Minimax properties of Dirichlet kernel density estimators - Archive ouverte HAL
Article Dans Une Revue Journal of Multivariate Analysis Année : 2023

Minimax properties of Dirichlet kernel density estimators

Résumé

This paper is concerned with the asymptotic behavior in $\beta$-H\"older spaces and under $L^p$ losses of a Dirichlet kernel density estimator introduced by Aitchison & Lauder (1985) and studied theoretically by Ouimet & Tolosana-Delgado (2021). It is shown that the estimator is minimax when $p \in [1, 3)$ and $\beta \in (0, 2]$, and that it is never minimax when $p \in [4, \infty)$ or $\beta \in (2, \infty)$. These results rectify in a minor way and, more importantly, extend to all dimensions those already reported in the univariate case by Bertin & Klutchnikoff (2011).
Fichier principal
Vignette du fichier
1-s2.0-S0047259X23000040-main.pdf (705.5 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-03468285 , version 1 (16-09-2024)

Licence

Identifiants

Citer

Karine Bertin, Christian Genest, Frédéric Ouimet, Nicolas Klutchnikoff. Minimax properties of Dirichlet kernel density estimators. Journal of Multivariate Analysis, 2023, 195, pp.105158. ⟨10.1016/j.jmva.2023.105158⟩. ⟨hal-03468285⟩
111 Consultations
8 Téléchargements

Altmetric

Partager

More