnikoff [6].

Proposition 2. Let p ∈ [1,∞) and β ∈ (2,∞). Then, for all sequences {bn : n ∈ N} in (0, 1), the family {fn,bn : n ∈ N} of
estimators satisfies

lim inf
n→∞

Rn(fn,bn , d, β, L)
rn(d, β, L)

= ∞.

Proposition 3. Let p ∈ [4,∞) and β ∈ (0, 2]. Then, for all sequences {bn : n ∈ N} in (0, 1), the family {fn,bn : n ∈ N} of
estimators satisfies

lim inf
n→∞

Rn(fn,bn , d, β, L)
rn(d, β, L)

= ∞.

The proofs are deferred to Appendix B.

. Regularity of the Dirichlet distributions

The critical technical condition under which Propositions 1–3 are established is the assumption that the underlying
-variate density f belongs to the β-Hölder space Σ(d, β, L) for appropriate choices of regularity parameter β ∈ (0,∞)

and Lipschitz constant L ∈ (0,∞). To get a better feel for this requirement – and the conditions on β which guarantee that
the Aitchison–Lauder estimator can achieve the asymptotic minimax rate for a suitable choice of bandwidth parameter –
the case where f is a Dirichlet density is briefly considered in this section.
4
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Let f = Ku,v be a d-variate Dirichlet density of the form (1) for some choice of parameters u = (u1, . . . , ud) ∈ (0,∞)d
nd v ∈ (0,∞). First note that if u1, . . . , ud and v are all positive integers, then f is a finite multivariate polynomial.
onsequently, it belongs to the Hölder space Σ(d, β, L) for every β ∈ (0,∞), i.e.,

∀β∈(0,∞) ∃L∈(0,∞) Ku,v ∈ Σ(d, β, L).

Next, assume that u1, . . . , ud, v ∈ (1,∞) but that not all of them are integers. Let m = sup{ℓ ∈ N0 : ℓ < β} with

β = min(u1 − 1, . . . , ud − 1, v − 1).

Then Ku,v ∈ Σ(d, β, L) for some large enough Lipschitz constant L = L(d, u1, . . . , ud, v) ∈ (0,∞). Indeed, for each integer
j ∈ {1, . . . , d}, one can write the jth partial derivative of Ku,v(s) with respect to s ∈ Int(Sd) as

∂

∂sj
Ku,v(s) = (v + u1 + · · · + ud − 1) {Ku−ej,v(s) − Ku,v−1(s)},

here ej denotes the jth standard basis vector in Rd. Hence, for any γ ∈ Nd
0 such that ∥γ∥1 = m ∈ N0, one has

DγKu,v(s) =

{
m∏
i=1

(v + u1 + · · · + ud − i)

}
γ1∑

j1=0

· · ·

γd∑
jd=0

(
γ1

j1

)
. . .

(
γd

jd

)
(−1)m−∥j∥1Ku−j,v−(m−∥j∥1)(s),

ith the convention that a product over an empty set equals 1 in the trivial case m = 0.
Observe that the factors Ku−j,v−(m−∥j∥1)(s) only consist of constants depending on u1, . . . , ud and v multiplied by

onomials in the variables s1, . . . , sd and sd+1 = 1 − ∥s∥1. Therefore, one can conclude to the existence of a constant
∈ (0,∞) depending only on the integer d and the reals u1, . . . , ud, and v = ud+1 such that, letting jd+1 = m − ∥j∥1,

|DγKu,v(s) − DγKu,v(t)| ≤ C
γ1∑

j1=0

· · ·

γd∑
jd=0

⏐⏐⏐⏐⏐
d+1∏
i=1

sui−1−ji
i −

d+1∏
i=1

tui−1−ji
i

⏐⏐⏐⏐⏐ .
Now for arbitrary reals p1, . . . , pd+1 ∈ (0,∞), set p∗ = min(p1, . . . , pd+1, 1) and p∗

= max(p1, . . . , pd+1, 1). One can
apply a simple chaining argument to show that, for any integer d ∈ N, all (x1,1, . . . , x1,d+1), (x2,1, . . . , x2,d+1) ∈ [0, 1]d+1,
and every real p1, . . . , pd+1 ∈ (0,∞), one has⏐⏐⏐⏐⏐

d+1∏
i=1

xpi1,i −
d+1∏
i=1

xpi2,i

⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐
d+1∑
k=1

{(
k−1∏
i=1

xpi1,i

)(
d+1∏
i=k

xpi2,i

)
−

(
k∏

i=1

xpi1,i

)(
d+1∏

i=k+1

xpi2,i

)}⏐⏐⏐⏐⏐
≤

d+1∑
k=1

|xpk1,k − xpk2,k| ≤

d+1∑
k=1

{
|x1,k − x2,k|pk1(0,1)(pk) + |pk| × |x1,k − x2,k|1[1,∞)(pk)

}
≤ p∗

d+1∑
k=1

|x1,k − x2,k|p∗ ≤ p∗(d + 1)

(
d+1∑
k=1

|x1,k − x2,k|

)p∗

.

Applying this identity in the previous equation, together with the fact that |∥s∥1 − ∥t∥1| ≤ ∥s − t∥1, one concludes that

|DγKu,v(s) − DγKu,v(t)| ≤ L ∥s − t∥β−m
1 ,

for some constant L ∈ (0,∞) depending only on the integer d and the reals u1, . . . , ud, v, thereby proving the claim.
These findings are summarized below for the record; cf. Remark 2 in [6].

Proposition 4. Let Ku,v denote the d-variate Dirichlet density with parameters u = (u1, . . . , ud) ∈ (0,∞)d and v ∈ (0,∞),
defined in (1).

(i) If (u1, . . . , ud, v) ∈ Nd+1, then for every real β ∈ (0,∞), there exists a scalar L ∈ (0,∞) such that Ku,v ∈ Σ(d, β, L).
(ii) If (u1, . . . , ud, v) ∈ [r,∞)d+1

\ Nd+1 for some real r ∈ [1,∞), then for every β ∈ (0, r − 1], there exists a scalar
L ∈ (0,∞) such that Ku,v ∈ Σ(d, β, L).

The somewhat broader formulation of Proposition 4 owes to the fact that, in general,

f ∈ Σ(d, β, L) ⇒ ∀β∗∈(0, β) ∃L∗∈(0,∞) f ∈ Σ(d, β∗, L∗). (6)

In particular, suppose that the L1 or L2 loss function is preferred and that one suspects that the data at hand arise
from a density f ∈ Σ(d, β, L) with a high degree of regularity β ∈ [2,∞). Then Proposition 1 could still be invoked to
build an asymptotically minimax sequence of Aitchison–Lauder estimators by taking bn ≍ n−2/(d+2β∗) for some β∗

∈ (0, 2]
given that f also belongs to the class Σ(d, β∗, L∗) for some Lipschitz constant L∗

∈ (0,∞) whose value has no influence
on the choice of the bandwidth parameter. Because the resulting estimator would be asymptotically minimax with
respect to a much larger class of densities, however, this sleight of hand would be at the expense of the minimax rate

−β/(d+2β)
rn(d, β, L) ≍d,β,L n given in (3), which is a decreasing function of β .

5
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5. Conclusion

Using results of Ouimet and Tolosana-Delgado [37], conditions were found under which the d-variate Dirichlet kernel
density estimator defined in (2) can achieve the asymptotic minimax rate for the Lp loss with a suitable choice of
andwidth parameter. As per Proposition 1, this is possible when the underlying density f belongs to the Hölder space
(d, β, L) for some Lipschitz constant L ∈ (0,∞) provided that the Lp loss and regularity parameter β are such that

p, β) ∈ [1, 3)× (0, 2]∪Ad. To achieve the minimax rate, the bandwidth parameter b ∈ (0,∞) must vary with the sample
ize n and depend on the degree β of smoothness of the underlying density in such a way that bn ≍ n−2/(d+2β).
It is interesting to note that because of the embedding property (6), Silverman’s rule of thumb which consists of taking

bn ≍ n−2/(d+4) ensures that the Aitchison–Lauder estimator is asymptotically minimax on Σ(d, 2, L) for any β-Hölder
density with regularity parameter β ∈ [2,∞). In dimension d + 1 = 2, for instance, this corresponds to the familiar rate
rn(1, 2, L) ≍L n−2/5. Only for densities with regularity parameter β ∈ (0, 2) would this be insufficient.

However, it was shown in Propositions 2 and 3 that the Dirichlet kernel density estimator defined in (2) cannot
be asymptotically minimax on Σ(d, β, L) for Lp losses with p ∈ [4,∞) or when β ∈ (2,∞). As detailed in Remark 1,
these results rectify in a minor way and, more importantly, extend to all dimensions those already reported in dimension
d + 1 = 2 by Bertin and Klutchnikoff [6]. However, the case (p, β) ∈ [3, 4) × (0, 2] \ Ad remains open.

The results reported here are generally good news for the Dirichlet kernel density estimator of Aitchison and Lauder
[3]. Nevertheless, there may be reasons for preferring other options. One of them is the fact that the estimator defined
in (2) does not integrate to 1, except asymptotically [37]. Some users may also feel more comfortable relying on scalings
of a fixed kernel function by proceeding, e.g., as proposed by Chacón et al. [13]. At minima, the arguments presented here
show that deriving asymptotic properties of an estimator based on a variable kernel function is not as difficult as these
authors had anticipated.
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Appendix A. Proof of Proposition 1

Fix p ∈ [1, 3) and β ∈ (0, 2]. Further let b = bn = c n−2/(d+2β) for some constant c ∈ (0,∞). Let ξs = (ξ1, . . . , ξd) be a
random vector having Dirichlet distribution (1) with parameters u = s/b+ 1 and v = (1− ∥s∥1)/b+ 1. Observe that one
then has

E
{
fn,b(s)

}
= E

{
Ks/b+1,(1−∥s∥1)/b+1(X)

}
= E

{
f (ξs)

}
. (A.1)

By the triangle inequality for ∥ · ∥p, one also has

Rn
(
fn,b, f

)
=
{
E
(
∥fn,b − f ∥p

p

)}1/p
≤

[
E
[{

∥fn,b − E(fn,b)∥p + ∥E(fn,b) − f ∥p
}p]]1/p

.

sing the fact that (t + w)p ≤ 2p−1(tp + wp) for all t, w ∈ [0,∞), one can then deduce that

Rn
(
fn,b, f

)
≪
{
E
{
∥fn,b − E(fn,b)∥p

p

}
+ ∥E(fn,b) − f ∥p

p

}1/p
.

Given the sub-additivity of the map x ↦→ x1/p on [0,∞) when p ∈ [1,∞), it follows that

Rn
(
fn,b, f

)
≪
[
E
{
∥fn,b − E(fn,b)∥p

p

}]1/p
+
{
∥E(fn,b) − f ∥p

p

}1/p
≡ An + Bn. (A.2)

ext, suitable bounds will be found on the terms An and Bn implicitly defined in (A.2). The following fact will be used to
ound sups∈Int(Sd) |f (s)| in (A.6) and sups∈Int(Sd) ∥∇f (s)∥1 in (A.14).

emark A.1. By generalizing the reasoning on p. 7 of the book by Tsybakov [40], one can show that if f ∈ Σ(d, β, L) for
ome integer d ∈ N and scalars β, L ∈ (0,∞), then there exists a constant M = M(d, β, L) ∈ (0,∞) which is sufficiently
arge to ensure that

max
γ∈Nd

0:∥γ∥1≤m
sup

s∈Int(Sd)
|Dγ f (s)| ≤ M.
6
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A.1. Derivation of an upper bound on An

Fix s ∈ Sd and for each integer i ∈ {1, . . . , n}, let

Yi = Ks/b+1,(1−∥s∥1)/b+1(X i) − E
{
fn,b(s)

}
. (A.3)

iven that the observations X1, . . . ,Xn are mutually independent, so are the variables Y1, . . . , Yn and in view of (A.1),
they all have mean zero and finite variance, as does Ȳn = (Y1 + · · · + Yn)/n.

It follows from Jensen’s inequality that when p ∈ [0, 2],

E
(
|Ȳn|

p)
≤
{
var
(
Ȳn
)}p/2

hile if p ∈ (2,∞), then (4.11) of Bretagnolle and Huber [11] yields

E
(
|Ȳn|

p)
≪p (∥Y1∥∞/n)p−2var

(
Ȳn
)
+
{
var
(
Ȳn
)}p/2

.

In view of the definition of Yi given in (A.3), one then has, for any p ∈ [0,∞) and p′
= max(0, p − 2),

E
[
|fn,b(s) − E{fn,b(s)}|p

]
≪p (∥Ks/b+1,(1−∥s∥1)/b+1∥∞/n)p

′

var
{
fn,b(s)

}
+
[
var
{
fn,b(s)

}]p/2
. (A.4)

ow it is already known, thanks to (15) and Lemmas 1–2 in [37] that, for n large enough and b small enough,

∥Ks/b+1,(1−∥s∥1)/b+1∥∞ ≪d
b−d/2

√
(1 − ∥s∥1)s1 · · · sd

and

var
{
fn,b(s)

}
≪d

n−1b−d/2
∥f ∥∞

√
(1 − ∥s∥1)s1 · · · sd

.

By interpolating the bound on ∥Ks/b+1,(1−∥s∥1)/b+1∥∞ above together with the uniform bound in Lemma C.3, one can
educe that, for any choice of real q ∈ [0, 1],

∥Ks/b+1,(1−∥s∥1)/b+1∥∞ ≪d

(
b−d/2

√
(1 − ∥s∥1)s1 · · · sd

)q

(b−d)1−q. (A.5)

Plugging these last two bounds into (A.4), one concludes that

E
[
|fn,b(s) − E{fn,b(s)}|p

]
≪d,β,L,p

n−(p′
+1)(b−d/2)p

′q+2p′(1−q)+1

{(1 − ∥s∥1)s1 · · · sd}(p
′q+1)/2

+
(n−1/2 b−d/4)p

{(1 − ∥s∥1)s1 · · · sd}p/4
. (A.6)

Given that the map s ↦→ {(1 − ∥s∥1)s1 · · · sd}−a is integrable on Sd if and only if a < 1, which imposes the restriction
< min(2 + 1/q, 4), and considering that the map x ↦→ x1/p is sub-additive on [0,∞) whenever p ∈ [1,∞), it follows

from integration on both sides of (A.6) that

An =
[
E
{
∥fn,b − E(fn,b)∥p

p

}]1/p
≪d,β,L,p

{
n−(p′

+1−p/2)/p(b−d/2)(p
′q+2p′(1−q)+1−p/2)/p

+ 1
}
n−1/2 b−d/4.

Moreover, given the assumption that b = cn−2/(d+2β), one has
An

n−1/2 b−d/4 ≪d,β,L,p n−(p′
+1−p/2)/p(nd/(d+2β))(p

′q+2p′(1−q)+1−p/2)/p
+ 1. (A.7)

When p ∈ [1, 3), it suffices to take q = 1 for the last quantity to be bounded. When p ∈ [3, 4), one needs to be more
careful because of the aforementioned restriction p < 2 + 1/q or, equivalently, q < 1/(p − 2). For the right-hand side
of (A.7) to be bounded, one must have

−(p′
+ 1 − p/2) +

d
d + β

(2p′
− p′q + 1 − p/2) < 0

r equivalently

−
d + β

d
(p′

+ 1 − p/2) + (2p′
+ 1 − p/2) < qp′

⇔ 1 −
β

dp′
(p′

+ 1 − p/2) < q.

When p ∈ [3, 4), one has p′
= p−2, so that the above is equivalent to the simpler condition 1−β/(2d) < q. Combined

ith the restriction p < 2 + 1/q, one then finds that q must satisfy the condition

1 −
β

2d
< q <

1
p − 2

nd the latter can be fulfilled only if

2d
p − 3
p − 2

< β.

Given the additional restriction β ≤ 2, the range of viable values of p is then limited to the interval [3, 2 + d/(d − 1)].
7
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A.2. Derivation of an upper bound on Bn

It will be shown below that, for every real β ∈ (0, 2], one has

Bn ≪d,β,L bβ/2. (A.8)

However, the cases β ∈ (0, 1] and β ∈ (1, 2] must be treated separately.

Case β ∈ (0, 1]: For any such value of β , the map x ↦→ xβ is concave. Combining this fact with identity (A.1) and the
assumption that f ∈ Σ(d, β, L), one can deduce that

|E{fn,b(s)} − f (s)| ≤ E
{
|f (ξs) − f (s)|

}
≤ L E

(
∥ξs − s∥β1

)
≤ L

{
E
(
∥ξs − s∥1

)}β
, (A.9)

here Jensen’s inequality was used at the last step. For small enough b, it also follows from Jensen’s inequality that

E
(
∥ξs − s∥1

)
=

d∑
i=1

E
(
|ξi − si|

)
≤

d∑
i=1

{
E
(
|ξi − si|2

)}1/2
. (A.10)

Now the fact that, for any integer i ∈ {1, . . . , d}, the random variable ξi has a Beta distribution with parameters si/b+1
nd (1 − si)/b + d implies that

E(ξi) =
si/b + 1

1/b + d + 1
, var(ξi) =

(si/b + 1){(1 − si)/b + d}
(1/b + d + 1)2(1/b + d + 2)

, (A.11)

o that for small enough real b ∈ (0,∞), one has

E
(
|ξi − si|2

)
= var(ξi) + |E(ξi) − si|2 ≤ b/2 + {b(d + 1)}2 ≤ b. (A.12)

Applying the latter bound term by term to the right-hand term of inequality (A.10), one finds

E
(
∥ξs − s∥1

)
≤ db1/2, (A.13)

and upon substitution into (A.9), one can then conclude that Bn ≪d,β,L bβ/2, as claimed.

Case β ∈ (1, 2]: As f ∈ Σ(d, β, L) by assumption, the multivariate mean value theorem implies the existence of a random
vector ζs ∈ Sd on the line segment joining ξs and s such that

|E{fn,b(s)} − f (s)| ≤ E
{
|f (ξs) − f (s)|

}
= E

[
|∇f (s)⊤(ξs − s) + {∇f (ζs) − ∇f (s)}⊤(ξs − s)|

]
≪d,β,L E

(
∥ξs − s∥1

)
+ E

(
∥ξs − s∥β1

)
. (A.14)

Observe that the first summand on the right-hand side of (A.14) is bounded above by db1/2, as shown in (A.13). To
bound the second summand from above, first apply the triangle inequality for ∥ · ∥1 and then Jensen’s inequality twice to
get

E
(
∥ξs − s∥β1

)
≤ E

[{
∥ξs − E(ξs)∥1 + ∥E(ξs) − s∥1

}β]
≤ (2d)β−1

[
d∑

i=1

E
{
|ξi − E(ξi)|β

}
+

d∑
i=1

|E(ξi) − si|β
]

≤ (2d)β−1

[
d∑

i=1

{
var(ξi)

}β/2
+

d∑
i=1

|E(ξi) − si|β
]
.

Calling again on the fact that for each integer i ∈ {1, . . . , n}, the random variable ξi has a Beta distribution with
parameters si/b + 1 and (1 − si)/b + d, and proceeding as in the derivation of inequality (A.12), one finds

E
(
∥ξs − s∥β1

)
≪d,β bβ/2. (A.15)

It then suffices to apply the bounds (A.13) and (A.15) to inequality (A.14) to conclude that Bn ≪d,β,L bβ/2, as claimed.

A.3. Final step in the proof of Proposition 1

Upon applying bounds (A.7) and (A.8) to (A.2), one gets

Rn(fn,b, f ) ≪ An + Bn ≪d,β,L,p n−1/2b−d/4
+ bβ/2 ≪d,β,L,p ϕn(d, β) = n−β/(d+2β),

which, in view of (3), yields the stated conclusion. □
8
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Fig. B.1. Graphs of fβ in the region [1/8, 3/8]2 = [1/(4d), 3/(4d)]d when d = 2.

ppendix B. Proof of Propositions 2 and 3

The following functions play a role in the proofs of these results. For any s ∈ Sd, define

f0(s) = d!, f3(s) = (d − 1)! (d + 1) ∥s∥1,

nd for any reals β ∈ (0, 2] and L ∈ (0,∞) such that 0 < b ≤ min{1/(4d)2, ((d!/L)1/β/3)2}, let t (k) be a vector whose ith
oordinate equals t (k)i = 1/(4d) + 3b1/2(2ki − 1) for every integer i ∈ {1, . . . , d} and introduce

fβ (s) = fβ,b(s) = d! 1Sd (s) + Lβ
∑

k∈{1,...,2N}d

(−1)k1 (3b1/2)βψ
(
s − t (k)

3b1/2

)
, (B.1)

here 1Sd stands for the indicator function of the set Sd and

Lβ = Lmin(1, 1/β), N = ⌈1/(24db1/2)⌉, ψ(s) = (1 − ∥s∥β1 )1Sd (s),

ith ⌈x⌉ denoting the smallest integer greater than or equal to x ∈ (0,∞).
The functions f0, f3 and fβ = fβ,b defined above are all densities with support on Sd. This is immediate for f0, considering

hat
∫
Sd

d!ds = 1. To prove that f3 also integrates to 1, use the change of variables ti = s1 + · · · + si for every integer
∈ {1, . . . , d} to write successively∫

Sd

∥s∥1ds =

∫
0<t1<···<td<1

tddt =

∫
0<t2<···<td<1

t2tddt

=
1
2

∫
0<t3<···<td<1

t23 tddt = · · · =
1

(d − 2)!

∫
0<td−1<td<1

td−2
d−1 tddt,

hich shows that the integral equals 1/{(d − 1)! (d + 1)}.
Turning to fβ = fβ,b defined in (B.1) for a fixed real β ∈ (0, 2], note that it takes nonnegative values on Sd, and that

he volume under the positive spikes induced by the map

s ↦→ Lβ (−1)k1 (3b1/2)βψ
{
(s − t (k))/(3b1/2)

}
or even values of k1 are offset by the negative spikes corresponding to odd values of k1. This is illustrated in Fig. B.1 for
wo different sets of values of (β, b) in dimension d + 1 = 3.

The proofs of Propositions 2 and 3 rely on the following technical lemma, whose proof is deferred to Appendix B.3. In
hat follows, Pβ , Eβ and varβ respectively refer to a probability, an expectation and a variance computed with respect to
ensity fβ , whatever β ∈ [0, 2] ∪ {3}.

emma B.1. The following statements hold true for every real b ∈ (0, 1).

(a) For all reals p ∈ [2,∞) and L ∈ (0,∞), one has f0 ∈ Σ(d, β, L) and

E0
(
∥fn,b − f0∥p

p

)
≫d,p

In(b, p)
(n bd/2)p/2

,

where

In(b, p) =

∫
{(1 − ∥s∥1)s1 · · · sd}−p/4ds and Sd(b) =

{
s ∈ Sd : 1 − ∥s∥1 ≥ b and min(s1, . . . , sd) ≥ b

}
.

Sd(b)

9



K. Bertin, C. Genest, N. Klutchnikoff et al. Journal of Multivariate Analysis 195 (2023) 105158

w

m

C

G

C
s

A
t

w

(b) For all reals p ∈ [2,∞), β ∈ (0, 2], and L ∈ (0,∞), one has fβ ∈ Σ(d, β, L) and

Eβ
(
∥fn,b − fβ∥p

p

)
≫d,β,p bpβ/2,

(c) For all reals p ∈ [1,∞), β ∈ (2,∞), and L ∈ (0,∞), one has f3 ∈ Σ(d, β, L) and

E3
(
∥fn,b − f3∥p

p

)
≫d,p bp.

B.1. Proof of Proposition 2 assuming Lemma B.1

Fix reals p ∈ [1,∞), β ∈ (2,∞), and L ∈ (0,∞). To establish the result, first observe that

Rn(fn,b, f3) ≥ E3
(
∥fn,b − f3∥1

)
.

Indeed, using Fubini’s theorem and Jensen’s inequality twice, one finds

Rn(fn,b, f3) =

[∫
Sd

E3
{
|fn,b(s) − f3(s)|p

}
ds
]1/p

≥ (d!)1−1/p
∫
Sd

[
E3
{
|fn,b(s) − f3(s)|p

}]1/p ds
≥

∫
Sd

E3
{
|fn,b(s) − f3(s)|

}
ds = E3

(
∥fn,b − f3∥1

)
.

Therefore, to conclude the proof, it is sufficient to show that

lim inf
n→∞

E3
(
∥fn,b − f3∥1

)
ϕn(d, β)

= ∞, (B.2)

here ϕn(d, β) is defined as in (3). If b = bn is such that

lim inf
n→∞

E3(∥fn,b − f3∥1) > 0,

then the conclusion of Proposition 2 follows trivially. Therefore, assume for the remainder of the proof that

lim inf
n→∞

E3(∥fn,b − f3∥1) = 0

and let b = bkn be any subsequence that achieves this lim inf.
By the asymmetric kernel analog of Theorem 1 [(i) ⇒ (v)] in [18], with the identification of bandwidths b = h2, one

ust have b → 0 and nbd/2 → ∞ as n → ∞, which makes the relation b = od(n−2/d) impossible.
With this in mind, one can divide the proof of (B.2) into the two remaining cases, namely

(i) b ≫d n−2/(d+4);
(ii) n−2/d

≪d b = od(n−2/(d+4)).

ase (i): By part (c) of Lemma B.1 with p = 1, one has

E3(∥fn,b − f3∥1) ≫d b ≫d n−2/(d+4)
= ϕn(d, β)ϕn(d, 2)/ϕn(d, β).

iven that limn→∞ ϕn(d, 2)/ϕn(d, β) = ∞ when β > 2, the argument is complete.

ase (ii): The proof here follows the same argument as in the second case considered in the proof of Theorem 1 in [19];
ee pp. 1259–1260 in that paper. First note that by the triangle inequality and Fubini’s theorem, one has

E3
(
∥fn,b − f3∥1

)
≥

1
2
E3

[∫
Sd

|fn,b(s) − E3{fn,b(s)}|ds
]

=
1
2

∫
Sd

E3
[
|fn,b(s) − E3{fn,b(s)}|

]
ds.

Next, invoke Fatou’s lemma to deduce that

lim inf
n→∞

n2/(d+4) E3
(
∥fn,b − f3∥1

)
≥

1
2

∫
Sd

lim inf
n→∞

n2/(d+4) E3
[
|fn,b(s) − E3{fn,b(s)}|

]
ds. (B.3)

Now, by Markov’s inequality, one has, for any real C ∈ (0,∞),

n2/(d+4) E3[|fn,b(s) − E3{fn,b(s)}|] ≥ C P3[|fn,b(s) − E3{fn,b(s)}| ≥
C

n2/(d+4) ].

lso, by the Berry–Esseen theorem and the fact that, for all u, v, w ∈ R3, |u − v| ≤ w implies u ≥ v − w, the right-hand
erm of the above inequality is bounded below by

C P3

[
|Z | ≥

C

n2/(d+4)
√
var3{fn,b(s)}

]
− Od

[
E3{|ζ1 − E3(ζ1)|3}
n1/2{var3(ζ1)}3/2

]
,

here Z stands for a standard N (0, 1) Gaussian random variable and ζ = K (X ).
1 s/b+1,(1−∥s∥1)/b+1 1

10
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It was already shown by Ouimet and Tolosana-Delgado [37] in the proof of their Theorem 3 that, for every vector
∈ Int(Sd),

E3{|ζ1 − E3(ζ1)|3}
var3(ζ1)

= Od,s(b−d/2),

and in their Theorem 1 that, for every such vector s ∈ Int(Sd),

var3{fn,b(s)} = n−1var3(ζ1) = n−1b−d/2
{ψ(s)f3(s) + Od,s(b1/2)}.

Assuming that b = od(n−2/(d+4)), one can then deduce that, for every vector s ∈ Int(Sd),

n2/(d+4) E3[|fn,b(s) − E3{fn,b(s)}|] ≥ C P3{|Z | ≥ C od,s(1)} − Od,s(n−1/2b−d/4)

≥ C{1 + od,s(1)} − Od,s(n−1/2b−d/4).

Under the assumption that n−2/d
≪d b and by letting C → ∞, one then has, for every vector s ∈ Int(Sd),

lim inf
n→∞

n2/(d+4) E3[|fn,b(s) − E3{fn,b(s)}|] = ∞.

Therefore, one can conclude from (B.3) that

E3
(
∥fn,b − f3∥1

)
≫d n−2/(d+4)

= ϕn(d, β)ϕn(d, 2)/ϕn(d, β).

Given that limn→∞ ϕn(d, 2)/ϕn(d, β) = ∞ when β ∈ (2,∞), the argument is complete.
Cases (i) and (ii) having been successfully dealt with, Proposition 2 is established. □

B.2. Proof of Proposition 3 assuming Lemma B.1

Fix reals p ∈ [4,∞), β ∈ (0, 2], and L ∈ (0,∞). Using parts (a) and (b) of Lemma B.1, one has

sup
f∈Σ(d,β,L)

Rn(fn,b, f ) ≥
1
2

{
Rn(fn,b, f0) + Rn(fn,b, fβ )

}
≫d,β,p inf

b∈(0,1)

[
{In(b, p)}1/p

(nbd/2)1/2
+ bβ/2

]
≫d,β,p inf

b∈(0,1)

{
| ln b|1/p

(nbd/2)1/2
+ bβ/2

}
.

Next, simple calculus can be used to check that whenever n is larger than a certain threshold, the map

b ↦→ | ln b|1/p/(nbd/2)1/2 + bβ/2

ttains its minimum b0n on (0, 1) and that this minimum is such that

b0n = c1n−2/(d+2β)
{c2| ln b0n|

1/p−1
+ c3| ln b0n|

1/p
}
4/(d+2β),

here c1 = (2/β)4/(d+2β), c2 = 1/p and c3 = d/4.
Moreover, it can be proved easily that b0n → 0 as n → ∞. Consequently,

inf
b∈(0,1)

{
| ln b|1/p

(nbd/2)1/2
+ bβ/2

}
=

| ln b0n|
1/p

{n(b0n)d/2}1/2
+ (b0n)

β/2
≫d,β,p ϕn(d, β) × | ln(b0n)|

2β/{p(d+2β)}
.

The conclusion of Proposition 3 then follows at once. □

B.3. Proof of Lemma B.1

Proof of Part (a). After trivial adjustments to the proof of Lemma 6 in [6], one can assert that

E0
(
∥fn,b − f0∥p

p

)
≥ 2−p

∫
Sd

[
var0{fn,b(s)}

]p/2ds. (B.4)

Now, Ouimet and Tolosana-Delgado [37] (see p. 13 therein) showed that, for any target density f whose support is on Sd,
one has, for all s ∈ Sd,

var0{fn,b(s)} = n−1Ab(s) E{f (γs)} − O(n−1), (B.5)

where γs is random vector with distribution Dirichlet(2s/b + 1, 2(1 − ∥s∥1)/b + 1), and

Ab(s) =
b(d+1)/2 (1/b + d)d+1/2

d/2
√

(
2/b + 2d

)2/b+d+1/2

e−d
×

R2
{(1 − ∥s∥1)/b}

∏d
i=1 R

2(si/b)∏d

R(2/b + d)
2 , (B.6)
(4π ) (1 − ∥s∥1)s1 · · · sd 2/b + d R{2(1 − ∥s∥1)/b} i=1 R(2si/b) R (1/b + d)

11



K. Bertin, C. Genest, N. Klutchnikoff et al. Journal of Multivariate Analysis 195 (2023) 105158

B

I

where, for any real z ∈ [0,∞),

R(z) =

√
2π

Γ (z + 1)
e−zzz+1/2. (B.7)

As is well-known, the map z ↦→ R(z) is increasing on (1,∞), and R(z) < 1 for every real z ∈ [1,∞); see,
e.g., Theorem 2.2 of Batır [4]. Accordingly, one has, for any vector s ∈ Sd,

R2
{(1 − ∥s∥1)/b}

∏d
i=1 R

2(si/b)

R{2(1 − ∥s∥1)/b}
∏d

i=1 R(2si/b)

R(2/b + d)
R2(1/b + d)

≥ R2(d+1)(1) 1Sd(b)(s).

y plugging the above bound into (B.6), one deduces that, for every vector s ∈ Sd,

Ab(s) ≫d
b−d/2

√
(1 − ∥s∥1)s1 · · · sd

1Sd(b)(s). (B.8)

n view of (B.8), one can also deduce from (B.5) with f = f0 that, for every vector s ∈ Sd(b),

var0
{
fn,b(s)

}
≫d

n−1b−d/2

√
(1 − ∥s∥1)s1 · · · sd

.

The conclusion then follows from (B.4). □

Proof of Part (b). For any vector k ∈ {1, . . . , 2N}
d and reals b ∈ (0, 1), ε ∈ (0, 1/2], define the sets

Tk(ε, b) = {t ∈ Rd
: ∥t − t (k)∥1 ≤ εb1/2}, Ik(b) = {t ∈ Rd

: b1/2 ≤ ∥t − t (k)∥1 ≤ 2b1/2}.

Note that for any real p ∈ [1,∞), it follows from Fubini’s theorem and Jensen’s inequality that

Eβ
(
∥fn,b − fβ∥p

p

)
=

∫
Sd

Eβ
{
|fn,b(s) − fβ (s)|p

}
ds ≥

∫
Sd

⏐⏐Eβ{fn,b(s)} − fβ (s)
⏐⏐pds

≥

[∫
Sd

⏐⏐Eβ{fn,b(s)} − fβ (s)
⏐⏐ds]p .

Let ∆N =
{
k ∈ {1, . . . , 2N}

d
: k1 = 2ℓ1 with ℓ1 ∈ {1, . . . ,N}

}
. Then∫

Sd

⏐⏐Eβ{fn,b(s)} − fβ (s)
⏐⏐ds ≥

∑
k∈∆N

∫
Tk (ε,b)

⏐⏐Eβ{fn,b(s)} − fβ (s)
⏐⏐ds

≥

∑
k∈∆N

∫
Tk (ε,b)

⏐⏐⏐⏐∫
Sd

Ks/b+1,(1−∥s∥1)/b+1(u){fβ (u) − fβ (s)}du
⏐⏐⏐⏐ ds

≥

∑
k∈∆N

∫
Tk (ε,b)

{Ak(s) − B(s)} ds, (B.9)

where, for every vector s ∈ Sd,

Ak(s) =

∫
Ik (b)

Ks/b+1,(1−∥s∥1)/b+1(u){fβ (s) − fβ (u)}du,

and

B(s) =

∫
fβ (u)≥fβ (s)

Ks/b+1,(1−∥s∥1)/b+1(u){fβ (u) − fβ (s)}du.

Now for arbitrary vectors k ∈ ∆N , s ∈ Tk(ε, b) and u ∈ Ik(b), one has

fβ (s) − fβ (u) = Lβ (∥u − t (k)∥β1 − ∥s − t (k)∥β1 ) ≥ Lβbβ/2(1 − εβ/2) ≥ Lβbβ/2{1 − (1/2)β/2}.

Therefore,

Ak(s) ≥ Lβ{1 − (1/2)β/2}bβ/2
∫
Ik (b)

Ks/b+1,(1−∥s∥1)/b+1(u)du.

Next, one must call on the following lemma, whose proof is deferred to Appendix B.4.

d 1/2 −d/2
Lemma B.2. Fix s ∈ [1/(4d), 3/(4d)] and δ ∈ (0, 3). Then, as b → 0, Ks/b+1,(1−∥s∥1)/b+1(s + δb ) ≫d b .

12
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Note that for any s ∈ Tk(ε, b) and u ∈ Ik(b), one has ∥s − u∥1 < 3b1/2. Using Lemma B.2, one can then deduce that

Ak(s) ≫d bβ/2b−d/2
∫
Ik (b)

du ≫d bβ/2b−d/2bd/2 = bβ/2.

Hence for a strictly positive constant c1 that only depends on d, one has

Ak(s) ≥ c1bβ/2. (B.10)

Now, considering that fβ (s) > d! whenever s ∈ Tk(ε, b) for some vector k ∈ ∆N , one has

B(s) = Lβ

∫
fβ (u)≥fβ (s)

Ks/b+1,(1−∥s∥1)/b+1(u)
[
∥s − t (k)∥β1 −

∑
ℓ∈∆N

∥u − t (ℓ)∥β11Sd

{
u − t (ℓ)

3b1/2

}]
du

≤ Lβεβbβ/2
∫
Sd

Ks/b+1,(1−∥s∥1)/b+1(u)du = Lβεβbβ/2. (B.11)

Finally, applying the bounds given in (B.10)–(B.11) to (B.9), one finds that∑
k∈∆N

∫
Tk (ε,b)

{Ak(s) − B(s)}ds ≥ (c1bβ/2 − Lβεβbβ/2)
1
d!

∑
k∈∆N

(εb1/2)d

≥ (c1bβ/2 − Lβεβbβ/2)
(
b−1/2

24d

)d 1
d!

(εb1/2)d.

aking ε = min
[
1/2, {c1/(2Lβ )}1/β

]
, one can then deduce that∑

k∈∆N

∫
Tk (ε,b)

{Ak(s) − B(s)}ds ≫d,β bβ/2,

which leads to the statement of Part (b) via (B.9). □

Proof of Part (c). Fubini’s theorem and Jensen’s inequality entail that, for any real p ∈ [1,∞),

E3
(
∥fn,b − f3∥p

p

)
=

∫
Sd

E3
{
|fn,b(s) − f3(s)|p

}
ds ≥

∫
Sd

|E3{fn,b(s)} − f3(s)|pds. (B.12)

To find a lower bound on the right-hand term, consider s ∈ Sd and let ξs = (ξ1, . . . , ξd) be a random vector with
distribution Dirichlet(s/b + 1, (1 − ∥s∥1)/b + 1). It follows from the expectation estimate given in (A.11) that

E3{fn,b(s)} − f3(s) = (d − 1)! (d + 1)
d∑

i=1

{
E(ξi) − si

}
= (d − 1)! (d + 1)

b{d − ∥s∥1(d + 1)}
1 + b(d + 1)

. (B.13)

y applying identity (B.13) to (B.12), one then finds

E3
(
∥fn,b − f3∥p

p

)
≫d,p bp.

his concludes the proof of Part (c) and of Lemma B.1. □

B.4. Proof of Lemma B.2

For arbitrary vector s ∈ Sd and reals b, δ ∈ (0,∞), write

Ks/b+1,(1−∥s∥1)/b+1(s + δb1/2) =
Γ (1/b + d + 1)

Γ {(1 − ∥s∥1)/b + 1}
∏d

i=1 Γ (si/b + 1)
(1 − ∥s + δb1/2∥1)(1−∥s∥1)/b

d∏
i=1

(si + δb1/2)si/b.

o find a lower bound on this expression, first note that it can be written in the form Ks/b+1,(1−∥s∥1)/b+1(s)Qb,δ(s), where

Qb,δ(s) =

{
1 −

dδb1/2

(1 − ∥s∥1)

}(1−∥s∥1)/b d∏
i=1

(
1 + δb1/2/si

)si/b,
nd that one has, uniformly for s ∈ [1/(4d), 3/(4d)]d,

Qb,δ(s) = exp

[
d∑

i=1

si
b

(
δb1/2

si
−
δ2b
2s2i

)
+

(1 − ∥s∥1)
b

{
−

dδb1/2

(1 − ∥s∥1)
−

d2δ2b
2(1 − ∥s∥1)2

}
+ O(b1/2)

]

= exp

{
−
δ2

2

d∑ 1
s

−
d2δ2

2(1 − ∥s∥ )
+ O(b1/2)

}
≫d 1.
i=1 i 1

13
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Next, for arbitrary vector s ∈ Sd and reals b, δ ∈ (0,∞), set

Rb(s) =
R{(1 − ∥s∥1)/b + 1}

R(1/b + d + 1)

d∏
i=1

R(si/b + 1),

where the function R is as defined in (B.7). It can then be checked by substitution that, for every vector s ∈ Sd and real
b ∈ (0,∞),

Ks/b+1,(1−∥s∥1)/b+1(s) = Rb(s)Wb(s),

where

Wb(s) =

√
2πe−(1/b+d)(1/b + d)1/b+d+1/2

√
2πe−(1−∥s∥1)/b{(1 − ∥s∥1)/b}(1−∥s∥1)/b+1/2

∏d
i=1

√
2πe−si/b(si/b)si/b+1/2

(1 − ∥s∥1)(1−∥s∥1)/b
d∏

i=1

ssi/bi

=
e−d(1/b + d)1/b+d+1/2b(1−∥s∥1)/b+1/2∏d

i=1 b
si/b+1/2

(2π )d/2
√
(1 − ∥s∥1)

∏d
i=1 si

=
b−d/2e−d(1 + bd)1/b+d+1/2

(2π )d/2
√
(1 − ∥s∥1)

∏d
i=1 si

.

Consequently,

Wb(s) ∼d,s
b−d/2

(2π )d/2
√
(1 − ∥s∥1)

∏d
i=1 si

and hence, as b → 0,

Ks/b+1,(1−∥s∥1)/b+1(s) ≫ b−d/2

uniformly for s ∈ [1/(4d), 3/(4d)]d. This completes the argument. □

ppendix C. A uniform bound on the Dirichlet kernel

The lemma below gives an upper bound on the Dirichlet kernel x ↦→ Ks/b+1,(1−∥s∥1)/b+1(x) from (2) which is uniform
n s and x on the simplex Sd. This result generalizes to all dimensions the analogous result for the Beta kernel (d = 1)
tated in (A.11) of Chen [17].

emma C.3. For every integer d ∈ N, every real b ∈ (0,∞), and all vectors s ∈ Sd, one has

∥Ks/b+1,(1−∥s∥1)/b+1∥∞ = max
x∈Sd

Ks/b+1,(1−∥s∥1)/b+1(x) ≤

d∏
i=1

(1/b + i).

Proof. First, it is well known that for the Dirichlet density x ↦→ Ku,v(x) as defined in (1), the mode is attained at
x = (u − 1)/(∥u∥1 + v − d − 1); see, e.g., Theorem 2.4 of Ng et al. [34]. Of interest here is the case where u = s/b + 1
and v = (1 − ∥s∥1)/b + 1, so that the mode of the kernel x ↦→ Ks/b+1,(1−∥s∥1)/b+1(x) is attained exactly at x = s. Then

max
x∈Sd

Ks/b+1,(1−∥s∥1)/b+1(x) = Ks/b+1,(1−∥s∥1)/b+1(s)

=
Γ (1/b + d + 1)

Γ {(1 − ∥s∥1)/b + 1}
∏d

i=1 Γ (si/b + 1)
(1 − ∥s∥1)(1−∥s∥1)/b

d∏
i=1

ssi/bi .

The goal is to maximize this last expression in s. A nice feature of the function s ↦→ Ks/b+1,(1−∥s∥1)/b+1(s) is that it
s log-convex on the simplex Sd. Indeed, upon taking the logarithm and differentiating twice, one finds that, for every
ntegers i, j ∈ {1, . . . , d} and all vectors s ∈ Int(Sd),

∂2

∂si∂sj
ln{Ks/b+1,(1−∥s∥1)/b+1(s)} =

1
b2

{
1

si/b
− ψ ′(si/b + 1)

}
1{i=j} +

1
b2

[
1

(1 − ∥s∥1)/b
− ψ ′

{(1 − ∥s∥1)/b + 1}
]
,

here ψ denotes the digamma function and ψ ′ its derivative.
Note that one has 1/y − ψ ′(y + 1) > 0 for every real y ∈ (0,∞) because

ψ ′(y + 1) =

∫
∞

0

te−yt

et − 1
dt =

∫
∞

0

se−s

y2(es/y − 1)
ds <

∫
∞

0

se−s

y2(s/y)
ds =

1
y
,

here the first equality is a consequence of Abramowitz and Stegun [1, p. 260], the second equality follows from the
hange of variable s = yt , and the inequality comes from the fact that ex − 1 > x for every real x ∈ (0,∞).
14
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Therefore, the expression for the second-order partial derivatives above shows that the Hessian matrix of s ↦→

n{Ks/b+1,(1−∥s∥1)/b+1(s)} has the form aId + c1d×d, where a and c are strictly positive quantities that depend on d, b
nd s, Id is the identity matrix of order d, and 1d×d is a d × d matrix of 1s. In particular, this means that all the
igenvalues of the Hessian matrix of the map s ↦→ ln{Ks/b+1,(1−∥s∥1)/b+1(s)} are strictly positive, which proves the claim
hat s ↦→ Ks/b+1,(1−∥s∥1)/b+1(s) is log-convex.

Now, maximum values of log-convex functions on a convex domain are always attained on the boundary. In the present
ase, a vector s ∈ Sd is on the boundary of the simplex when some of its components s1, . . . , sd or 1 − ∥s∥1 are equal to
ero. When this happens, the map s ↦→ Ks/b+1,(1−∥s∥1)/b+1(s) is equal to a lower dimensional version of itself on a lower
imensional simplex where the only relevant components are the ones that are not zero. Then that lower dimensional
ersion is still log-convex because the result in the previous paragraph is valid for every integer d ∈ N, and hence its
aximum values are necessarily attained on the boundary of that lower dimensional simplex.
By iterating the above dimension reduction argument, one deduces that the largest value of the original map s ↦→

s/b+1,(1−∥s∥1)/b+1(s) must necessarily be at one of the d+1 corners of the simplex Sd, i.e., the d+1 standard basis vectors
n Rd+1. Indeed, these corners form all the possible boundaries of the 1-dimensional simplexes in the dimension reduction
rgument.
Finally, by the symmetry of the map s ↦→ Ks/b+1,(1−∥s∥1)/b+1(s) in the variables s1, . . . , sd, 1 − ∥s∥1, the value of the

unction is exactly the same at any one of those corners, so that one can choose any one of them to determine the
aximum. If the corner (s⋆, 1 − ∥s⋆∥1) = (0, . . . , 0, 1) is chosen, then one finds

Ks⋆/b+1,(1−∥s⋆∥1)/b+1(s⋆) =
Γ (1/b + d + 1)
Γ (1/b + 1)

=

d∏
i=1

(1/b + i).

This completes the proof. □
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