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Abstract
Aim: Temperate forests are currently facing multiple stresses due to climate change, 
biological invasions, habitat fragmentation and fire regime change. How these stress-
ors interact with each other influences how, when and whether ecosystems recover, 
or whether they adapt or transition to a different ecological state. Because forest 
recovery or collapse may take longer than a human lifetime, predicting the outcomes 
of different stressor combinations remains difficult. A clearer vision of future forest 
trajectories in a changing world may be gained by examining collapses of forests in 
the past. Here, we use long-term ecological data to conduct a post-mortem examina-
tion of the decline of maritime pine forests (Pinus pinaster Ait.) on the SW Iberian 
Peninsula 7000–6500 years ago.
Location: Portugal and Spain.
Methods: We compared four palaeoecological records—two with pine declines and 
two without—using a multiproxy approach. Bioclimatic differences between the four 
sites were explored. Proxies for past vegetation and disturbance (fire and grazing) 
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1  | INTRODUC TION

In the current era of rapid environmental change, ecosystems are 
under stress on various fronts. Climate change, biological invasions, 
habitat fragmentation and fire regime change are among the most 
critical stressors (Slingsby et al., 2017; Trumbore et al., 2015; Turco 
et al., 2018). Ecological outcomes of multiple interacting stressors 
are challenging to predict, as these may be greater, less or equal to 
the sum of the effects (Batllori et al., 2017; Côté et al., 2016; Enright 
et al., 2014; Foster et al., 2016). Adding to this challenge are the long-
term legacies of multiple stressors—those whose ecological effects 
are only realized decades to millennia later (Essl et al., 2015; Kelly 
et al., 2011). Observations over short time series may only tell part 
of the story, especially concerning forest ecosystems in which long-
lived species play key functional roles and recovery times are slow 
(Gonzalez et  al.,  2016; Taranu et  al.,  2018; Trumbore et  al.,  2015; 
Willis et al., 2018).

Ecological disturbances in forests can precipitate permanent 
state shifts to shrublands (Enright et al., 2015; Karavani et al., 2018; 
Willis et al., 2010). Fire-induced deforestation is of particular con-
cern for conifer forests, given their high flammability and their 
economic and cultural values as global carbon sinks and sources of 
timber, resins and edible fungi (Abad Viñas et  al.,  2016; Whitman 
et al., 2019). In the Mediterranean region, pine forests may perma-
nently shift to shrublands when (a) damage to trees and seedbanks 
is fatal, (b) no mature trees are present nearby to initiate recovery 
and (c) replacement resprouting tree species are absent (Karavani 
et al., 2018). Fire and drought are considered the two most critical 
disturbance agents driving this process, both having strong selec-
tive effects on plant traits (Batllori et al., 2017; Berdugo et al., 2020; 
Karavani et al., 2018; Seidl et al., 2017). Interactions between fire 

and drought are complex. Drought tends to increase the probability 
of fire in high-biomass vegetation, while it reduces fire probability in 
low-biomass systems (Frejaville & Curt, 2015; Pausas & Paula, 2012; 
Pausas & Ribeiro, 2013).

Post-fire vegetation recovery is influenced by plant functional 
traits and the prevailing weather conditions. Drought conditions fol-
lowing a fire may delay recovery where the species pool is composed 
of obligate seeders, but even resprouters may suffer exhaustion 
under such conditions (Karavani et al., 2018; Parra & Moreno, 2018). 
Soil type, grazing, pathogens and seed predation further compli-
cate recovery trajectories (Baeza et  al.,  2007; Foster et  al.,  2016; 
Pausas, 2004; Vega et al., 2011).

The complexity of these interactions requires multiple-stressor 
models to forecast ecosystem responses to environmental change. 
Validation of these models is a major challenge, as observational 
records tend to encompass shorter time frames than the fire- and 
drought-frequency parameters currently being modelled (Barros 
et al., 2018; Batllori et al., 2017; Mouillot et al., 2002). Without em-
pirical validation, models may be difficult to apply to real-world con-
servation and management problems (Côté et al., 2016).

In this paper, we analyse multiple stressors acting on the long-
lived tree species Pinus pinaster Ait. (maritime pine). P. pinaster is the 
most widespread conifer on the Iberian Peninsula and of major eco-
nomic importance (Prieto-Recio et al., 2015; Torres et al., 2016). It 
possesses traits linked to frequent fire occurrence, including thick 
bark, high rates of post-fire seedling emergence and production of 
serotinous cones (Tapias et al., 2004; Tavşanoğlu & Pausas, 2018). 
These traits are traded off in different populations, with resistance 
traits (thick bark) characteristic of the Western or Atlantic popu-
lations, and recovery (serotiny) and resilience (drought tolerance) 
traits prominent in the Eastern or Mediterranean populations (Tapias 

were compared with independent palaeoclimatic records. We performed functional 
traits analysis and used phase plots to examine the causes of pine decline.
Results: The pine decline represents a critical transition in SW Iberia, which lies close 
to maritime pine's bioclimatic limits. Prolonged drought likely killed trees and sup-
pressed the fires that normally stimulate pine germination and pinewood recovery. 
Increased grazing pressure facilitated the rapid spread of resprouter shrubs. These 
competed with pine trees and ultimately replaced them. Our data highlight complex 
interactions between climate, fire, grazing and forest resilience.
Main Conclusions: The pine decline occurred at least a century after post-fire re-
sprouters overtook obligate seeders in the vegetation, constituting an early-warning 
signal of forest loss. Fire suppression, resprouter encroachment and grazing may 
threaten the persistence of Mediterranean forests as droughts become more fre-
quent and extreme.

K E Y W O R D S

fire regime change, forest dynamics, functional traits analysis, palaeoecology, phase plots, 
tipping point
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et al., 2004; Zas et al., 2020). P. pinaster distribution ranges from sea 
level to 2,100 m along a rainfall gradient from 350 to 1,400 mm p.a. 
(Alía & Martín, 2003).

Many P. pinaster populations are suffering from drought- 
and fire-induced stress and, in some cases, mortality (Bravo-
Oviedo et  al.,  2006; Garcia-Gonzalo et  al.,  2011; Navarro-Cerrillo 
et al., 2018; Prieto-Recio et al., 2015; Vega et al., 2011). Maritime 
pine ecosystems require specific fire regimes to maintain eco-
logical health and secure them from extreme fires (Fernandes & 
Rigolot, 2007). However, increasingly frequent and extreme fires in 
maritime pine forests have prompted concern about their long-term 
viability and ecological functioning (Fernandes et  al., 2010, 2016; 
Maia et al., 2012; Mouillot et al., 2002; Torres et al., 2016).

Maritime pine is a good candidate for assessing the impact of 
multiple stressors over long time-scales, as its distribution was 
much greater in the past (Carrión et  al.,  2000; Figueiral,  1995; 
García-Amorena et al., 2007; Morales-Molino et al., 2012; Salvador 
et al., 2000). The mid-Holocene “pine decline” (Mateus, 1992) rep-
resents an abrupt tipping point in maritime pine's historical abun-
dance and range. The replacement of pine forests by heathlands 
and other vegetation types is replicated in numerous palaeorecords 
across SW Iberia, representing hundreds of kilometres of coast-
line and several major river valleys (Figure  1, see Appendix  S1.1; 
Mateus,  1992, Mateus & Queiroz,  1993, Queiroz,  1999, Santos & 
Sánchez Goñi, 2003, Queiroz & Mateus, 2004, Vis, 2009, Schneider 
et  al.,  2016). The timing of this event centres on 7000–6500  cal. 
years BP (Before Present, relative to 1950 AD). Pine decline led to 
structural and functional shifts in vegetation, with heathlands and 
maquis vegetation substituting forests, often permanently (Queiroz 
& Mateus, 2004; Santos & Sánchez Goñi, 2003).

The pine decline is a critical transition in the Holocene vegeta-
tion history of the Western Mediterranean, yet its drivers are de-
bated. In Portugal, pine decline is linked to progressive aridification 
(Mateus,  1992; Mateus & Queiroz,  1993; Queiroz,  1999; Santos 
& Sánchez Goñi, 2003; Schneider et  al.,  2016; Vis,  2009), coast-
line retreat (Mateus,  1992) and human impacts (Daveau,  1988; 
Mateus,  1992; Schneider et  al.,  2016). In SE Spain, pine declines 
are attributed to ecological threshold responses to interspecific 
competition, with extrinsic drivers such as climate considered of 
secondary importance (Carrión et al., 2001, 2003, 2010). Most pa-
laeoecological studies to date have been unable to interrogate the 
roles of fire, grazing, drought and interspecific competition, due to a 
lack of proxies for these key processes in Mediterranean pine forest 
dynamics (Batllori et al., 2017; Fernandes & Rigolot, 2007; Karavani 
et al., 2018).

Here, we re-examine the causes of pine decline in the light of 
robust indicators for fire, grazing, drought and plant functional traits. 
We hypothesize that interactions between functional traits and 
disturbance regimes govern long-term forest resilience and recov-
ery. Major changes to disturbance regimes and/or community-level 
functional trait assemblages could lead to a loss of forest resilience 
and permanent state shifts from forest to heathland. To test this, we 
compare a new multiproxy record with three previous sequences 

that reflect stand-scale dynamics to reconstruct functional traits and 
their interactions with disturbance regimes at contrasting sites. We 
also predict that the ecological impacts of disturbance regime change 
are mitigated by local bioclimate. To assess this, we analyse pine tra-
jectories and climatic variables to find differences between pine de-
cline sites and areas of pine forest continuity. This study contributes 
to an understanding of multiple-stressor combinations that herald 
forest collapse and discusses how such collapses may be avoided.

F I G U R E  1   (a) Map of Pinus pinaster's distribution (shaded) and 
the study sites mentioned in the text (ESCE—Espinosa de Cerrato; 
ELCA—El Carrizal; LATR—Lagoa Travessa; BXBX—Barbaroxa de 
Baixo); (b) bioclimate of P. pinaster on the Iberian Peninsula (Abad 
Viñas et al., 2016; Appendix S1.1), showing the position of the 
four study sites in relation to dry season precipitation and warm 
season temperatures; (c) Pinus pollen percentages in the four 
palaeoecological records before and after the greatest decrease in 
pine pollen during the mid-Holocene
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2  | METHODS

2.1 | Study area

We selected four study sites for comparison—two sites with pine 
continuity and two with evidence of pine decline during the mid-
Holocene (8,200–4,200 cal. yr BP, Figure 1a). The continuity sites 
are Espinosa de Cerrato (ESCE) and El Carrizal (ELCA), located in 
the Spanish Northern Meseta (Franco Múgica et al., 2001, Franco-
Múgica et  al.,  2005; Morales-Molino et  al.,  2012, 2017). Pinus 
pinaster was once dominant at ELCA and present among P. nigra-
dominated vegetation at ESCE (Morales-Molino et al., 2017). The 
two pine decline sites are Lagoa Travessa (LATR, Mateus,  1992) 
and a new site, Barbaroxa de Baixo (BXBX, 38.0790N, 8.8098W), 
both located on the Alentejo coast south of Lisbon (see 
Appendices  S1.1–3). The four sites were selected with attention 
to factors that influence the source and fidelity of proxy data 
(Jacobson & Bradshaw,  1981; Whitlock & Larsen,  2001). To ad-
dress the aim, the sites had to: (a) be small enough to record eco-
system dynamics at a local to extra-local (stand) scale; (b) have 
minimal stream inflow and slope run-off that could introduce ma-
terial from beyond the local area; (c) contain sediments that have 
accumulated continuously and rapidly to ensure an unbroken re-
cord with complete fossilization.

2.2 | Bioclimatic analysis

To contextualize pine decline versus continuity sites in terms of 
P. pinaster's bioclimatic envelope on the Iberian Peninsula, we ex-
tracted key bioclimatic variables from the WorldClim dataset (Fick & 
Hijmans, 2017, Appendix S1.3) using a P. pinaster occurrence prob-
ability map (Abad Viñas et al., 2016, Appendix S1.1). These analyses 
were performed using the “rgdal” and “raster” packages in R (Bivand 
et al., 2019; Hijmans, 2020; R Core Team, 2020).

2.3 | Sample collection and analysis

Sedimentary records from wetlands were used to reconstruct mid-
Holocene environmental change. Sediment cores were retrieved 
using a Russian corer (ESCE, ELCA), a Dachnowsky corer (LATR) and 
a Livingstone corer (BXBX). The cores were dated radiometrically to 
develop absolute chronologies. Dates were obtained from macrofos-
sils (ESCE, BXBX) or bulk sediment (ELCA, LATR). Age–depth models 
were based on accelerator mass spectrometer (AMS) dates for three 
of the sites (ESCE, ELCA and BXBX). The BXBX age–depth model 
was constructed in OxCal 4.1.7 using Markov chain Monte Carlo 
modelling (Bronk Ramsey, 2009). Further details are given in Mateus 
(1989), Franco Múgica et  al.,  (2001), Franco-Múgica et  al.,  (2005), 
Morales-Molino et al., (2017) and Appendices  S1.4–6.

Pollen, an indicator of past vegetation, was extracted from 
the sediments using standard acetolysis-based techniques (Moore 

et  al.,  1991). Pollen was identified using regional guides (listed in 
Appendix  S1.3). Particular attention was paid to the identification 
of Ericaceae and Cistaceae pollen, following morphological criteria 
developed by Queiroz (1999) and Mateus (1989).

Disturbance indicators help to improve interpretation of vegeta-
tion change. Changes in grazing pressure are based on coprophilous 
fungal spores (i.e. Apiosordaria, Cercophora, Coniochaeta, Podospora, 
Sordaria, Sporormiella: van Geel & Aptroot,  2006). Fire history is 
based on charcoal particles. A local-scale fire history based on mac-
roscopic charcoal (particles > 150 µm) was developed at BXBX, with 
contiguous samples extracted by sieving (Whitlock & Larsen, 2001). 
Microscopic charcoal sequences are also available for three of the 
sites (ESCE, ELCA and BXBX), quantified following Finsinger and 
Tinner (2005). Charcoal records are considered robust indicators 
of biomass burned and fire episode frequency (Ali et  al.,  2012). 
Methods to reconstruct other key aspects of fire regimes (intensity, 
severity and seasonality) from charcoal are still under development.

2.4 | Numerical analyses

To reconstruct a mid-Holocene fire history for BXBX, charcoal 
accumulation rates (CHAR) were calculated and normalized to 
z-scores following Power et  al.,  (2008). For the macroscopic char-
coal record, fire peaks related to local fire episodes were sepa-
rated from the “background” using a 500-year lowess smoother in 
CharAnalysis (Higuera et  al.,  2009). Background charcoal reflects 
long-term changes in charcoal production and dispersal (Whitlock 
& Larsen, 2001) and approximates the amount of biomass that has 
been burned over time (Vannière et al., 2016).

Possible drivers of fire activity were examined by comparing the 
BXBX charcoal record with regional palaeoclimatic records (Cacho 
et al., 1999, 2001; Rodrigues et al., 2009; Thatcher et al., 2020), local 
changes in geochemistry and diatom assemblages (Cruces, 2015, Leira 
et al., 2019), and lake level variations at BXBX. The latter were derived 
from detrended correspondence analysis of aquatic and wetland in-
dicators, classified as deep-water limnic, shallow-water telmatic and 
semi-terrestrial taxa based on modern analogues (Queiroz, 1999).

Functional traits are key to understanding ecosystem resilience 
and responses to multiple stressors (Batllori et  al.,  2017; Enright 
et  al.,  2014). Integration of plant functional traits and palaeoeco-
logical data provides unique long-term insights into vegetation–
disturbance interactions (Brussel et  al.,  2018). We assigned trait 
scores to pollen taxa to permit interpretation of the pollen se-
quences in terms of plant functional traits (Barboni et  al.,  2004; 
Brussel et al., 2018). Trait scores were derived from Iberian records 
in the BROT2 database (Tavşanoğlu & Pausas, 2018). Selected traits 
were growth form, post-fire regeneration strategy, spinescence and 
taxonomic class, representing a range of adaptations to fire, drought 
and grazing (Brussel et al., 2018; Hanley et al., 2007; Tavşanoğlu & 
Pausas, 2018). Taxa were included if they were: (a) easily determined 
to species or genus level and attributable to one/few plant species; 
(b) sufficiently abundant in the pollen record to represent population 
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dynamics; (c) representative of plants in the site's vicinity (in the 
case of well-dispersed Pinus and Juniperus pollen, conifer stomata 
or macrofossils are reliable indicators of local presence: Ammann 
et al., 2014); and (d) unambiguously associated with terrestrial veg-
etation. Observed traits were compared with 1,000 null models 
in which traits were randomly assigned to each of the pollen taxa 
(Brussel et al., 2018).

Resilience indicators were examined in each of the four records to 
understand whether the pine decline represents a critical transition. 
Standard deviation is considered an appropriate resilience indicator 
for palaeoecological data with uneven temporal sampling (Stegner 
et al., 2019). The standard deviation of pine pollen sequences was 
analysed in R using code provided in Stegner et al.,  (2019) and as-
sessed with Kendall's tau, a nonparametric correlation statistic 
(Dakos et al., 2010).

Phase plots illustrate interactions between a system's eco-
logical state and environmental drivers (Davies et  al.,  2018; Willis 
et al., 2010). Here, we used phase plots to examine the causes of 
pine decline, comparing Pinus pollen percentages with rates of 
change, climate, fire and grazing proxies.

3  | RESULTS

3.1 | Pinus pinaster bioclimate

Analysis of P. pinaster distribution compared with bioclimatic vari-
ables shows that the two pine decline sites, LATR and BXBX, oc-
cupy the lower limit of the species' current range in terms of dry 
season precipitation (Figure 1b). This contrasts with the more central 
position of ELCA and ESCE sites within or near the Spanish Tierra 
de Pinares, where pollen and macrofossil data indicate pine forest 
continued uninterrupted through the mid-Holocene (Franco Múgica 
et al., 2001; Franco-Múgica et al., 2005; Morales-Molino et al., 2012, 
2017).

3.2 | Chronology

Organic sedimentation in BXBX began around 7,250  cal. BP and 
accumulated at approximately 1  mm/year until 5,350  cal. BP 
(Appendix  S1.5). Thereafter, sediment accumulation is affected 
by a regional phenomenon, the Lagoa Travessa hiatus, which rep-
resents the desiccation of Portuguese interdunal lakes approx. 
4000–3000 cal. year BP (Leira et al., 2019; Mateus, 1992; Queiroz 
& Mateus, 2004). Our analysis therefore focusses on the pre-hiatus 
period of the mid-Holocene.

3.3 | Pollen (vegetation)

The most prominent feature of the pine decline sites is the pine 
decline itself (Figure 1c) and subsequent expansion of shrub taxa 

(Erica scoparia, Corema album and Juniperus—see Appendix S1.7). 
At BXBX, the better dated of the two pine decline sites, pine pol-
len percentages decreased from 60% to 25% in the 200 years be-
tween 6,915 and 6,715 cal. BP (Figure 2). Pine pollen accumulation 
rates declined from 2040 to 850 grains cm−2  year−1. A compara-
ble decline occurs at LATR between 7,000 and 6,000 cal. yr BP, 
whereas no significant change in median Pinus values occurs at the 
other sites (Figure 1c).

Pine's local presence prior to the pine decline is attested by well-
preserved pine needles with stomatal structure characteristic of 
P. pinaster (Salvia García Álvarez pers. comm., Álvarez et al., 2009) 
in BXBX sediments dated 7,240—6,940  cal. BP (photograph in 
Appendix  S1.6), along with conifer stomata at various depths (see 
Appendix   S1.9). Pine pollen is a robust proxy for pine plant abun-
dance in the landscape (Appendices S1.3, 12, 13).

3.4 | Disturbance indicators (grazing, fire)

At BXBX, fungal indicators of grazing (van Geel and Aptroot, 2006) 
increase around 7,000  cal. BP and reach their maximum around 
6,700 cal. BP before declining (Figure 2).

F I G U R E  2   Temporal trends in principal proxies of the BXBX 
palaeoecological record: (a) wetland taxa ordination scores (DCA 
axis 1); (b) macroscopic charcoal abundance expressed as z-scores 
(line) and significant charcoal peaks (triangles, see Appendix S1.10); 
(c) combined abundance of grazing indicators (Apiosordaria, 
Cercophora, Coniochaeta, Podospora, Sordaria, Sporormiella) shown 
as fungal spore accumulation rates (spores/cm2/year) for raw 
(dashed line) and lowess-smoothed data (solid line); (d) pine pollen 
percentages with 95% confidence intervals. See Appendices  S1.7–9 
for complete pollen, spore and charcoal records
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The local fire proxy, macroscopic charcoal, has an average sam-
pling resolution of 10  years and is the most abundant during two 
phases: 7180–6825 and 6615–5825  cal. BP (Figure  2). Peak anal-
ysis of macroscopic charcoal yielded an average fire return interval 
of approximately 80  years in the early part of the record, with a 
decreasing frequency after 6,300 cal. BP. The longest fire-free in-
terval was approx. 210 years (6825–6615 cal. BP) and the shortest 
30 years (6925–6895 cal. BP; Figure 2). Extended fire-free intervals 
after 6,000 cal. BP are accompanied by the highest representation 
of fire-sensitive Juniperus (Appendix S1.7). Longer fire-free intervals 
in the late Holocene are not considered here (see Appendix  S1.7).

Detrended correspondence analysis (DCA) of BXBX wetland indi-
cators (Appendix  S1.8) weighted limnic taxa positively on axis 1 (e.g. 
Pediastrum algae and Nymphaea alba pollen) and semi-aquatic and 
telmatic taxa negatively (e.g. Hydrocotyle, Cyperaceae, Hypericum 
elodes). The DCA trend shows strong affinities with regional precip-
itation changes in isotopic records, local hydrological changes and 
fire history (Figure 2, Appendix S1.11). The latter is highly correlated 
with the DCA result (Spearman's rho: 0.73, p < .001).

3.5 | Trait scores

Reconstructed functional trait scores for the four sites appear in 
Figure  3. Life-form traits showed strong non-random selection at 
the two pine decline sites, with shrub abundance exceeding 95% 
confidence intervals (CIs) of the null models after the pine decline. 

No evidence of non-random selection is apparent at the pine con-
tinuity sites. Pine declines occurred after resprouters became 
more abundant than obligate seeders at BXBX and Lagoa Travessa 
(Figure 3). Spinescence also exhibited non-random selection at LATR 
and BXBX, particularly after the pine decline.

3.6 | Resilience analyses

Pine decline is associated with a significant change in resilience sta-
tistics at both BXBX and LATR (Kendall's τ: >0.50, p < .0001; Table 1). 
No significant change is recorded at the pine continuity sites.

Pine decline sites experienced rapid rates of change during the 
decline compared with continuity sites (Figure 4a). Precursors of the 
pine decline include a temporary reduction in regional precipitation, 
a decrease in local fire activity and an increase in grazing indicators 
(Figure 4b–d).

F I G U R E  3   Traits analysis of the palaeoecological records with 90% and 95% confidence intervals derived from bootstrapping (dotted 
lines; see Brussel et al., 2018). Upper panels: life-form (plant height). Lower panel: post-fire regeneration strategy (ability to resprout or re-
emerge as seedlings after fire) and spinescence. PD: pine decline
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TA B L E  1   Testing for a critical transition in each of the 
palaeorecords around 6,750 cal. yr BP. Sites listed in N–S order

Site code
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4  | DISCUSSION

4.1 | Causes of the pine decline

Pine decline represents a critical transition in the ecological history 
of the Western Mediterranean (Table 1). A combination of drought, 
fire suppression, interspecific competition and the expansion of 
grazing appears to have driven pine decline in SW Iberia during the 
mid-Holocene. These drivers had greater effect in SW Iberia as this 
location lies close to the bioclimatic limits for Pinus pinaster com-
pared with the Spanish Northern Meseta (Figure 1). It is probable 
that the SW Iberian populations were also more drought sensitive 
than the Spanish populations (Zas et al., 2020).

4.2 | Drought

Drought stress is regarded as a key predictor of mortality in Iberian 
P. pinaster stands in the present day (Navarro-Cerrillo et al., 2018; 
Prieto-Recio et al., 2015). Droughts cause stem contraction in P. pin-
aster, and the trees enter a quiescent state (Vieira et al., 2013). In this 
state, prolonged and/or severe droughts lead to carbon starvation, 
increased susceptibility to pathogen attack, and eventually hydraulic 
failure and tree mortality (McDowell et al., 2008). In SW Iberia dur-
ing the mid-Holocene, a multidecadal drought is clearly registered in 
marine and terrestrial isotopic records between 7,000 and 6,500 cal. 
BP (Appendix S1.11, Cacho et al., 1999, 2001, Rodrigues et al., 2009, 
Thatcher et al., 2020), including strong indications of low water lev-
els at BXBX (Figure 2, Cruces, 2015, Leira et al., 2019). We suggest 
that this drought was sufficient to kill pines at the climatically sensi-
tive limits of their range.

Our hypothesis that multidecadal drought drove pine decline, 
rather than a long-term aridification trend, contrasts with previous in-
terpretations (Jalut et al., 2000). Aridification, coastal retreat, human 

impacts and estuarine dynamics have been invoked as extrinsic driv-
ers of the mid-Holocene pine decline in Portugal (Mateus,  1992; 
Queiroz, 1999; Santos & Sánchez Goñi, 2003; Schneider et al., 2016; 
Vis, 2009). However, interpretations that rely on coastal processes 
are difficult to uphold as mid-Holocene pine declines are also re-
corded in Portugal's hinterlands and uplands (Connor et  al.,  2012; 
van der Knaap & van Leeuwen, 1995; Vis, 2009). Mid-Holocene pine 
declines in SE Spain, involving several Pinus species, have been ex-
plained by intrinsic processes: threshold ecological responses to fire 
regime changes and interspecific competition (Carrión et al., 2001, 
2003, 2010; Carrión & van Geel, 1999).

4.3 | Fire regime change

The failure of SW Iberian P. pinaster populations to recover after 
the end of the drought suggests that fire and competition factors 
came into play. Ecological models conceptualize fire as a key driver 
of deforestation in the Mediterranean region (Baeza et  al.,  2007; 
Batllori et al., 2017; Karavani et al., 2018; Mouillot et al., 2002) and 
in Mediterranean-type ecosystems globally (Bowman et  al.,  2013; 
Enright et  al.,  2015). Fire-induced deforestation is also implicated 
in the creation and persistence of many European heathlands (van 
der Knaap & van Leeuwen, 1995; Loidi et al., 2010; López-Merino 
et al., 2012; Odgaard, 1992; Odgaard & Rasmussen, 2000). Our data 
provide another possibility-that fire deprivation or suppression can 
lead, under conditions of environmental stress for pines, to a state 
shift from pine forest to heathland.

The regular occurrence of fires prior to the pine decline (Figure 2) 
shows the pine forests were resilient to fire return intervals as low as 
30 years (cf. Garcia-Gonzalo et al., 2011, Leys et al., 2014, Mouillot 
et  al.,  2002). Pine decline occurred during two centuries of local 
fire absence, the longest fire-free interval of the mid-Holocene at 
BXBX. Pine decline in SE Spain also occurred during a period of low 

F I G U R E  4   Phase plots showing (a) pine rate of change (ROC) with the rapid decline of Pinus pollen at pine decline sites (solid lines) 
compared with pine continuity sites (dashed lines); (b–d) driver–response relationships in the BXBX record (smoothed curves). Sea-surface 
temperatures from Rodrigues et al., (2009)
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fire activity (Carrión et al., 2001). Pinus pinaster tolerates a variable 
or mixed fire regime (Fernandes & Rigolot,  2007), yet pine seed-
ling emergence rates decrease rapidly with time since fire (Pausas 
et al., 2008). This is perhaps due to the short life span of P. pinaster 
seeds once released from the cones (Ferrandis et al., 1996). A 200-
year absence of fires is likely to have had detrimental effects on pine 
regeneration depending on levels of serotiny in the population.

However, fire's absence cannot explain the inability of pine pop-
ulations to recover after the pine decline, given that regular fires re-
turned after the drought phase (Figure 2) and pines in Western Iberia 
typically produce no or few serotinous cones (Tapias et al., 2004). 
Competition and grazing thus emerge as probable explanations for 
poor pine recovery.

4.4 | Interspecific competition

Interspecific competition at the pine decline sites is indicated by the 
switch in dominance from seeders to resprouters in Figure 3. This 
dominance shift occurs before the pine decline and may represent 
an early-warning signal for pine decline. Ecological studies indi-
cate that shrubby resprouters are quicker to recover from drought 
than obligate seeders (Parra & Moreno, 2018; Zeppel et al., 2016) 
and often outcompete pine trees in post-fire recovery (Calvo 
et al., 2008; Nuñez et al., 2003; Taboada et al., 2017). Pinus pinaster 
seedlings are shade-intolerant and often outcompeted by resprout-
ers (Batllori et al., 2017; Calvo et al., 2008; Torres et al., 2016), which 
also compete with Mediterranean pine forests for moisture, promot-
ing drought stress (Karavani et al., 2018). Our data suggest that pine 
decline was the result of both abiotic stress (multidecadal drought) 
and biotic interactions (competition) in the context of fire regime 
change (Carrión et al., 2001, 2003, 2010).

Our observations suggest that obligate seeder trees may be 
replaced by shrublands in the absence of fire (Figure 4). Ecological 
models that simulate the effects of drought–fire interactions in 
Mediterranean vegetation provide little indication of this potential 
outcome (Batllori et al., 2017; Mouillot et al., 2002). This may be be-
cause the duration of mid-Holocene drought in SW Iberia was longer 
than those simulated in models (e.g. 15 years in Batllori et al., 2017). 
It may also reflect the additional effect of grazing pressure, which 
has received less attention in regional modelling simulations, but is 
regarded as a critical top-down control on woody plant populations 
(Archibald & Hempson, 2016; Bond, 2005; Midgley et al., 2010).

4.5 | Grazing

Grazing is a disturbance that persisted long after the drought ended 
in SW Iberia (Figure 4). Erica scoparia, the main resprouter that re-
placed pine at LATR and BXBX, is promoted by grazing (Bartolomé 
et al., 2005). The increase in grazing indicators (Figures 2 and 4) prior 
to pine decline indicates that herbivory may have played a role in 
triggering and maintaining the state shift.

Grazing reduces biomass, impacting on fire regimes (Archibald & 
Hempson, 2016). In the south-western USA, when European farmers 
introduced livestock to pine forests in the 19th century, grazing pre-
vented surface fires that had previously been a regular occurrence 
(Swetnam et al., 1999). This grazing-induced change in fire regime 
allowed pine competitors to proliferate (Fulé et  al.,  1997; Savage 
& Swetnam, 1990; Swetnam et al., 1999). A review by Richardson 
et  al.,  (2007) describes numerous examples of grazing impacts on 
pine forests worldwide.

As SW Iberia was colonized by Neolithic farmers, we suggest 
that the domestic livestock suppressed fire and altered pine recruit-
ment, accelerating pine decline. Native herbivores have been shown 
to have significantly different effects on seedling establishment, 
plant diversity and vegetation structure compared with introduced 
livestock (Perea et al., 2016). Common pre-Neolithic herbivores in 
SW Iberia included red deer (Cervus elaphus), wild boar (Sus scrofa), 
auroch (Bos primigenius), wild horse (Equus ferus) and roe deer 
(Capreolus capreolus). Domestic sheep, goats, cattle and pigs largely 
replaced these taxa in Neolithic archaeological assemblages from 
SW Iberia (Carvalho, 2002; Soares, 1995, 1996).

Intense grazing in the absence of fire strongly favours Erica 
scoparia (Bartolomé et al., 2005), the taxon that expands most rap-
idly before and during the pine decline. Bartolomé et  al.,  (2005) 
suggest that fire puts downward pressure on E. scoparia recruit-
ment by depleting seedbanks, whereas grazing facilitates rapid 
spread. The decline in spinescent shrubs (Figure 3) may also relate 
to overgrazing. Spinescence is a trait regarded as an early evolu-
tionary defence against vertebrate herbivory (Charles-Dominque 
et al., 2016; Hanley et al., 2007) and is often ineffective against graz-
ers in Mediterranean shrublands during drought (Kohl et al., 2014; 
Papachristou et al., 2005; Rogosic et al., 2006).

4.6 | Integrating drought, fire and grazing stressors

The relative importance of herbivory and fire in biomass consump-
tion is strongly dependent on rainfall gradients. Fire activity in 
Mediterranean zones can be “switched on” when climate-controlled 
thresholds are crossed and fuel loads/connectivity increase (Pausas 
& Paula, 2012). In the African context, herbivory is the primary con-
sumer in low rainfall zones, but fire takes over as rainfall increases 
(Archibald & Hempson, 2016). This threshold is lower on nutrient-
poor soils. Hence, biomass consumption in drought phases (such as 
the pine decline) may be dominated by herbivory (Figure 2). Grazing's 
potential impact on fire spread is integrated into Pausas and Paula’s 
(2012) aridity/productivity gradient in Figure  5, along with a con-
ceptual model of ecological succession in maritime pine forests that 
compares grazing and drought conditions to fire-led succession.

Given the prediction of more severe droughts in the future 
(Batllori et al., 2013; Turco et al., 2018), there are suggestions that 
resilience of Mediterranean forests could be improved by artifi-
cially introducing resprouters into the understorey (see Gavinet 
et al., 2016; Karavani et al., 2018; Moreno-Fernández et al., 2018). 
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Our data suggest that such a strategy could push maritime pine for-
ests closer to a tipping point where forest loss could be expected 
under drought conditions, grazing pressure or as a result of inter-
specific competition (Calvo et al., 2008; Prieto-Recio et al., 2015). 
Addition of resprouters may increase moisture stress (Karavani 
et al., 2018) and fuel connectivity in a way that encourages severe, 
mortality-inducing canopy fires (Botequim et al., 2017). Greater im-
pacts might be expected among pine populations with few recov-
ery and resilience traits (Zas et  al.,  2020). As grazing also favours 
shrubby resprouters, management cannot rely on vertebrate herbi-
vores to replace fire's ecological functions (Bartolomé et al., 2005; 
Hean & Ward, 2012).

5  | CONCLUSIONS

The aim of this paper was to analyse a critical transition from 
Mediterranean forest to shrubland. The palaeorecord provides 
strong evidence of threshold responses in vegetation and fire regime 

in response to drought and grazing pressures at the bioclimatic limit 
of Pinus pinaster's range. Our data support the theory that relatively 
frequent fire (30–130-year return interval) gave mid-Holocene P. pi-
naster an advantage over competitors. These competitors showed 
early-warning signals of overtaking pine, manifested as a dominance 
switch from obligate seeders to post-fire resprouters at least a cen-
tury before pine decline. We find a good agreement between the 
trajectory of the pine decline and ecological models involving mul-
tiple stressors, which provide more convincing mechanisms for the 
pine decline than an aridification trend or human impact. However, 
current models require improvements to predict forest-to-shrubland 
transitions where drought and grazing interact to suppress fire and 
thus limit recruitment in obligate seeders.

The most important implication of our research is that manage-
ment decisions made now (in relation to grazing, fire and resprouter 
establishment) will determine how future ecosystems respond to 
climate change.
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