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Introduction

Jacques (or Jakob) Bernoulli (1654-1705) was a renowned Swiss mathematician who made important contributions to probability theory and partial differential equations. He was the first to discover the number 𝑒. But his most famous result is, at least for probabilists, the first proof of the law of large numbers. To this end, he analyzed the concept of Bernoulli law, which is the simplest non trivial distribution you can think about as the sum of two Dirac masses. It is the distribution of a random variable 𝑏 which can only take 2 values 0 and 1. We denote 𝑝 = P(𝑏 = 1) = 1 -P(𝑏 = 0) A very common example is a coin that, once thrown, falls either on head (modeled by the state 1) or tail (modeled by 0). Even if one would expect in general the probability of each event to be equal to 1/2, it may well be rather 𝑝 ∈ (0, 1) if the coin is rigged. In Ars Conjectandi, Bernoulli showed that if one throws such a coin independently a number 𝑛 of times, then, with large probability, one should see approximately 𝑝𝑛 heads if 𝑛 is large enough. To state this law of large number more precisely, he showed that if 𝑏 1 , . . . , 𝑏 𝑛 denotes the outcome of 𝑛 independent Bernoulli trials, then for any 𝑎 < 𝑝 < 𝑏

lim 𝑛→∞ P 1 𝑛 𝑛 ∑︁ 𝑖=1 𝑏 𝑖 ∈ [𝑎, 𝑏] = 1 .
Alice Guionnet : Université de Lyon, ENSL, CNRS, France; email: alice.guionnet@ens-lyon.fr 1 But how much can we choose 𝑎, 𝑏 close to 𝑝 so that this result remains true? Few years later, A. de Moivre (1667-1754) quantified the size of the error and proved the first central limit theorem, namely that 𝑎, 𝑏 can be at a distance of about 1/ √ 𝑛 of 𝑝 in the sense that lim

𝑛→∞ P 1 √︁ 𝑛𝑝(1 -𝑝) 𝑛 ∑︁ 𝑖=1 (𝑏 𝑖 -𝑝) ∈ [𝑎, 𝑏] = 1 √ 2𝜋 ∫ 𝑏 𝑎 𝑒 -𝑥 2 2 𝑑𝑥 .
This was the first occurrence of the central limit theorem and the start of modern probability theory and statistics. Implicitly, we so far assumed that 𝑝 does not depend on 𝑛 and belongs to (0, 1). Later on, we shall also be interested in the case where 𝑝 depends on 𝑛. Then, it can be checked that the central limit theorem still holds as long as 𝑝𝑛 goes to infinity. If 𝑝𝑛 goes to a finite constant 𝑐, then it can not hold since 𝑛 𝑖=1 𝑏 𝑖 is an integer so that the above random variable is discrete. In fact, it converges towards the Poisson distribution lim

𝑛→∞ P 1 √︁ 𝑛𝑝(1 -𝑝) 𝑛 ∑︁ 𝑖=1 (𝑏 𝑖 -𝑝) ∈ [𝑎, 𝑏] = ∑︁ 𝑘 ∈𝑐+ √ 𝑐 [𝑎,𝑏] 1 𝑘! 𝑐 𝑘 𝑒 -𝑐
We will see later that this transition between such continuous and discrete limits is also key to describing the spectrum of Bernoulli Random Matrices. The last concept which is central in probability theory and important in these notes is entropy. It was introduced by Ludwig Boltzmann and Claude Shannon in physics and information theory respectively as a way to measure disorder. For again 𝑛 independent Bernoulli trials with parameter 𝑝, it is defined for any 𝑞 ∈ [0, 1] by lim where 𝑆 𝑝 (𝑞) = 𝑞 𝑝 ln 𝑞 𝑝 + 1-𝑞 1-𝑝 ln 1-𝑞 1-𝑝 is the entropy or rate function. In this survey, I will discuss Bernoulli Random Matrices. A Bernoulli Random Matrix is a 𝑛 × 𝑛 symmetric matrix with independent Bernoulli entries (modulo the symmetry constraint) whose size 𝑛 is going to infinity and will discuss the law of large numbers, the fluctuations, and the entropy for their spectrum and eigenvectors. There are many motivations to study random matrices. The first goes back to Wishart who considered random matrices to study correlations in large data sets. Such questions are very modern, with the need to analyze larger and larger data sets and machine learning. The second comes from physics and the work of Wigner and Dyson. They proposed to model the Hamiltonian of excited nuclei by random matrices, an idea which turned out to be quite successful as indeed real nuclei turned out to have energy levels distributed like the eigenvalues of random matrices. But Bernoulli matrices are special among all other random matrices because they describe the adjacency matrix of a Erdös-Rényi graph 𝐺 (𝑛, 𝑝). Indeed, the later is just a graph build on 𝑛 (labeled) vertices, with an edge drawn independently between each couple of vertices with probability 𝑝. Studying the eigenvalues of the adjacency matrix of a graph gives valuable geometric information, such as the size of its boundary (expanders) or the number of specific configurations, such as triangles, that it contains. One can also be interested in the combinatorial properties of such matrices and for instance focus on the probability that the matrix is singular, see e.g [START_REF] Vu | Recent progress in combinatorial random matrix theory[END_REF]. My viewpoint will be to investigate the properties of the eigenvalues and eigenvectors of Bernoulli random matrices, as a particularly nice and well-documented example of random matrices.

To simplify, I will restrict myself to symmetric Bernoulli matrices B 𝑛 throughout these notes :

B 𝑛 (𝑖, 𝑗) = B 𝑛 ( 𝑗, 𝑖)
and assume that (𝐵 𝑛 (𝑖, 𝑗), 𝑖 ≤ 𝑗) follows a Bernoulli law with parameter 𝑝. Also, I will take B 𝑛 (𝑖, 𝑖) random, but could take it equal to zero without changing much the statements of most of the results. My goal is to understand the spectrum of B 𝑛 as well as the properties of its eigenvectors as 𝑛 goes to infinity. One can easily guess that these properties should depend on the parameter 𝑝. Indeed, thinking about the Erdös-Rényi graph, one sees that the average degree of a vertex is 𝑝𝑛. The graph will be very dense if 𝑝𝑛 goes to infinity fast enough but sparse if it is finite.
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Indeed, it is well known since the breakthrough paper of Erdös and Rényi that if 𝑛𝑝 < 1, 𝐺 (𝑛, 𝑝) will almost surely have no connected component of size greater than 𝑂 (log 𝑛), if 𝑛𝑝 = 1 there is a giant connected component but it is of size of order 𝑛 2/3 , if 𝑛𝑝 goes to a constant 𝑐 > 1 it will have a unique giant component but lots of small components, and isolated vertices will continue to exist until 𝑛𝑝 > (1 -𝜖) ln 𝑛, whereas if 𝑛𝑝 > (1 + 𝜖) ln 𝑛 the graph will almost surely be connected. Here 𝜖 is some positive real number as small as wished. In the case where 𝑛𝑝 is of order 𝑐, the finite size connected components will create small diagonal blocks in the Bernoulli matrix, with entries equal either to zero or one and therefore finitely many possible eigenvalues. Hence, we expect the spectrum to accumulate at these possible values. But should there be other possible eigenvalues? Similarly, we see that the eigenvectors related with these eigenvalues are localized on a few vertices. But should we also have delocalized eigenvectors ? On the contrary, in the case where 𝑛𝑝 > (1 + 𝜖) ln 𝑛, we may expect eigenvectors to be delocalized and the spectrum to be nicely continuous. In this case, a whole theory has been developed to show that the spectrum and the eigenvalues of Bernoulli matrices have the same properties as those of a random matrix with Gaussian entries. The latter is well known to be much easier to study, for instance, because the joint law of its eigenvalues is rather simple and independent of the eigenvectors. Conversely, Bernoulli matrices resemble more heavy tails matrices when 𝑝𝑛 is of order one, in the sense that it has mostly very tiny entries but a few large entries. Understanding the transition between these two behaviors is at the heart of random matrix theory.

In this survey, I will start discussing the asymptotic behavior of the spectrum in both sparse and dense cases. Then, I will consider its fluctuations, both local and global, as well as the properties of its eigenvectors. Finally, I will discuss the large deviations of the spectrum, for instance how to estimate the probability that the second eigenvalue of Bernoulli matrices takes an unexpected value.
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Law of large numbers

In this section we shall see that the limiting distribution of the spectrum differs a lot according to the whether 𝑝𝑛 goes to infinity or not.

A first remark should be made about the matrix B 𝑛 : its entries are not centered. It will be more convenient to center them and renormalize the matrix properly. To this end we make the following decomposition

B 𝑛 = √︁ 𝑛𝑝(1 -𝑝)X 𝑛 + 𝑝1
where 1 is a matrix whose entries are all equal to one, whereas the entries of X 𝑛 are centered and renormalized to have covariance 1/𝑛:

X 𝑛 (𝑖 𝑗) = B 𝑛 (𝑖 𝑗) -𝑝 √︁ 𝑛𝑝(1 -𝑝)
.

The matrix 1 has one non trivial eigenvalue which equals 𝑛, and flat eigenvector 

𝜆 𝑋 𝑛 ≤ 𝜆 𝐵 𝑛 ≤ 𝜆 𝑋 𝑛-1 • • • ≤ 𝜆 𝑋 1 ≤ 𝜆 𝐵 1 
Therefore, it is in general not difficult to retrieve the properties of the eigenvalues of B 𝑛 / √︁ 𝑛𝑝(1 -𝑝) from those of X 𝑛 . Hereafter we will therefore concentrate mostly on X 𝑛 .

Dense case

The first result describes the asymptotic distribution of the spectrum in the dense case and shows that the limit is described by the famous semi-circle law: where 𝜎 is the semi-circle law given by

𝜎(𝑑𝑥) = 1 2𝜋 √︁ 4 -𝑥 2 1 |𝑥 | ≤2 𝑑𝑥. (2.1)
The semi-circle law is ubiquitous to random matrix theory as it describes the asymptotic behavior of random matrices with Gaussian entries but in fact any random matrix with independent centered entries

(𝑎 𝑖 𝑗 ) 𝑖, 𝑗 such that E[| √ 𝑛𝑎 𝑖 𝑗 | 2+𝜖
] is uniformly bounded for some 𝜖 > 0. Such a convergence was proven first by Wigner in the case where 𝑝 is independent of 𝑛 based on the computation of the moments E[TrX 𝑘 𝑛 ]. Indeed, one can expand the trace of moments of matrices in terms of the entries, and observe that the indices which contribute to the first order of this expansion can be described by rooted trees, whereas 𝜎(𝑥 𝑘 ) is equal to the Catalan numbers which enumerate them.

Sparse Case

On the other hand, the limiting distribution of the spectrum is very different when 𝑝𝑛 is of order one. Namely we have the following theorem, see [START_REF] Khorunzhy | Eigenvalue distribution of large weighted random graphs[END_REF][START_REF] Zakharevich | A generalization of Wigner's law[END_REF]. 𝜇 𝑐 depends on 𝑐 and here are some plots :

Simulation for 𝑐 = 1, 2, 3 (Courtesy of J. Salez) The simulations indicate the presence of atoms. They were shown to be exactly given by totally real algebraic integers in [START_REF] Salez | Every totally real algebraic integer is a tree eigenvalue[END_REF] for all 𝑐 > 0: these are the roots of monic polynomials with integer coefficients. It is easy to understand that the atoms should be totally algebraic integers as finite connected components are diagonal blocks with 0 or 1 entries whose characteristic polynomials have such roots. It is a much stronger statement to show that all such roots are atoms, in particular since totally algebraic integers are dense in the real numbers. 𝜇 𝑐 has also a continuous spectrum: it was indeed proven in [START_REF] Bordenave | Mean quantum percolation[END_REF] that 𝜇 𝑐 has a non trivial continuous part if and only if 𝑐 > 1.This result is in fact hard to prove as the limit laws 𝜇 𝑐 are described as the solution of complicated equations [START_REF] Bordenave | Resolvent of large random graphs[END_REF], see also [START_REF] Ben | The spectrum of heavy tailed random matrices[END_REF][START_REF] Benaych-Georges | Central limit theorems for linear statistics of heavy tailed random matrices[END_REF]. However, such description could be used in [START_REF] Arras | Existence of absolutely continuous spectrum for Galton-Watson random trees[END_REF] to prove the existence of an absolutely continuous part for sufficiently large 𝑐. Moreover, the first order expansion of 𝜇 𝑐 in 𝑐 going to infinity was derived in [START_REF] Enriquez | Spectra of large diluted but bushy random graphs[END_REF]. The spectrum at the origin seems to have a Dirac mass whose weight could be computed [START_REF] Bordenave | The rank of diluted random graphs[END_REF].

Idea of the proof

The first proof of Theorem 2.1 estimated the moments 1 𝑛 Tr(X 𝑛 ) 𝑘 for all integer numbers 𝑘, see [START_REF] Wigner | On the distribution of the roots of certain symmetric matrices[END_REF] for the the first theorem and [START_REF] Khorunzhy | Eigenvalue distribution of large weighted random graphs[END_REF][START_REF] Zakharevich | A generalization of Wigner's law[END_REF][START_REF]The spectrum of heavy tailed random matrices[END_REF] for the sparse case. However, in order to go into more local results like the behavior of the eigenvectors or the local fluctuations, and as well to have more explicit formulas for the limit law, it is more convenient to study the resolvent. This path can be used to study the asymptotics of the spectral measure of any self-adjoint matrix X 𝑛 with independent entries modulo the symmetry constraint, and was generalized to study heavy tails matrices in [START_REF] Khorunzhy | Eigenvalue distribution of large weighted random graphs[END_REF][START_REF]The spectrum of heavy tailed random matrices[END_REF][START_REF] Benaych-Georges | Central limit theorems for linear statistics of heavy tailed random matrices[END_REF] based on the ideas from [START_REF] Bouchaud | Theory of Lévy matrices[END_REF]. The idea is to derive the asymptotics of the Stieljes transform

𝐺 𝑛 (𝑧) = 1 𝑛 Tr(𝑧 -X 𝑛 ) -1 = 1 𝑛 𝑛 ∑︁ 𝑖=1 1 𝑧 -𝜆 𝑋 𝑖
for a complex number 𝑧 away from the real line.

To this end, we use the Schur complement formula which reads

(𝑧 -X 𝑛 ) -1 𝑖𝑖 = 1 𝑧 -𝑋 𝑖𝑖 -𝑋 𝑖 , (𝑧 -X (𝑖) ) -1 𝑋 𝑖 (2.2)
where 𝑋 𝑖 = (𝑋 𝑖 𝑗 ) 𝑗≠𝑖 and X (𝑖) is the associated pinciple minor, namely the (𝑁 -1) × (𝑁 -1) matrix obtained from X 𝑛 by removing the 𝑖th row and column. 𝑋 𝑖𝑖 goes to zero with 𝑁 and we can check (e.g by estimating the 𝐿 2 norm of the difference) that with probability going to one

𝑋 𝑖 , (𝑧 -X (𝑖) ) -1 𝑋 𝑖 = ∑︁ 𝑗: 𝑗≠𝑖 𝑋 2 𝑖 𝑗 (𝑧 -X (𝑖) ) -1 𝑗 𝑗 + 𝑜(1) . (2.3)
This is were the 'light tail" hypothesis 𝑝𝑛 going to infinity starts to matter. Then, the entries 𝑋 2 𝑖 𝑗 go to zero and have variance 1/𝑛 so that, since the 𝑋 𝑖 𝑗 are independent of X (𝑖) , the law of large numbers (or a second moment computation) asserts that with probability going to one

∑︁ 𝑗: 𝑗≠𝑖 𝑋 2 𝑖 𝑗 (𝑧 -X (𝑖) ) -1 𝑗 𝑗 = ∑︁ 𝑗: 𝑗≠𝑖 E[𝑋 2 𝑖 𝑗 ] (𝑧 -X (𝑖) ) -1 𝑗 𝑗 ] + 𝑜(1) = 1 𝑛 ∑︁ 𝑗: 𝑗≠𝑖 (𝑧 -X (𝑖) ) -1 𝑗 𝑗 + 𝑜(1) .
But again X (𝑖) and X 𝑛 vary only by a rank two matrix (if we complete X (𝑖) by zero entries at the 𝑖th row and column), so that their spectrum is interlaced by Weyl's interlacing property. As a consequence 1

𝑛 ∑︁ 𝑗≠𝑖 (𝑧 -X (𝑖) ) -1 𝑗 𝑗 = 1 𝑛 ∑︁ 𝑖 (𝑧 -X 𝑛 ) -1 𝑗 𝑗 + 𝑂 ( 1 (𝑧)𝑛 ) .
This approximation, together with (2.2) and (2.3) implies that with high probability

𝐺 𝑛 (𝑧) = 1 𝑛 ∑︁ 𝑖 (𝑧 -X 𝑛 ) -1 𝑗 𝑗 = 1 𝑧 -𝐺 𝑛 (𝑧) + 𝑜(1) . (2.4) 
After recalling that 𝐺 𝑛 (𝑧) goes to zero as 𝑁 goes to infinity, we conclude that since 𝐺 𝑛 (𝑧) goes to zero as the imaginary part of 𝑧 goes to infinity:

𝐺 𝑛 (𝑧) = 1 2 (𝑧 - √︁ 𝑧 2 -4) + 𝑜(1)
is approximately the Stieljes transform of the semicircle law 𝐺 𝜎 (𝑧) = 1 2 (𝑧 -√ 𝑧 2 -4). Since 𝐺 𝑛 is analytic and uniformly bounded for 𝑧 > 𝜖, Montel's theorem implies that 𝐺 𝑛 converges to this limit away from the real line, which yields the vague convergence of the empirical measure of the eigenvalues. Because 1 𝑛 Tr(X 2 𝑛 ) is in 𝐿 1 , the weak convergence follows.

On the contrary, in the heavy tails case where 𝑝𝑛 is of order one, the entries of 𝑋 𝑖 𝑗 are often very small but of order one with a positive probability. Hence, the previous law of large numbers does not hold true any more and we can not expect such a simple equation as (2.4). In fact 𝑗≠𝑖 𝑋 2 𝑖 𝑗 (𝑧 -X (𝑖) ) -1 𝑗 𝑗 , if it converges, will a priori converge to a random variable. To study this convergence, we make the following assumption on the law 𝜇 𝑛 of 𝑋 𝑖 𝑗 :

lim 𝑛→∞ 𝑛 ∫ (𝑒 -𝑖𝑢 𝑥 2 -1)𝑑𝜇 𝑛 (𝑥) = Φ(𝑢) (2.5)
with Φ such that there exists 𝑔 on R + , with 𝑔(𝑦) bounded by 𝐶 𝑦 𝜅 for some 𝜅 > -1, such that for 𝑢 ∈ C -,

Φ(𝑢) = ∫ ∞ 0 𝑔(𝑦)𝑒 𝑖𝑦 𝑢 𝑑𝑦. (2.6)
This is satisfied by the adjacency matrix of Erdös-Rényi graph with Φ(𝑢) = 𝑐(𝑒 𝑖𝑢 -1) if 𝑝𝑛 goes to 𝑐 and 𝑔 is a Bessel function [START_REF] Benaych-Georges | Central limit theorems for linear statistics of heavy tailed random matrices[END_REF], but also for other cases, for instance for 𝛼 stable laws with Φ(𝑢) = 𝑐(𝑖𝑢) 𝛼/2 and 𝑔(𝑦) = 𝐶 𝑦 𝛼/2-1 for some constants 𝑐, 𝐶.

Then, it was shown in [START_REF]The spectrum of heavy tailed random matrices[END_REF][START_REF] Benaych-Georges | Central limit theorems for linear statistics of heavy tailed random matrices[END_REF] that 𝐺 𝑛 (𝑧)= 1 𝑛 Tr(𝑧 -X 𝑛 ) -1 converges almost surely towards 𝐺 given by

𝐺 (𝑧) = 𝑖 ∫ 𝑒 𝑖𝑡 𝑧 𝑒 𝜌 𝑧 (𝑡) 𝑑𝑡, 𝑧 ∈ C + (2.7)
where 𝜌 𝑧 : R + →{𝑥 + 𝑖𝑦; 𝑥 ≤ 0} is the unique solution, analytic in 𝑧 ∈ C + , of the non linear equation

𝜌 𝑧 (𝑡) = ∫ ∞ 0 𝑔(𝑦)𝑒 𝑖𝑦 𝑡 𝑧+𝜌 𝑧 ( 𝑦 𝑡 ) 𝑑𝑦 . (2.8)
This entails the convergence of the spectral measure of X 𝑛 , with 𝜎 replaced by a probability measure with Stieltjes transform given by (2.7). The argument to prove (2.7) and (2.8) is as follows. We first remark that 𝐺 𝑛 concentrates in the sense that it is close to its average, see Theorem 3.2. We let 𝜌 𝑛 be the order parameter 𝜌 𝑛 𝑧 (𝑥)

:= E[ 1 𝑛 Φ(𝑥(𝑧 -X (𝑖) ) -1 𝑗 𝑗 )]. By (2.
2) and (2.3), we find that if 𝑧 > 0

𝐺 𝑛 (𝑧) E[𝐺 𝑛 (𝑧)] = -𝑖E ∫ ∞ 0 𝑒 𝑖𝑡 𝑧-𝑖𝑡 𝑗≠𝑖 𝑋 2 𝑖 𝑗 (𝑧-X (𝑖) ) -1 𝑗 𝑗 𝑑𝑡 + 𝑜(1) = 𝑖 ∫ ∞ 0 𝑒 𝑖𝑡 𝑧 E 𝑗≠𝑖 E[𝑒 -𝑖𝑡 𝑋 2 𝑖 𝑗 (𝑧-X (𝑖) ) -1 𝑗 𝑗 ]𝑑𝑡 + 𝑜(1) = -𝑖 ∫ ∞ 0 𝑒 𝑖𝑡 𝑧 E 𝑗≠𝑖 1 + 1 𝑛 Φ(𝑡 (𝑧 -X (𝑖) ) -1 𝑗 𝑗 )) 𝑑𝑡 + 𝑜(1) = 𝑖 ∫ ∞ 0 𝑒 𝑖𝑡 𝑧+𝜌 𝑛 𝑧 (𝑡) 𝑑𝑡 + 𝑜(1)
To conclude, we need to show the convergence of 𝜌 𝑛 . But 𝜌 𝑛 can be seen to be analytic away from the real axis, and uniformly bounded under our hypothesis. This is enough to see that it is tight and any limit point will be analytic by Montel theorem. Hence, it is enough to show that it has a unique limit point for 𝑧 with large imaginary part. To this end, we get an equation for 𝜌 𝑛 which follows from (2.6) by

𝜌 𝑛 𝑧 (𝑡) = ∫ ∞ 0 𝑔(𝑦)E[𝑒 𝑖𝑦 𝑥 (𝑧-X (𝑖) ) -1 11 ]𝑑𝑦 ∫ ∞ 0 𝑔(𝑦)E[𝑒 𝑖𝑦 𝑥 (𝑧-𝑗≥2 𝑋 2 𝑖 𝑗 (𝑧-X (1) ) -1 𝑗 𝑗 ) ]𝑑𝑦 + 𝑜(1) ∫ ∞ 0 𝑔(𝑦)𝑒 𝑖𝑦 𝑥 𝑧 𝑒 𝜌 𝑛 𝑧 ( 𝑦 𝑥 ) 𝑑𝑦 + 𝑜(1)
where in the second line we used (2.2) and (2.3). One can conclude by proving the uniqueness of the solutions to this equation when 𝑧 is far from the real line by showing that the non linear equation is then a contraction. The above arguments were made complete in [START_REF]The spectrum of heavy tailed random matrices[END_REF][START_REF] Benaych | Central limit theorem for eigenvectors of heavy tailed matrices[END_REF][START_REF] Benaych-Georges | Central limit theorems for linear statistics of heavy tailed random matrices[END_REF]. Another approach to heavy tails matrices and sparse Bernoulli matrices based on the Aldous 's PWIT was proposed in [START_REF] Bordenave | Spectrum of hermitian heavy tailed random matrices[END_REF].

Extreme eigenvalues

The asymptotic behavior of the extreme eigenvalues also depend on 𝑐 : they stick to the bulk when 𝑝𝑛 ln 𝑛 and then go away at distance of order √ ln 𝑛. We more precisely have the following result, putting together the article of Benaych-Georges, Bordenave, Knowles [START_REF] Benaych-Georges | Largest eigenvalues of sparse inhomogeneous Erdős-Rényi graphs[END_REF] and Alt, Ducatez, Knowles [START_REF] Alt | Extremal eigenvalues of critical Erdős-Rényi graphs[END_REF], see also [START_REF] Tikhomirov | Outliers in spectrum of sparse Wigner matrices[END_REF].

Theorem 2.3.

• Assume 𝑝𝑛/ln 𝑛→ + ∞, then the largest eigenvalue of X 𝑛 sticks to the bulk : 𝜆 𝑋 1 →2 .

• Assume 𝑝𝑛/ln 𝑛→0, then 𝜆 𝑋 1 √︁ ln 𝑛/ln(ln 𝑛/𝑝𝑛).

• Assume 𝑝𝑛 𝐶 ln 𝑛, then for 𝐶 > 1/(ln 4 -1) := 𝐶 * the eigenvalues stick to the bulk, whereas for 𝐶 < 1/(ln 4 -1)

𝜆 𝑋 1 = 𝛼 √ 𝛼 -1 , 𝛼 = max 1 𝑝𝑛 ∑︁ 𝑗 𝐵 𝑖 𝑗 .
Observe that 𝑗 𝐵 𝑖 𝑗 is the degree of vertex 𝑖: the largest eigenvalue is hence created by the largest degree in the graph. In fact, in Alt, Ducatez, Knowles [START_REF] Alt | Extremal eigenvalues of critical Erdős-Rényi graphs[END_REF], it is shown that all eigenvalues outside the bulk are created by vertices with large degrees when 𝑝𝑛 ≤ 𝐶 * ln 𝑛.

Fluctuations

Concentration of measure

Concentration of measure has become a central tool in probability and in particular in random matrix theory. It allows us to prove that some quantities such as smooth function of independent variables, are not much random. It was crucial in the previous proof of the convergence of the spectral measure. However, it generally depends on the tails of the random variables. Herbst's argument allows considering random variables with sub-Gaussian tails and more precisely random variables whose distribution satisfies log-Sobolev inequalities, which is the case for instance when their density is strictly log-concave as for Gaussian's variables. To deal with bounded variables such as the entries of Bernoulli matrices, one should rather use the theory developed by Talagrand [START_REF] Talagrand | Concentration of measure and isoperimetric inequalities in product spaces[END_REF]. This was done in [START_REF] Guionnet | Concentration of the spectral measure for large matrices[END_REF] where the spectrum of random matrices was observed to be a smooth function of its entries and the associated Lipschitz norm was computed. It resulted in the following theorem [43, 

(𝑛) = 8|𝐾 | 𝑓 𝐿 /𝑛, P | 1 𝑛 Tr( 𝑓 (A)) -E[ 1 𝑛 Tr( 𝑓 (A))] | > 𝛿 𝑓 𝐿 ≤ 4 exp{-𝑛 2 (𝛿 -𝛿 0 (𝑛)) 2 16|𝐾 | 2 }
2. There exists a finite constant 𝑐 > 0 such that for any 𝛿 > 𝛿 1 (𝑛) √︁ 𝛿 0 (𝑛)

P sup 𝑓 ∈Lip K | 1 𝑛 Tr( 𝑓 (A)) -E[ 1 𝑛 Tr( 𝑓 (A))] | > 𝛿 𝑓 𝐿 ≤ exp{-𝑛 2 (𝛿 -𝛿 1 (𝑛)) 2 𝑐|𝐾 | 2 } .
3. Let 𝜆 𝐴 1 be the largest eigenvalue of A. Then

P |𝜆 𝐴 1 -E[𝜆 𝐴 1 ] | ≥ 𝛿|𝐾 | ≤ exp{- (𝛿 -8|𝐾 |/ √ 𝑛) 2 𝑛 16 } .
This result is a direct application of Talagrand's beautiful theory and the computation of Lipschitz constants of functions of the spectral measure in terms of the entries, see [START_REF] Guionnet | Large deviations asymptotics for spherical integrals[END_REF][START_REF] Anderson | An introduction to random matrices[END_REF]. The original statement proves concentration around the median rather than the mean, but it is easy to go from one result to the other up to some error 𝛿 0 (𝑛), 𝛿 1 (𝑛). 

(𝑛) = 8 √ 𝜋| 𝑓 | 𝐿 /𝑛𝑝(1 -𝑝), P | 1 𝑛 Tr( 𝑓 (X 𝑛 )) -E[ 1 𝑛 Tr( 𝑓 (X 𝑛 ))] | > 𝛿 + 𝛿 0 (𝑛) ≤ exp{-𝑝(1 -𝑝)𝑛 2 (𝛿) 2 16| 𝑓 | 2 𝐿 } .
Moreover, for any 𝛿 > 𝛿 0 (𝑛) = 𝑂 (1/ √︁ 𝑝(1 -𝑝)𝑛)

P |𝜆 1 -E[𝜆 1 ] | > 𝛿 + 𝛿 0 (𝑛) ≤ exp{-𝑝(1 -𝑝)𝑛𝛿 2 }
As we can see, the speed of the concentration deteriorates with 𝑝 going to zero to be of order 𝑛 when 𝑛𝑝 is of order one. In fact, it can be shown that the worse concentration estimates for the empirical measure are of the order of exponential in 𝑛. In fact, we have the following result due to C. Bordenave, P. Caputo and D. Chafai [START_REF] Bordenave | Spectrum of hermitian heavy tailed random matrices[END_REF] which is based on the Azuma's-Hoeffding inequality and requires only the independence of the vectors of the random matrix. Lemma 3.3. Let 𝑓 𝑇 𝑉 be the total variation norm,

𝑓 𝑇 𝑉 = sup 𝑥 1 <•••<𝑥 𝑝 𝑝 ∑︁ 𝑖=2 | 𝑓 (𝑥 𝑖 ) -𝑓 (𝑥 𝑖-1 )|
Then, for any self-adjoint matrix X 𝑛 with independent vectors ((𝑋 𝑖 𝑗 , 𝑖 ≤ 𝑗), 1 ≤ 𝑗 ≤ 𝑛) and eigenvalues (𝜆 𝑖 ) 1≤𝑖 ≤𝑛 for any function 𝑓 with finite total variation and any 𝛿 > 0,

norm so that 𝐸 [| 1 𝑛 𝑛 𝑖=1 𝑓 (𝜆 𝑖 )|] < ∞, 𝑃 1 𝑛 𝑛 ∑︁ 𝑖=1 𝑓 (𝜆 𝑖 ) -E[ 1 𝑛 𝑛 ∑︁ 𝑖=1 𝑓 (𝜆 𝑖 )] ≥ 𝛿 𝑓 𝑇 𝑉 ≤ 2𝑒 -𝑛 𝛿 2 8
In the general case however, the extreme eigenvalues do not concentrate and can be very large for heavy tails entries [START_REF] Auffinger | Poisson convergence for the largest eigenvalues of heavy tailed random matrices[END_REF][START_REF] Alt | Extremal eigenvalues of critical Erdős-Rényi graphs[END_REF].

Global fluctuations

It is a natural question to wonder how the empirical measure of the eigenvalues fluctuates and in particular whether the concentration result of Theorem 3.2 is on the optimal scale. In the case where 𝑝 is of order one, this question was first answered by Jonsson [START_REF] Jonsson | Some limit theorems for the eigenvalues of a sample covariance matrix[END_REF] by estimating moments, and in the context of Gaussian matrices by Johansson [START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF] by using loop equations. The main point is that the central limit theorem does not require a renormalization by the famous √ 𝑛 as for the classical central limit theorems.

Theorem 3.4. Assume 𝑝 ∈ (0, 1) independent of 𝑛. Let 𝑓 be a continuously differentiable function. Let 𝜆 𝑖 be the eigenvalues of X 𝑛 . Then

𝑛 ∑︁ 𝑖=1 𝑓 (𝜆 𝑖 ) -E[ 𝑛 ∑︁ 𝑖=1 𝑓 (𝜆 𝑖 )]
converges in distribution towards a centered Gaussian variable with variance

𝑉 ( 𝑓 ) = 1 2𝜋 2 ∫ 2 -2 ∫ 2 -2 𝑓 (𝑥) -𝑓 (𝑦) 𝑥 -𝑦 2 (4 -𝑥𝑦) √ 4 -𝑥 2 √︁ 4 -𝑦 2 𝑑𝑥𝑑𝑦 .
The central limit theorem also holds if one recenters with respect to the limit rather than the expectation, see e.g. [START_REF] Pastur | Eigenvalue distribution of large random matrices[END_REF].

On the contrary, if 𝑝𝑛 goes to a constant 𝑐 we see that Theorem 3.3 gives the optimal speed and we have a "more" classical central limit theorem [START_REF] Shcherbina | Central limit theorem for fluctuations of linear eigenvalue statistics of large random graphs[END_REF][START_REF] Benaych-Georges | Central limit theorems for linear statistics of heavy tailed random matrices[END_REF][START_REF] Anderson | A CLT for regularized sample covariance matrices[END_REF]: Theorem 3.5. Assume that 𝑝𝑛 goes to 𝑐 ∈ (0, +∞). Let 𝑓 be a 𝐶 1 𝑏 function. Then

1 √ 𝑛 𝑛 ∑︁ 𝑖=1 𝑓 (𝜆 𝑖 ) -E[ 𝑛 ∑︁ 𝑖=1 𝑓 (𝜆 𝑖 )]
converges in law towards a centered Gaussian variable with non trivial variance.

Together with [START_REF] He | Bulk eigenvalue fluctuations of sparse random matrices[END_REF], we claim that at least for 𝑝𝑛 of order one, or in [𝑛 𝜀 , 𝑛 1-𝜀 ], or 𝑝 of order one, we have (probabilibly for all 𝑝 > 1/𝑛), Theorem 3.6. Let 𝑓 be a 𝐶 1 𝑏 function. Then

√ 𝑝 𝑛 ∑︁ 𝑖=1 𝑓 (𝜆 𝑖 ) -E[ 𝑛 ∑︁ 𝑖=1 𝑓 (𝜆 𝑖 )]
converges in law towards a centered Gaussian variable with non trivial covariance.

This result should hold for any 𝑝 > 1/𝑛.

Local laws

An important breakthrough toward the understanding of local fluctuations and eigenvectors is to analyze the so-called local laws as foreseen in [START_REF] Erdős | Wegner estimate and level repulsion for Wigner random matrices[END_REF]. Namely to estimate 𝑓 (𝜆 𝑖 ) for less smooth functions, in fact for functions on a mesoscopic scale 𝑓 (𝑥) = 𝑔(𝑁 𝛼 (𝑥-𝐸)) for some 𝛼 ∈ (0, 1). Equivalently, one can look at 𝑓 (𝑥) = (𝑧-𝑥) -1 with 𝑧 = 𝐸 + 𝑖𝜂 with 𝜂 of order 𝑁 -𝛼 (indeed the later can serve to approximate conveniently the first). In this scale, it was proven that if 𝑝𝑛 goes to infinity, the mesoscopic distribution of the eigenvalues is still very close from the semi-circle distribution. Indeed, let us define the Stieltjes transform to be given by

𝐺 𝑛 (𝑧) = 1 𝑛 𝑛 ∑︁ 𝑖=1 1 𝑧 -𝜆 𝑖 , 𝐺 𝜇 (𝑧) = ∫ 1 𝑧 -𝜆 𝑑𝜇(𝜆)
In [41, Theorems 2.8 and 2.10], the following result was proven, where 𝜁-high probability meaning a probability greater or equal to 1 -𝑒 -𝑣 (ln 𝑛) 𝜁 with for some 𝑣 > 0. The above theorem applies for any 𝑝 such that 𝑝𝑛 goes to infinity much faster than any ln 𝑛, see e.g. [START_REF] Alt | Extremal eigenvalues of critical Erdős-Rényi graphs[END_REF]. Below ln 𝑛, the extreme eigenvalues were shown to be dictated by the largest degree in the graph [START_REF] Benaych-Georges | Largest eigenvalues of sparse inhomogeneous Erdős-Rényi graphs[END_REF].

A similar statement in the sparse case where 𝑝𝑛 goes to a finite constant is still open. Indeed, the fact that 𝜇 𝑐 has a dense set of atoms and a continuous part makes the analysis a priori much more involved and the local law more difficult to conjecture. An easier heavy tail matrix model was studied in [START_REF]The spectrum of heavy tailed random matrices[END_REF][START_REF] Bouchaud | Theory of Lévy matrices[END_REF][START_REF] Bordenave | Localization and delocalization of eigenvectors for heavy-tailed random matrices[END_REF], namely the random matrices with alpha-stable independent entries. In this case, the entries follow the alpha-stable law P | 𝐴 𝑖 𝑗 | ≥ 𝑡 𝑡 -𝛼 /𝑛. When 𝛼 < 2, it was shown in [START_REF]The spectrum of heavy tailed random matrices[END_REF][START_REF] Bouchaud | Theory of Lévy matrices[END_REF] that the empirical measure converges towards a limiting law 𝜇 𝛼 which is different from the semi-circle law. One of the advantages of this model is that 𝜇 𝛼 is absolutely continuous except possible for a discrete set of atoms. Of course, one can not expect the eigenvalues to be as rigid in the heavy tails case since this would contradict the central limit theorem (which holds as in Theorem 3.6, see [START_REF] Benaych-Georges | Central limit theorems for linear statistics of heavy tailed random matrices[END_REF]). Hence, in this case, large eigenvalues should be less rigid, creating large fluctuations. The following result was proved if the 𝐴 𝑖 𝑗 are 𝛼-stable variables in [START_REF] Bordenave | Localization and delocalization of eigenvectors for heavy-tailed random matrices[END_REF][START_REF]Delocalization at small energy for heavy-tailed random matrices[END_REF]: for all 𝑡 ∈ R,

E[exp(𝑖𝑡 𝐴 11 )] = exp(- 1 𝑛 𝑤 𝛼 |𝑡| 𝛼 ), (3.1) 
for some 0 < 𝛼 < 2 and 𝑤 𝛼 = 𝜋/(sin(𝜋𝛼/2)Γ(𝛼)). We put

𝜌 =        1 2 if 8 5 ≤ 𝛼 < 2 𝛼 8-3𝛼 if 1 < 𝛼 < 8 5 𝛼 2+3𝛼 if 0 < 𝛼 ≤ 1. (3.2)
Then, there exists a finite set E 𝛼 ⊂ R such that if 𝐾 ⊂ R\E 𝛼 is a compact set and 𝛿 > 0, the following holds. There are constants 𝑐 0 , 𝑐 1 > 0 such that for all integers

𝑛 ≥ 1, if 𝐼 ⊂ 𝐾 is an interval of length |𝐼 | ≥ 𝑐 1 𝑛 -𝜌 (log 𝑛) 2 , then |𝑁 𝐼 -𝑛𝜇 𝛼 (𝐼)| ≤ 𝛿𝑛|𝐼 |, (3.3) 
with probability at least 1 -2 exp -𝑐 0 𝑛𝛿 2 |𝐼 | 2 . The fact that our result might not be true on a finite set of values should only be technical . This result was improved in [2, Theorems 3.4 and 3.5] in order to tackle 𝐼 of size o 𝑛 -𝜔 ( 𝛼) with 𝜔(𝛼) > 1/2 (and (𝑧) small enough when 𝛼 < 1). Such an optimal scale is important in the of study the local fluctuations of the spectrum.

In both light and heavy tails, the main point is to estimate the Stieltjes transform 𝐺 𝑛 (𝑧) = 1 𝑛 𝑛 𝑖=1 (𝑧 -𝜆 𝑖 ) -1 for 𝑧 going to the real axis : 𝑧 = 𝐸 + 𝑖𝜂 with 𝜂 of order nearly as good as 𝑛 -1 for light tails, 𝑛 -𝜌 for heavy tails. This is done by showing that 𝐺 𝑛 is characterized approximately by a closed set of equations. In the case of lights tails, one has simply a quadratic equation for 𝐺 𝑛 and needs to show that the error terms remain small as 𝑧 approaches the real line. In the heavy tails case, the equations are much more complicated, see (2.7) and (2.8), and therefore more difficult to handle. Similar questions are completely open for other heavy tails matrices, including Bernoulli matrices with 𝑝𝑛 of order one.

Local fluctuations

When the average degree 𝑝𝑛 is large, one expects the eigenvalues to behave exactly as the eigenvalues of a symmetric matrix with independent Gaussian entries. The socalled GOE matrices. The advantage of Gaussian matrices is that they are an integrable model of random matrices in the sense that many of their properties can be exactly computed. To start with, the joint distribution of its eigenvalues (𝜆 𝐺 𝑖 ) 1≤𝑖 ≤𝑛 is explicit:

𝑑P(𝜆 𝐺 ) = 1 𝑍 Δ(𝜆)𝑒 -𝑛 4 (𝜆 𝐺 𝑖 ) 2 𝑑𝜆 𝐺 𝑖 (3.4)
where Δ(𝜆) = 𝑖< 𝑗 |𝜆 𝑖 -𝜆 𝑗 | is the Vandermonde determinant. In particular, this formula does not depend on the eigenvectors. Based on this formula, Tracy and Widom could study the local fluctuations of the spectrum (𝜆 𝐺 𝑖 ) 1≤𝑖 ≤𝑛 [START_REF]On orthogonal and symplectic matrix ensembles[END_REF][START_REF] Tracy | Introduction to random matrices[END_REF] and they proved that lim

𝑛→∞ P(𝑛 2/3 (𝜆 𝐺 1 -2) ≤ 𝑠) = 𝐹 1 (𝑠)
where 𝐹 1 is the distribution function of the Tracy-Widom law. For the eigenvalues in the bulk, it was proven [START_REF] Mehta | Random matrices[END_REF] that for all smooth compactly supported function

E G 𝑛 (𝑂, 𝐸) = E[𝑂 (𝑛(𝜆 𝐺 𝑖 -𝐸), • • • , 𝑛(𝜆 𝐺 𝑖+ 𝑝 -𝐸))]
converges as 𝑛 goes to infinity and the limit is described in terms of Pfaffian distributions.

The universality in the bulk was obtained after the a series of works including notably [START_REF] Tao | The Wigner-Dyson-Mehta bulk universality conjecture for Wigner matrices[END_REF][START_REF] Erd˝os | Wegner estimate and level repulsion for Wigner random matrices[END_REF] in [40, Theorems 2.5] (for 𝜙 ≥ 2/3) and improved in [START_REF] Huang | Transition from Tracy-Widom to Gaussian fluctuations of extremal eigenvalues of sparse Erdős-Rényi graphs[END_REF] (for 𝜙 > 0) to finally get: Theorem 3.8. (Bulk universality) Suppose 𝑝𝑛 > 𝑛 𝜙 with 𝜙 > 0, there exists 𝑏 𝑛 going to zero so that for all smooth compactly supported function 𝑂, any 𝐸 ∈ (-2, 2)

lim 𝑛→∞ ∫ 𝐸+𝑏 𝑛 𝐸-𝑏 𝑛 𝑑𝐸 2𝑏 𝑛 E G 𝑛 (𝑂, 𝐸 ) -E B 𝑛 (𝑂, 𝐸 ) = 0
Moreover, the universality at the edge was obtained in [40, Theorems 2.7], see also [START_REF] Soshnikov | Universality at the edge of the spectrum in Wigner random matrices[END_REF], Theorem 3.9. (Edge universality) Suppose that 𝑝𝑛 > 𝑛 𝜙 , 𝜙 > 2/3. Then there exists 𝛿 > 0 such that

P(𝑛 2/3 (𝜆 𝐵 2 -2) ≤ 𝑠) = P(𝑛 2/3 (𝜆 𝐺 2 -2) ≤ 𝑠 + 𝑂 (𝑛 -𝛿 )) + 𝑂 (𝑛 -𝛿 )
This statement was generalized to 𝑝𝑛 > 𝑛 1/3 but the largest eigenvalue then needs to be shifted by a deterministic drift of order 1/𝑝𝑛 [START_REF] Oon | Local law and Tracy-Widom limit for sparse random matrices[END_REF]. Beyond this threshold, the fluctuations of the second largest eigenvalue starts to be Gaussian.

When 𝑝𝑛 decreases below 1/3, it was proven that universality stops to hold and fluctuations of the largest eigenvalue start to be Gaussian. The precise transition between Tracy-Widom law and Gaussian fluctuations when 𝑝 is of order 𝑛 -2/3 was described [START_REF] Huang | Transition from Tracy-Widom to Gaussian fluctuations of extremal eigenvalues of sparse Erdős-Rényi graphs[END_REF]. When 𝑛 𝑜 (1) 𝑝𝑛 𝑛 1/3 , [START_REF] Huang | Transition from Tracy-Widom to Gaussian fluctuations of extremal eigenvalues of sparse Erdős-Rényi graphs[END_REF][START_REF] He | Fluctuations of extreme eigenvalues of sparse Erdös-Rényi graphs[END_REF] shows that the fluctuations of the extreme eigenvalues are Gaussian, even if they stick to the bulk. In the case where 𝑝𝑛 ln 𝑛, Theorem 2.3 asserts that the eigenvalues go away from the bulk, at distance of order √ ln 𝑛. The corresponding eigenvectors are localized close to the vertices with a high degree. In an even more recent preprint [START_REF]Poisson statistics and localization at the spectral edge of sparse Erdős-Rényi graphs[END_REF], the same authors show that these eigenvalues follow a Poisson point process.

Such questions are open for Bernoulli random matrices with 𝑝𝑛 of order 𝑐 ∈ (0, +∞) and eigenvalues in the bulk. Indeed, as we have seen, the limiting density is a mixture of atoms and continuous density and it is not yet clear how to zoom in the spectrum in such a situation. However, such questions could be analyzed for Lévy matrices with 𝛼-stable entries in the regime where local law can be obtained on the optimal scale 𝑛 -1/2 [START_REF] Aggarwal | Eigenvector statistics of Lévy matrices[END_REF]. In fact, one expects the following transition to occur, see [START_REF] Tarquini | Level statistics and localization transitions of Lévy matrices[END_REF]:

• If 𝛼 ∈ [1, 2 
], all eigenvectors are corresponding to finite eigenvalues are completely delocalized. Further, for any 𝐸 ∈ R the local statistics of the eigenvalues near 𝐸 converge to those of the GOE as 𝑁 goes to infinity.

• If 𝛼 ∈ (0, 1), There exists a mobility edge 𝐸 𝛼 such that for |𝐸 | < 𝐸 𝛼 the local statistics of the eigenvalues near 𝐸 converge to those of the GOE as 𝑁 goes to infinity. But if |𝐸 | > 𝐸 𝛼 the local statistics of the eigenvalues near 𝐸 converge to those of a Poisson point process and all eigenvectors in this region are localized.

The fact that local statistics are given by those of Gaussian matrices for 𝛼 ∈ (1, 2) or 𝛼 ∈ (0, 1) and 𝐸 small enough, except for 𝐸 in some finite set was proven in [2, Theorems 2.4 and 2.5].

Properties of the eigenvectors

The properties of the eigenvectors are intimately related with local laws. Indeed, by definition of the eigenvectors, if 𝑣 is an eigenvector of the symmetric matrix X 𝑛 for the eigenvalue 𝐸 and we set 𝑣, 𝑒 𝑖 = 𝑣 𝑖 , 𝑋 1 the first column vector of X 𝑛 while X (1) 𝑛 is the (𝑛 -1) × (𝑛 -1) principal minor of X 𝑛 obtained by removing the column and row vector given by 𝑋 1 and 𝑋 𝑇 1

𝑣 2 1 = (1 + 𝑋 1 , (𝐸 -X (1) 𝑛 ) -2 𝑋 1 ) -1
where, at least in the dense cases 𝑋 1 , (𝐸 -X (1) 𝑛 ) -2 𝑋 1 is close to 1 𝑛 Tr(𝐸 -X 𝑛 ) -2 , and so is governed by the local law. In [START_REF]The local semicircle law for a general class of random matrices[END_REF]Theorems 2.16], it was proven that This result was extended to 𝑞 going to infinity logarithmically only more recently [START_REF]Delocalization transition for critical Erdős-Rényi graphs[END_REF]. We roughly state their result: 

[-2 + 𝜅, -𝜅] ∪ [𝜅, 2 -𝜅], 𝑤 2 ∞ ≤ 𝑛 -1+𝜅
with probability greater than 1 -𝑛 -𝜈 .

This question is completely open for Bernoulli random matrices with 𝑝𝑛 of order one but the understanding of Lévy matrices is again more complete. Based on [START_REF] Bordenave | Localization and delocalization of eigenvectors for heavy-tailed random matrices[END_REF][START_REF]Delocalization at small energy for heavy-tailed random matrices[END_REF][START_REF] Aggarwal | Eigenvector statistics of Lévy matrices[END_REF] we can assert that Tarquini, Biroli, and Tarzia's conjecture [START_REF] Tarquini | Level statistics and localization transitions of Lévy matrices[END_REF] is partly proven. Indeed the complete delocalization is proven for 𝛼 ∈ (1, 2) and 𝛼 ∈ (0, 1) and small enough eigenvalues. A sort of localization for 𝛼 ∈ (0, 1) for large enough eigenvalue was derived in [START_REF] Bordenave | Localization and delocalization of eigenvectors for heavy-tailed random matrices[END_REF], and was shown to be not true for small enough eigenvalues in [START_REF]Delocalization at small energy for heavy-tailed random matrices[END_REF]: the transition and the value of the mobility edge is still an open question. In fact, even in the case where the eigenvalue statistics belong to the universality class of Gaussian matrices, the fine properties of the eigenvectors of Lévy matrices differ [START_REF] Aggarwal | GOE statistics for Lévy matrices[END_REF]. Let us also mention [START_REF] Rudelson | No-gaps delocalization for general random matrices[END_REF] which shows under quite general assumptions that eigenvectors are somehow uniformly delocalized in the sense that any subset of at least eight coordinates carries a non-negligible part of the mass of an eigenvector.

Rare events

It is sometimes important to estimate the probability of rare events, such as the probability that the extreme eigenvalues take unlikely values or the empirical measure of the eigenvalues shows an unlikely profile, and what kind of optimal strategy can lead to such deviations from the expected behavior. In the case of Gaussian symmetric matrices, the joint density of the eigenvalues is known (3.4). One finds by sort of Laplace's principle [START_REF] Ben Arous | Large deviations for Wigner's law and Voiculescu's non-commutative entropy[END_REF][START_REF] Ben Arous | Aging of spherical spin glasses[END_REF] the large deviations for the empirical measure and the largest eigenvalue. In this case, deviations of the spectrum can be created independently from the eigenvectors which stay uniformly distributed. On the other hand, if the entries have sharp exponential decay, large deviations can be created by large entries. Assume that for some 𝛼 ∈ (0, 2), there exists 𝑎 > 0 so that for all 𝑖, 𝑗

lim 𝑡→∞ 2 -1 𝑖= 𝑗 𝑡 -𝛼 ln P(| √ 𝑛𝑋 𝑖 𝑗 | ≥ 𝑡) = -𝑎 Theorem 4.2.
• [START_REF] Bordenave | A large deviation principle for Wigner matrices without Gaussian tails[END_REF] The law of the empirical measure satisfy a LDP in the speed 𝑛 1+ 𝛼 2 and good rate function which is infinite unless 𝜇 = 𝜎 𝜈 and then equals 𝑎 ∫ |𝑥| 𝛼 𝑑𝜈(𝑥).

• [START_REF] Augeri | Large deviations principle for the largest eigenvalue of Wigner matrices without Gaussian tails[END_REF] The law of the largest eigenvalue satisfies a LDP with rate 𝑛 𝛼 2 and GRF proportional to ( ∫ (𝑥 -𝑦) -1 𝑑𝜎(𝑦)) -𝛼 .

However, the situation is much less understood for Bernoulli matrices and again the sparse and the dense regime lead to very different results and techniques. We discuss these questions hereafter.

Large deviations for the extreme eigenvalues

Let us first consider the dense case. In [START_REF] Guionnet | Large deviations for the largest eigenvalue of Rademacher matrices[END_REF][START_REF] Augeri | Large deviations for the largest eigenvalue of sub-Gaussian matrices[END_REF], we considered the large deviations for the largest eigenvalue of Wigner matrices and showed that if the entries are Rademacher, then the same large deviation principle holds, whereas in general there is a transition between deviations close to two where the rate function is the Gaussian one whereas for large deviations towards large enough values the rate function is more of a heavy tail type. In a work in progress with F. Augeri, R. Ducatez and J. Husson, we prove that Theorem 4.3.

• Assume that 𝑝 = 1/2. Then the law of 𝜆 𝑋 1 satisfies a large deviation principle in the scale 𝑛 and with the same rate function 𝐼 𝐺 than for the GOE matrix.

• Assume 𝑝 ∈ (0, 1/2). Then for 𝑥 close enough to 2, the probability that 𝜆 𝑋 1 is close to 𝑥 is the same than in the Gaussian case. But for 𝑥 large enough,

lim sup 𝛿↓0 lim sup 𝑛→∞ 1 𝑛 ln P(|𝜆 𝑋 1 -𝑥| < 𝛿) = -𝐼 𝑝 (𝑥)
where 𝐼 𝑝 (𝑥) < 𝐼 𝐺 (𝑥).

The case 𝑝 ∈ (1/2, 1) is under investigation. In fact, analyzing the large deviation requires to understand good strategies to create the deviations. For 𝑝 = 1/2 it is shown that an optimal strategy is to tilt the law of the entries in order to change their expectation so that the matrix looks like a rank one deformation of Bernoulli matrix with a delocalized deformation. The eigenvectors also stay delocalized through this deformation. When 𝑝 < 1/2 and 𝑥 is large, it turns out that the optimal strategy is to create fully connected components of size √ 𝑛. For 𝑝 > 1/2 the picture is less clear and we suspect that vertices with high degree are optimal ways to create large eigenvalues.

Let us now consider the sparse case following [START_REF] Bhaswar | Spectral edge in sparse random graphs: Upper and lower tail large deviations[END_REF]: in this case we already saw that large eigenvalues are created by vertices with large degree, namely with row or column vectors with many entries equal to one. 

Large deviations for the empirical measure

In [25, Theorem 1.6], a large deviation for the empirical measure of the eigenvalue in the sparse case was derived : we do not precise the rate function as it is obtained by contraction from the large deviation for the empirical neighborhood distribution.

Theorem 4.5. Assume 𝑝𝑛 is fixed. Then the law of μ𝑛 satisfies a large deviation principle with speed 𝑛.

This question is still open when 𝑝𝑛 1. When 𝑝 is of order one, we should expect to have a large deviation with speed 𝑛 2 according to the concentraion of measure, but the rate function should bot be equal to the Gaussian one even when 𝑝 = 1/2 because the Dirac at the origin should have rate function bounded above by ln 𝑝 (whereas it is infinite in the Gaussian case).

Large deviations for triangle counts

The traces of Bernoulli matrices have a combinatorial interpretation. For instance, Tr(B 3 𝑛 ) is the number 𝑇 𝑛, 𝑝 of triangles in the Erdös-Rényii graph. Observe that its expectation is of order 𝑝 3 𝑛 3 . In the well known paper [START_REF] Chatterjee | The large deviation principle for the Erdos-Renyi random graph[END_REF]Theorem 4.1], it was proved that This result extends to any moment Tr(B 𝑘 𝑛 ). However, observe that it does not tell us about deviations of the empirical measure since 𝑥→𝑥 𝑘 is unbounded so that deviations of the extreme eigenvalues matter. It is natural to wonder what happens as well when 𝑝 goes to zero. This question was attacked in [START_REF] Chatterjee | Nonlinear large deviations[END_REF][START_REF] Cook | Large deviations of subgraph counts for sparse Erdős-Rényi graphs[END_REF][START_REF] Eldan | Gaussian-width gradient complexity, reverse log-Sobolev inequalities and nonlinear large deviations[END_REF], but we state here [START_REF]Nonlinear large deviation bounds with applications to Wigner matrices and sparse Erdős-Rényi graphs[END_REF] 

The Singularity Probability

A well known problem has been to estimate the probability that a matrix B𝑛 with all independent Bernoulli entries (hence not self-adjoint) is singular. In a breakthrough paper, Tikhomirov [START_REF] Tikhomirov | Singularity of random Bernoulli matrices[END_REF], see also [START_REF] Litvak | Singularity of sparse random Bernoulli matrices[END_REF], could exactly estimate it, by showing that the best strategy to achieve singularity is to have a zero column or row vector. Such an optimal estimate is not yet known for the symmetric Bernoulli matrix B 𝑛 (even though it is conjectured) but [START_REF] Campos | On the singularity of random symmetric matrices[END_REF] proves that the probability that it is singular is bounded above by 𝑒 -𝑂 ( √ 𝑛) . This was improved in an exponential upper bound in [START_REF] Campos | The singularity of random symmetric matrices is exponentially small[END_REF].

5 Open problems 1. Local law for Bernoulli matrices when 𝑝𝑛 is of order one. This could be at best on the scale √ 𝑛 but is tricky even to state because of the atoms of the limit law.

2. Localization/delocalization of the eigenvectors of Bernoulli matrices for 𝑝𝑛 of order one (one would conjecture that Dirac masses yield localization but the continuous part yield delocalization, however the right criteria to express this remains to be given). Find a critical 𝑐 * such that for 𝑛𝑝 > 𝑐 * there exists delocalized vectors with connected support with high probability.

3. Large deviations for the empirical measure of the eigenvalues of Bernoulli matrices (all 𝑝 so that 𝑝𝑛 1). Even when 𝑝 = 1/2 one does not expect to retrieve the Gaussian rate function since the entropy should be finite at 𝛿 0 (as can be seen by requiring all entries to be equal). [START_REF]Delocalization transition for critical Erdős-Rényi graphs[END_REF]. Precise estimate on the singularity probability in the symmetric case. 5. In comparison, 𝑑-regular graphs which are picked uniformly at random are conjectured to be in the universality class of Gaussian random matrices for all 𝑑 ≥ 3. This was proven for 𝑑 going to infinity fast enough [START_REF] Bauerschmidt | Bulk eigenvalue statistics for random regular graphs[END_REF][START_REF]Edge rigidity and universality of random regular graphs of intermediate degree[END_REF], and recently Huang and Yau could get the local law and the delocalization of the eigenvectors up to 𝑑 = 3.

𝑏

  𝑖 ∈ [𝑞 -𝜀, 𝑞 + 𝜀] = -𝑆 𝑝 (𝑞)

Theorem 2 . 1 ( 1 𝑛# 1 𝑛#

 2111 Wigner 56'). Assume 𝑝𝑛 goes to infinity as 𝑛 goes to infinity. Then, almost surely, for any 𝑎 < 𝑏 lim 𝑛→∞ {𝑖 : 𝜆 𝐵 𝑖 ∈ √︁ 𝑛𝑝(1 -𝑝) [𝑎, 𝑏]} = lim 𝑛→∞ {𝑖 : 𝜆 𝑋 𝑖 ∈ [𝑎, 𝑏]} = 𝜎( [𝑎, 𝑏])

Theorem 2 . 2 . 1 𝑛# 1 𝑛#

 2211 Assume 𝑝𝑛 goes to 𝑐 ∈ (0, +∞) as 𝑛 goes to infinity. Then, almost surely, for any 𝑎 < 𝑏 lim 𝑛→∞ {𝑖 : 𝜆 𝐵 𝑖 ∈ √︁ 𝑛𝑝(1 -𝑝) [𝑎, 𝑏]} = lim 𝑛→∞ {𝑖 : 𝜆 𝑋 𝑖 ∈ [𝑎, 𝑏]} = 𝜇 𝑐 ( [𝑎, 𝑏])

Theorem 3 . 7 . 1 𝑛𝜂 1 # 2 + 1 𝑝𝑛𝜂

 371121 There are universal constants 𝐶 1 , 𝐶 2 > 0 such that the following holds. Assume that 𝑝𝑛 ≥ (log 𝑛) 𝐶 1 𝜉 , 𝜉 = 𝐶 2 log log 𝑛 Then, for 𝐸 ∈ [-3, 3] and 𝐷 = {𝑧 = 𝐸 + 𝑖𝜂, 0 < 𝜂 < 3}, ∩ 𝑧 ∈𝐷 |𝐺 𝑛 (𝑧) -𝑚 𝜎 (𝑧)| ≤ (log 𝑛) 𝐶 2 𝜉 min{ 1 𝑝𝑛 √ 𝜅 𝐸 + 𝜂 , holds with 𝜁-high probability. Moreover, for 𝜂 > (ln 𝑛) 𝐶 𝜁 𝑛 -{𝑖 : 𝜆 𝑖 ∈ [𝐸 -𝜂, 𝐸 + 𝜂]} = 𝑛𝜎( [𝐸 -𝜂, 𝐸 + 𝜂]) 1 + 𝑂 (ln 𝑛) 𝐶 𝜁 1 𝑛𝜂 3 with 𝜁-high probability.

Theorem 3 .

 3 10. (Complete delocalization of eigenvectors)Assume the hypotheses of Theorem 3.7 with 𝑝𝑛 > 𝑛 𝜙 with 𝜙 > 0. Let 𝑣 𝑖 be the eigenvectors of B 𝑛 for the eigenvalues 𝜆 𝑛≤ 𝜆 𝑛-1 • • • ≤ 𝜆 1 . Then max 𝑖 ≤𝑛 𝑣 𝑖 ∞ ≤ (ln 𝑛) 4𝜁 √ 𝑛with 𝜁-high probability.

Theorem 4 . 6 . 1 0 ∫ 1 0 1 𝑛 2

 461112 Let 𝐼 𝑝 ( 𝑓 ) = sup 𝜙 ∫ 𝑓 (𝑥, 𝑦)𝜙(𝑥, 𝑦)𝑑𝑥𝑑𝑦 -1 2 ∫ ∫ log 𝑝𝑒 2𝜙 ( 𝑥,𝑦) + (1 -𝑝) 𝑑𝑥𝑑𝑦 and set 𝜑( 𝑝, 𝑡) =∈ {𝐼 𝑝 ( 𝑓 ), ∫ 𝑓 (𝑥, 𝑦) 𝑓 (𝑦, 𝑣) 𝑓 (𝑣, 𝑥)𝑑𝑥𝑑𝑦𝑑𝑣 ≥ 6𝑡}. Then for each 𝑝 ∈ (0, 1) lim 𝑛→∞ log P 𝑇 𝑛, 𝑝 ≥ 𝑡𝑛 3 = -𝜑( 𝑝, 𝑡) .

Theorem 4 . 8 . 2 ,P

 482 There exists a finite constant 𝐶 such that if𝐶 ln 𝑛/𝑛 ≤ 𝑝 ≤ 1 B𝑛 is singular = (2 + 𝑜 𝑛 (1)) (1 -𝑝) 𝑛 𝑛

  𝑛 has a very large eigenvalue of order 𝑛, and the rest is given by the eigenvalues of X 𝑛 taken on 1 ⊥ . Moreover, by Weyl's interlacing properties, the eigenvalues (𝜆 𝐵 𝑖 ) 1≤𝑖 ≤𝑛 of B 𝑛 / √︁ 𝑛𝑝(1 -𝑝) and (𝜆 𝑋 𝑖 ) 1≤𝑖 ≤𝑛 of X 𝑛 are interlaced :

	1 = (1/ √	𝑛, 1/ √	𝑛, . . . , 1/ √	𝑛). Conversely the spectrum of X 𝑛 has eigenvalues mostly
	of order one in the sense that E[Tr(X 2 𝑛 )] = E[ 𝜆 2 𝑖 ] = 𝑛. Therefore the above decom-
	position shows that B	

  Theorem 1.1]. We hereafter consider a symmetric matrix A with independent entries above the diagonal with distribution 𝑎 𝑖 𝑗 / √ 𝑛 where 𝑎 𝑖 𝑗 is distributed according to 𝑃 𝑖 𝑗 supported in a compact set 𝐾 with width |𝐾 |. Take 𝑓 convex and Lipschitz with Lipschitz norm 𝑓 𝐿 . Then, for any 𝛿 > 𝛿 0

	Theorem 3.1.	1.

  The second point is deducted from the first by approximating a general function by convex functions. It applies to Bernoulli matrices straightforwardly by taking |𝐾 | = 1/ √︁ 𝑝(1 -𝑝) Take 𝑓 convex and Lipschitz with Lipschitz norm 𝑓 𝐿 . Then, for any 𝛿 > 𝛿 0

	Theorem 3.2.

  • (Semilocalized phased) Assume 𝐶 √ ln 𝑛 ln ln 𝑛 ≤ √ 𝑝𝑛 ≤ 3 ln 𝑛 and 𝑤 be a normalized eigenvector of B 𝑛 with non trivial eigenvalue 𝐸 ≥ 2 + 𝐶𝜁 1/2 . We let Λ(𝛼) = 𝛼/ √ 𝛼 -1 and 𝛼 𝑥 = 𝑦 B 𝑥 𝑦 /𝑝𝑛. We let 𝑊 𝐸 , 𝛿 be the set of vertices such that Λ(𝛼 𝑥 ) ∈ [𝐸 -𝛿, 𝐸 + 𝛿]. Then for each 𝑥 ∈ 𝑊 𝐸 , 𝛿 there exists a normalized vector 𝑣(𝑥) supported in a ball around 𝑥 and radius 𝑐 √ ln 𝑛, such that the support of 𝑣(𝑐𝑥) and 𝑣(𝑦) is distinct if 𝑥 ≠ 𝑦 and

	∑︁ 𝑥 ∈𝑊 𝐸 , 𝛿	𝑣(𝑥), 𝑤 2 ≥ 1 -𝐶 (	√	ln 𝑛𝑝𝑛 ln 𝑝𝑛 +	√	ln 𝑛𝑝𝑛	1 𝐸 -2	) 2 𝛿 -2
	Moreover	∑︁ 𝑦 ∈𝐵 𝑟 ( 𝑥)	(𝑣(𝑥)) 2 𝑦 ≤	1 (𝛼 𝑥 -1) 𝑟 +1
	• (Delocalized phase) For any 𝜈 > 0 and 𝜅 > 0 there exists a constant 𝐶 > 0 such that for 𝑝𝑛 ∈ [𝐶 √ ln 𝑛, (ln 𝑛) 3/2 ], if 𝑤 is a normalized eigenvector for B 𝑛 with
	eigenvalue 𝐸 ∈							

  ln |𝑥 -𝑦|)𝑑𝜇(𝑥)𝑑𝜇(𝑦) and set E (𝜇) = 𝐸inf 𝐸. Then E is a good rate function and the distribution of the empirical measure of the eigenvalues μ𝑛 = 1 Then 𝐼 is a good rate function and the distribution of 𝜆 𝐺 1 satisfies a large deviation principle with speed 𝑛 and good rate function 𝐼 𝐺 .

	Theorem 4.1. Let 𝜆 𝐺 𝑛 ≤ 𝜆 𝐺 2 • • • ≤ 𝜆 𝐺 1 be the eigenvalues of a GOE matrix. Then
	• Let 𝐸 (𝜇) = 1 2	∫ ∫	( 𝑥 2 4 + 𝑦 2 4 𝑛 𝛿 𝜆 𝐺 𝑖	satisfies a large deviation principle with speed 𝑛 2
	with rate function I, that is for every closed set 𝐹
			lim sup 𝑛→∞	1 𝑛 2 ln P ( μ𝑛 ∈ 𝐹) ≤ -inf 𝐹	E
	whereas for any open set 𝑂	
			lim sup 𝑛→∞	1 𝑛 2 ln P ( μ𝑛 ∈ 𝑂) ≥ -inf 𝑂	E
	• Let 𝐼 𝐺 (𝑥) = 1 2	∫ 𝑥 2	√︁ 4 -𝑦	

2 

𝑑𝑦 for 𝑥 ≥ 2 and 𝐼 𝐺 (𝑥) = +∞ for 𝑥 < 2.

Theorem 4 . 4 .

 44 Let 𝐿 𝑝 = ln 𝑛 ln ln 𝑛-ln(𝑛 𝑝) and assume ln(1/𝑛𝑝) ln 𝑛 and 𝑛𝑝 √︁ ln 𝑛/ln ln 𝑛. Let 𝜆 2 be the second largest eigenvalue of B 𝑛 . Then for any 𝛿 ≥ 0,

	lim 𝑛→∞	-ln 𝑃 𝜆 2 ≥ (1 + 𝛿) ln 𝑛	√︁	𝐿 𝑝	= 2𝛿 + 𝛿 2
	whereas				
	lim				

𝑛→∞

ln 𝑃 𝜆 2 ≤ (1 -𝛿) √︁ 𝐿 𝑝 ln 𝑛 = 2𝛿 -𝛿 2

  , Proposition 1.19]Theorem 4.7. Let 𝑝 going to zero with 𝑛 so that (log 𝑛)4 𝑛𝑝 2 . set𝑣 𝑛 = 𝑛 2 𝑝 2 log(1/𝑝). 𝑡𝑛 𝑑 𝑝 𝑑 = -Φ(𝑡)whereΦ(𝑡) = 1 2 (𝑡 -1) 2/𝑑 if 𝑛 -1 𝑝 𝑛 -1/2 but Φ(𝑡) = min{𝜃 𝑡 , 1 2 (𝑡 -1) 2/𝑑 } if 𝑝 𝑛 -1/2and 𝜃 𝑡 is the solution of 𝑃 𝐶 𝑑 (𝜃 𝑡 ) = 𝑡 where 𝑃 𝐶 𝑑 is the independence polynomial of the 𝑑-cycle.

	Then for 𝑡 ≥ 1		
	lim 𝑛→∞	1 𝑣 𝑛	log P Tr(B 𝑑 𝑛 ) ≥