
HAL Id: hal-03468197
https://hal.science/hal-03468197

Submitted on 7 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive iterative destruction construction heuristic for
the firefighters timetabling problem

Mohamed-Amine Ouberkouk, Jean-Paul Boufflet, Aziz Moukrim

To cite this version:
Mohamed-Amine Ouberkouk, Jean-Paul Boufflet, Aziz Moukrim. Adaptive iterative destruction con-
struction heuristic for the firefighters timetabling problem. 8th International Conference on Meta-
heuristics and Nature Inspired Computing (META 2021), Oct 2021, Marrakesh, Morocco. pp.33-47,
�10.1007/978-3-030-94216-8_3�. �hal-03468197�

https://hal.science/hal-03468197
https://hal.archives-ouvertes.fr


Adaptive iterative destruction construction heuristic for the
firefighters timetabling problem

Mohamed-Amine Ouberkouk, Jean-Paul Boufflet and Aziz Mourkim
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Abstract. Every year, wildfires accentuated by global warming, cause economic and eco-
logical losses, and often, human casualties. Increasing operating capacity of firefighter crews
is of importance to better face the forest fire period that yearly occurs. In this study, we
investigate the real-world firefighters timetabling problem (FFTP) of the INFOCA institu-
tion in Andalusia (Spain) with the aim of increasing operating capacity while taking into
account work regulation constraints. We propose an Integer Linear Programming model and
an Adaptive Iterative Destruction Construction Heuristic solution approache to address the
problem. We report on experiments performed on datasets generated using real-world data
of the INFOCA institution. The work was initiated as part of the GEO-SAFE project1.
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1 Introduction

Timetabling problems [1, 7, 9] involve allocating resources within time slots considering a prede-
fined planning horizon while respecting precedence, duration, capacity, disjunctive and distribution
(spacing, grouping) constraints. Staff planning aims at building timetables so that an organiza-
tion can meet demands for goods or services. For each staff member, working and rest days are
scheduled in a timetable while taking into account work regulation constraints and local regulation
constraints, if any.

The first works on personnel scheduling can be traced back to Edie’s work on traffic delays at
toll booths [5]. Since then, scheduling algorithms have been applied in a lot of areas like transporta-
tion systems (airlines, railways), healthcare systems, emergency services (police, ambulances), call
centers and other services (hotels, restaurants, commercial stores).

Comprehensive literature reviews covering a wide area of problems with many references on
personnel scheduling can be found in [6, 10]. The works are classified by type of problem, application
area and solution method. As an example, the nurse rostering [4] is a scheduling issue in health
systems. The objective is to build a daily schedule for nurses with the aim of obtaining a full
timetable over few weeks for the institution. The rosters should provide suitably qualified nurses
to cover the demand of working shifts arising from the numbers of patients in the wards. The
resulting schedule should comply with regulatory constraints and should ensure that night and
weekend shifts are fairly distributed while accommodating nurse preferences.

Staff scheduling is known as crew scheduling in transportation systems areas such as mar-
ket/airlines, railways, mass transit and buses [2]. For these problems, there are two common fea-
tures. The first is that both temporal and spatial constraints are involved. Each task is characterized
by its starting time and location, and, its ending time and location. The second is that all tasks
to be performed by employees are determined from a given timetable. The tasks are determined
following a decomposition of the different duties that the company must ensure within a planning
period. A task may be assuring a flight leg in airlines or ensuring a trip between two segments in
a train.

The firefighters problem that we address consists in providing the INFOCA’s daily schedule
within a fixed planning horizon for a number of firefighter crews. Each firefighter is assigned to a
crew for a year. These firefighters crews can be assigned to several types of shifts such as helicopter

1 https://geosafe.lessonsonfire.eu/
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work, night work, work on demand (24 hour on call). The planning period is the high-risk period
from 1st June to 15th October where wildfires yearly occur (forest fire period).

The objective is to build a schedule for every crew of firefighters, hence a full timetable that cov-
ers all the forest fire period. The aim is to maximize the overall operating capacity while respecting
the minimum demands for each shift, the regulatory constraints imposed by the institution as well
as other soft constraints of good practice in order to make the schedules adequate to the preferences
of the institution. The constraints of good practice relate to the grouping of assignments of same
shifts within consecutive days, the allocation of compensations after rest days while maximizing of
the number of operational crews a day.

The application of various metaheuristics to employee scheduling problems is presented in the
reviews mentioned above. In this study, we choose to investigate an algorithm mainly based on an
Adaptive Iterative Destruction/Construction Heuristic (AIDCH) [3]. An initial feasible solution
that only complies with the minimum demands is build first by applying a constructive heuristic.
Then, the AIDCH approach that we propose aims at increasing the overall operating capacity by
first partly destroying a solution, next it is completed by inserting as many crews as possible, that
can be easily done through a Destruction/Construction Heuristic approach. While completing the
solution to increase the overall operational capacity, we make work together adaptive diversification
mechanisms and parallel independent searches to avoid to be trapped in a local optimum.

In this paper we propose an Integer Linear Programming (ILP) formulation together with
an Adaptative Iterative Destruction Construction Heuristic (AIDCH) to address the firefighters
timetabling problem (FFTP) of the INFOCA institution. The ILP is designed for modeling pur-
poses and with the aim of giving lower bounds useful for the tuning analysis of the AIDCH solution
approach. The Adaptive Iterative Destruction/Construction Heuristic is composed of an adaptive
diversification mechanism at the destruction phase followed by an adaptive construction phase,
based on a Best Insertion Algorithm, which performs parallel independent searches. The initial
parameter values are adjusted by the algorithm according to the solution progress throughout the
resolution process. The AIDCH is appropriate to generate solutions of good quality for the larger
instances. The remainder of the paper is organized as follows. Section 2 provides a description
of the FFTP, then the ILP formulation is presented in Section 3. The proposed AIDCH solu-
tion approach is described in Section 3. Computational experiments performed on a benchmark
that we generated using real data of the INFOCA firefighter institution are reported in Section 4.
Conclusion and future works are given in Section 5.

2 Problem description

In this section we present a global overview of the real-world firefighter planning problem that we
address. We gives the set of daily working shifts to be considered, we introduce the hard constraints
to be respected and the soft constraints used to assess the quality of a solution.

The notations used for the types of shifts and their brief descriptions are the following:

(T12) from 8 am to 4 pm at fire station, regular daily shift;
(T16) from 3 pm to 10 pm at fire station, regular daily shift;
(H) from 8 am to 4 pm at fire station, regular daily shift, assigned to a helicopter;
(N) from 10 pm to 8 am at fire station, regular night shift;
(G7) from 7 am to 3 pm at fire station, stand-by to face instantly any extra urgent request;
(G24) 24h guard, crew stay at home but may be mobilized to face any urgent situation;
(A3) from 8 am to 6 pm at fire station (or elsewhere) for training purposes;
(R) rest day;
(C) additional compensation day granted when a number of hours have been worked.

For the considered firefighters timetabling problem, the hard constraints relating to work reg-
ulation and to local regulation of the INFOCA institution are the following:

(H1) one shift a day: a firefighter crew can only be assigned to one shift a day;
(H2) minimum demands: each daily shift has a minimum demand of firefighter crews;
(H3) forbidden shift successions: some shift assignments on consecutive days are forbidden;
(H4) maximum workload: over the planning horizon, a maximum workload for every crew

should not be exceeded;
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(H5) compensation: compensation days are granted according to the hours worked, they should
be used;

(H6) maximum consecutive working days: every firefighter crew have a maximum number
of consecutive working days.

Some consecutive shift assignment are forbidden for a crew (H3), for instance a night shift
ends at 8 am and cannot be followed by an helicopter shift which begins at 8 am, this forbidden
consecutive shift assignment is denoted as (N,H).

Soft constraints are constraints of good practice that should be satisfied as best as possible.
The violation of any soft constraint induces a penalty. A weighted sum of the penalties measures
the quality of the solution produced. For the studied firefighters timetabling problem, the soft
constraints are the following:

(S1) shift grouping: assignments of a crew to the same shift should be grouped. Each shift
assignment change between two consecutive days is penalized;

(S2) same start time: start times should be the same whatever the working shifts over consecu-
tive working days. Each starting time change for working shifts between two consecutive days
is penalized;

(S3) compensation assignments: compensation day assignments should be right after the rest
days, the aim is to allow firefighters to have a short vacation during the planning period. Each
assignment of compensation not right after rest days is penalized.

(S4) period fairness: for the sake of fairness the workload should be balanced between the crews
over the planning period. The unbalance of workload between crews should be minimized;

(S5) preferences: each crew assignment to an undesired shift is penalized;
(S6) evenly balance extra daily shifts: assigning of extra crews to the different shifts should be

balanced each day. The unbalance on extra assignment to different shifts should be minimized
each day.

Provided the minimum demand (H2) is respected, the idea beyond (S6) is to ensure a balance
between shift assignments. If we can assign three extra crews for a day, we had better to assign a
crew to three different shifts to balance operating capacity rather than assigning the three crews
to a same shift.

3 ILP model for FFTP

In this section we present the ILP model for minimizing the criteria detailed in Section 2. The ILP
has a twofold objective, first a modeling purpose for investigating the problem we face, second we
aim at obtaining optimal values whether possible for the smaller instances within a reasonable time
limit (or lower/upper bounds). This allows to get reference values to make comparisons with the
AIDCH solution approach that we propose. We present data and parameters prior to the decision
variables, we then give the model.

The data and parameters are the following:

Days set of days of the planning period, a day d ∈ [1, · · · , ld], size nd;
Shifts set of types of shifts, a shift s ∈ {T12, T16, H, N, G7, G24, A3, R, C}, size ns;
Crews set of firefighter crews, size nc;
ld last day of the planning period;
F set of couples of forbidden consecutive shift assignment, e.g. (N,H) ∈ F ;
rs daily minimum demand for a working shift s ∈ {Shifts \ {R, C}};
ls duration of shift s (length in hours);
L maximum workload for any crew over the planning period;
ts start time of shift s;
woc operating capacity weight;
wsg shift grouping violation weight (S1);
wsst same start time change violation weight (S2)
wca compensation assignments violation weight (S3);
wp preferences violation weight (S5);
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pcsd if crew c does not prefer to work on shift s on day d pcsd = wp, zero otherwise (S5);
MAXd maximum number of consecutive work days for a crew (H6);
WHC number of worked hours giving a compensation day.

The primary boolean variables are Xcsd, if the crew c works on shift s in day d then Xcsd = 1,
zero otherwise. The secondary boolean variables used in the model are the followings:

αcss′d = 1 if crew c works on shift s in day d and works on a different shift s′ in day d + 1, zero
otherwise;

βcss′d = 1 if crew c works on shift s in day d and works on a different shift s′ in day d + 1 with
ts 6= ts′ , zero otherwise;

γcss′d = 1 if the crew c works on shift s in day d with s 6=′ R′ and is assigned to shift s′ =′ C ′ in
day d+ 1, zero otherwise.

αcss′d = 1 if a shift change violation occurs (S1, shift grouping), βcss′d = 1 if a working time
change violation occurs (S2, same start time) and γcss′d = 1 if a compensation assignment violation
occurs (S3, compensation assignment).

The integer variables used in the model are the followings:

λd daily difference between the maximum number of assignable crews (nc) and those assigned;
δc total number of worked shifts for crew c over the planning period;
θc total working time of crew c over the planning period;
ρcd number of worked hours of crew c from the first day to day d;
φcc′ number of shift assignment difference between the crews c and c′ (S4);
ϕcc′ working time difference between the crews c and c′ (S4);
ψss′ unbalance of assignments between the shifts s and s′ (S6).

The aim is to maximize operating capacity over the planning period while minimizing the soft
constraint violations. We propose the following ILP to address this problem:

Min
woc ·

∑
d∈Days

λd (1a)

∑
c∈Crews

∑
s∈Shifts\{R, C}

∑
s′∈Shifts\{R, C}

∑
d∈Days

(wsg · αcss′d + wsst · βcss′d + wca · γcss′d) (1b)

+
∑

c∈Crews

∑
c′∈Crews

(φcc′ + ϕcc′) (1c)

+
∑

c∈Crews

∑
s∈Shifts\{R, C}

∑
d∈Days

pcsd ·Xcsd (1d)

∑
s∈Shifts\{R, C}

∑
s′∈S\{R, C}

ψss′ (1e)

Subject to: ∑
s∈Shifts

Xcsd = 1 ∀c ∈ Crews, ∀d ∈ Days (2)

∑
c∈Crews

Xcsd ≥ rs ∀d ∈ Days, ∀s ∈ {Shifts \ {R, C}} (3)

Xcsd +Xcs′(d+1) ≤ 1 ∀(s, s′) ∈ F, ∀c ∈ Crews, ∀d ∈ Days \ {ld} (4)

∑
s∈{Shifts\{R, C}}

∑
d∈Days

ls ·Xcsd ≤ L ∀c ∈ Crews (5)

∑
s∈{Shifts\{R, C}}

∑
d′∈Days,d′≤d

ls ·Xcsd = ρcd ∀c ∈ Crews, ∀d ∈ Days (6)

∑
d′∈Days,d′≤d

Xcsd ≤
ρcd

WHC
s = ’C’, ∀c ∈ Crews, ∀d ∈ Days (7)
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∑
d∈Days

Xcsd =
⌊ ρc(ld)

WHC

⌋
+ 1 s = ’C’,∀c ∈ Crews (8)

∑
s∈{Shifts\{R, C}}

∑
d′≤(1+MAXd),(d+d′)≤ld

Xcsd ≤MAXd ∀c ∈ Crews, ∀d ∈ Days (9)

∑
c∈Crews

∑
s∈{Shifts\{R, C}}

Xcsd = nc − λd ∀d ∈ Days (10)

Xcsd +Xcs′(d+1) ≤ 1 + αcss′d

{
∀s, s′ ∈ {Shifts \ {R, C}} , s 6= s′

∀c ∈ Crews, ∀d ∈ {Days \ {ld}}
(11)

Xcsd +Xcs′(d+1) ≤ 1 + βcss′d

{
∀s, s′ ∈ {Shifts \ {R, C}} , s 6= s′, with ts 6= ts′

∀c ∈ Crews, ∀d ∈ {Days \ {ld}}
(12)

Xcsd +Xcs′d+1 ≤ 1 + γ′css′d

{
s ∈ {Shifts \ {R, C}} , s′ = ’C’

∀c ∈ Crews, ∀d ∈ {D \ {ld}}
(13)

∑
s∈Shifts\{R, C}

∑
d∈Days

Xcsd = δc ∀c ∈ Crews (14)

∑
s∈Shifts\{R, C}

∑
d∈Days

ls ·Xcsd = θc ∀c ∈ Crews (15)

δc − δc′ ≤ φcc′ ∀c, c′ ∈ Crews, c 6= c′ (16) θc − θc′ ≤ ϕcc′ ∀c, c′ ∈ Crews, c 6= c′ (17)

( ∑
c∈Crews

Xcsd − rs

)
−

( ∑
c∈Crews

Xcs′d − rs′
)
≤ ψss′

{
∀s, s′ ∈ {Shifts \ {R, C}}
∀d ∈ Days

(18)

Xcsd, αcss′d, βcss′d, γcss′d ∈ {0, 1} (19) δc, θc, ρcd, φcc′ , ϕcc′ , ψss′ ∈ N (20)

The five terms of the objective function aims at maximizing operating capacity while minimizing
the soft constraint violations. The first term (1a) aims at maximizing operating capacity. The
weighted sum (1b) assesses the (S1, shift grouping), (S2, same start time) and (S3, compensation
assignments) soft constraint violations. The period fairness (S4) soft constraint relates to the
number of shift assignment differences and to the working time differences between crews, they are
considered using the (1c) term. The preferences of the firefighters (S5) are considered using the
(1d) term. The evenly balance of extra daily shifts (S6) is considered using the (1e) term.

The hard constraints one shift a day (H1) are enforced by Equation (2). The hard constraints
minimum demands (H2) are enforced by Equation (3). The hard constraints forbidden shift
successions (H3) are enforced by Equation (4). The hard constraints maximum workload (H4)
are enforced by Equation (5). The hard constraints compensation (H5) are enforced by Equations
(6)-(8). For a crew c and a day d, Equation (6) count ρcd, the number of worked hours of crew c
from the first day of the planning period to day d, and links variables Xcsd and ρcd. For a crew c
and a day d, Equation (7) forces the number of compensation days (s =′ C ′) being assigned to be
less or equal to (ρcd/WHC) since one compensation day is granted when WHC worked hours are
made. For a crew c, all the compensation days must be assigned over the planning horizon (until
d = ld), this is enforced by Equation (8). The hard constraints maximum consecutive working
days (H6) are enforced by Equation (9). For a crew c and a day d, the crew is assigned to at most
MAXd consecutive working shifts (rest and compensation days are not to be considered).

The daily differences between the maximum number of assignable crews (nc) and those assigned
are to be minimized to optimize the overall operating capacity, the λd values are assessed by
Equation (10).
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Consider a crew c, two days d and d+ 1, if the crew is assigned to two different shifts (s 6= s′) a
shift grouping (S1) soft constraint violation occurs and Equation (11) sets αcss′d = 1. Consider
a crew c, two days d and d + 1, if the crew is assigned to two different shifts (s 6= s′) and the
start times of these shifts are different (ts 6= ts′) a same start time (S2) soft constraint violation
occurs and Equation (12) sets βcss′d = 1. Consider a crew c, two day d and d + 1, if the crew is
assigned to a working shift (s 6= ’R’) on day d, and if this crew is assigned to a compensation day
(s′ = ’C’) on day d + 1 a compensation assignment (S3) soft constraint violation occurs and
Equation (13) sets γcss′d = 1. Every compensation day assignment will be right after a rest day
(constraints of good practice imposed by the institution).

Consider a crew c, Equation (14) counts δc the total number of worked shifts over the planning
period and Equation (15) counts θc the total working time over the planning period. Hence, Equa-
tion (16) gives φcc′ the number of shift assignment differences. Given that φcc′ ∈ N, a negative
difference involves φcc′ = 0, so for any couple of crews only positive differences are counted. The
same rationale applies on Equation (17) for ϕcc′ , the number of working time differences. These
variables φcc′ and ϕcc′ are used for the period fairness (S4) soft constraint violations assessment.

We recall that preferences (S5) soft constraint violations are assessed by Equation (1d).
Consider a day d and two shifts s and s′, Equation (18) aims at evenly balance extra daily

shifts (S6). Minimum demands (H2) are enforced by Equation (3), assigning of extra crews to
shifts should be balanced each day within the forest fire period to increase operating capacity.

Equation (19) defines variables Xcsd, αcss′d, βcss′d and γcss′d as boolean. Equation (20) defines
variables δc, θc, ρcd, φcc′ , ϕcc′ and ψss′ as integers.

4 Adaptive iterative destruction/construction heuristic

We propose an Adaptive Iterative Destruction/Construction Heuristic (AIDCH) to compute solu-
tions of good quality for larger instances of the FFTP. The Algorithm 1 gives the global scheme
of the AIDCH proposed approach. We use the adaptive construction approach BuildFeasibleSched-
ule() to build an initial solution which respects the hard constraints. The initial solution complies
with minimum demands (H2) but there is room for improvement in operating capacity.

Algorithm 1: General structure of AIDCH
Input : An instance of FFTP
Output : Sbest best solution found
Parameters: Dlimit limit for diversification degree, nc number of crews

ns number of type of shifts
Variables : iter number of iterations, MaxIter maximum iteration

Dmax diversification degree, Scur current solution
iter := 0
MaxIter := nc

Dmax := 3

Dlimit :=
⌈

nc
ns

⌉
Scur := BuildFeasibleSchedule()
Sbest := Scur

while iter < MaxIter do
k := rand(1,Dmax)
AdaptativeDestruction(Scur,k) /* adaptive diversification */
AdaptativeConstruction(Scur) /* insert as many crews as possible in Scur */
if Scur > Sbest then

Sbest := Scur

iter := 0
Dmax := 3

else
iter + +
Dmax := min(Dmax+1,Dlimit)

end

end

Provided a feasible solution, at each iteration, a part of the solution is destroyed by removing
at random a number k of crews, then it is completed by inserting as many crews as possible in
order to increase the operating capacity (while respecting the hard constraints). At each overall
iteration at most Dmax crews are removed (k ≤ Dmax). Therefore, we define Dmax as the degree of
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Algorithm 2: Best Insertion Algorithm
Input : Scur a partial solution

(α, β, γ, θ, ω, µ) parameter set
Output : Sbest best solution found
Variables : (d,s,c)∗ best triplet, success boolean
Sbest := Scur /* store reference solution for BIA */
success := true
while success do

(d,s,c)∗ := (∅, ∅, ∅)
foreach d ∈ Days do

foreach s ∈ Shifts do
foreach c ∈ Crews do

ComputeBIC(d,s,c)
UpdateBestTriplet (d,s,c)∗

end

end

end
success := Insert(Scur, (d,s,c)∗) /* if no feasible insertion, Insert returns false */
/* Comparing Scur and Sbest, all terms of the objective function are assessed */
if Scur > Sbest then

Sbest := Scur

end

end

diversification. TheDmax value is initialized to 3, next incremented after each non-improving overall
iteration up to Dlimit. We set Dlimit = dnc/nse which represents the average number of crews that
can be assigned to shifts. Provided an improvement is found, Dmax is reset to 3 to entirely explore
the neighborhood of the new solution. We perform an adaptive construction procedure to complete
the solution. This process is reiterated and it stops when MaxIter overall iterations have been
performed without improving the quality of the solution. We set MaxIter = nc. The final result
is the best solution found over all iterations.

The proposed AIDCH algorithm makes use of an adaptive diversification mechanism with the
aim to escape from local optima. We explore the neighborhood of the new solution as soon as an
improvement is found. We explore more distant zones by increasing Dmax whenever the search is
trapped in a local optimum.

The main component of the AIDCH heuristic is the AdaptativeConstruction(Scur) procedure, an
adaptive construction heuristic based on a Best Insertion Algorithm (BIA) shown in Algorithm 2.
The BIA algorithm considers a partial solution Scur, and tries to insert as many crews as possible
in Scur, one by one. At each iteration, the BIA assesses all feasible insertions that respect the hard
constraints and scores them according to a Best Insertion Criterion (BIC). The best insertion is then
performed and the quality of Scur is assessed considering all terms of the objective function (1a)-
(1e). This process is iterated until no more valid insertion is possible. The algorithm returns the
updated Scur, the best solution over all the BIA iterations.

To evaluate the insertion of a crew in the planning (day, shift), we propose to compute the Best
Insertion Criterion (BIC) as follows:

(SGα ∗ SST β ∗ CAγ ∗ PF θ ∗ Pω ∗ EBµ)

The aim is to minimize the soft constraints violation whether the insertion is performed. In
case a hard constraint is violated (e.g. maximum workload (H4)), the BIC is set to +∞ . The
criterion is composed of 6 terms, one for each soft constraints: SG is for the Shift Grouping (S1),
SST is for the Same Start Time (S2), CA is for the Compensation Assignments (S3), PF is for
the Period Fairness (S4), P is for the Preferences (S5) and EB is for Evenly Balance extra daily
shifts (S6). The terms are weighted with parameters α, β, γ, θ, ω and µ in order to control their
relative importance.

At each iteration i of the AIDCH heuristic, AdaptativeConstruction(Scur) works as follows.
Four constructive heuristics launch separately BIA with different values of the parameter set
(α, β, γ, θ, ω, µ) on the current solution. During each launch, α, β, γ, θ, ω and µ are chosen ran-
domly in the 6 dimension space having the center (αi−1, βi−1, γi−1, θi−1, ωi−1, µi−1) and the side
length φ, where αi−1, βi−1, γi−1, θi−1, ωi−1 and µi−1 are the best parameters obtained by the
method at previous iteration. All four BIA being applied, the parameter set that produces the best
solution is stored to be used in the next iteration.
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Finally, the best solution obtained among the four methods is retained as the current solution.
This aims at performing parallel independent searches in the solutions space and at choosing the
best values of the parameters to better explore the solutions space to speed-up the convergence of
the AIDCH algorithm toward a good solution.

5 Computational experiments

In our experiments, our objectives were: (i) to show the adaptive construction impact, by comparing
φ together with the best parameter set that produces the best solution at previous iteration to
compute the next parameter set, versus a fully randomized parameter set; (ii) to show the efficiency
of the adaptive destruction, impact of an adaptive Dmax for perturbations versus a constant one;
(iii) to compare performances between the ILP model and the AIDCH approach within a 3600
seconds time limit.

Tests were done using C++ compiled with gcc version 7.5.0, using STL, using a CPLEX 12.10
[8] solver with a single thread and the MipEmphasis parameter set to feasibility, on a machine with
an Intel(R) Xeon(R) X7542 CPU @ 2.6 GHz and 64 GB of RAM.

Datasets overview and performance metric

We tested the ILP and AIDCH approaches on a benchmark composed of 4 datasets, each having
7 instances, that we generated using real data of the INFOCA firefighter institution. Datasets have
been created to be of increasing difficulty, the firsts of reasonable sizes given that the ILP may face
difficulty to get a solution within the time limit. The instances in datasets are ranged according to
the number of crews nc and to the total daily number of working shifts demands (i.e.

∑
rs). So,

instances are denoted as cXXrY Y (a/b), the (a/b) notation is used whether nc and
∑
rs equals

for two distinct instances which are different in minimum demands distributions.

For each instance, the AIDCH algorithm is run 10 times. We recorded the Relative Percentage
Error, we defined as RPE = 100 ∗ (Zbest − Zmax)/Zbest and the Average Relative Percentage
Error, we defined as ARPE = 100 ∗ (Zbest − Zavg)/Zbest where Zmax is the best result obtained
among the ten executions, Zavg is the average result obtained among the ten runs and Zbest is the
best solution found by the AIDCH approach for the according instance. The ARPE criterion aims
at investigating whether the AIDCH is stable over the runs.

To compare the solutions found by the AIDCH approach against the solutions attained by the
ILP approach, we define the Relative Percentage Gap as RPG = 100∗(ZILP −Zmax)/ZILP where
ZILP represents the solution value attained, if any, by the ILP approach for an instance.

For our experiments using the ILP, we set woc to 2, wsg to 1, wsst to 1, wca to 1 and wp to 2.

Impact of the adaptive construction mechanism

We first carried out preliminary experiments to choose the best value of φ that is necessary to
show the impact of the adaptive construction mechanism, because of lack of space those experiments
are not reported here. According to these experiments, the parameter value φ = 0.1 provides the
best results considering RPE.

Fig. 1. Adaptive construction impact Fig. 2. Adaptive destruction impact
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The adaptive construction mechanism aims to guide the search by computing at each time the
best trade-off between the different terms of the BIC representing soft constraints violations. To
show whether it is efficient, we conducted experiments with the adaptive construction mechanism
and without the adaptive construction mechanism. In that latter case, the parameters of BIC are
chosen randomly in [0, 1] at each iteration. In these experiments, for each instance, the algorithm
is launched and we record the best solution for the first 15000 iterations. We performed these tests
using 2 instances chosen at random from each dataset. We report in Figure 1 the average of RPE
values computed for the 8 chosen instances against the number of iterations.

As it can be shown in Figure 1, the adaptive construction mechanism permits to converge faster
toward good solutions rather than without adaptive construction mechanism.

Impact of the diversification mechanism

To evaluate the effectiveness of the adaptive destruction, we tested a version of AIDCH where
the diversification degree Dmax is set to 3. As aforementioned, we record the best solution for
the first 15000 iterations using this fixed value. We proceed in the same way using the adaptive
diversification mechanism that makes use of Dmax to explore the neighborhood of the new solution
as soon as an improvement is found and also to explore more distant zones whenever the search is
trapped in a local optimum.

Figure 2 shows the average of RPE values recorded against the number of iterations for these
two versions. The adaptive diversification mechanism, achieved using the management of Dmax,
permits to converge faster toward good solutions rather than without its use.

Based on these two graphs, we can easily notice that the average of RPE values with the
adaptive mechanisms is always below the average of RPE values with the standard perturbation
at each iteration, which shows the effectiveness of our proposed technique.

Instance ILP t (s) gap AIDCH t (s) RPG ARPE Instance ILP t (s) gap AIDCH t (s) RPG ARPE

c18r09a 1325 1443 0 1325 341 0 0 c50r22a ns - nc 3765 741 nc 0.43
c18r10a 1359 1409 0 1359 352 0 0 c50r23a ns - nc 3783 754 nc 0.31
c18r10b 1344 1526 0 1344 348 0 0 c50r26a ns - nc 3799 759 nc 0.27
c18r11a 1378 1886 0 1378 372 0 0 c50r28a ns - nc 3823 783 nc 0.58
c18r11b 1420 2786 0 1420 401 0 0 c50r31a ns - nc 3947 849 nc 0.52
c18r12a 1422 2103 0 1422 391 0 0 c50r33a ns - nc 3931 817 nc 0.56
c18r12b 1440 2209 0 1440 413 0 0 c50r35a ns - nc 4097 831 nc 0.34

c30r15a 1767 - 0.74 1758 553 -0.51 0.1 c70r31a ns - nc 4913 943 nc 0.67
c30r16a 1801 - 1.18 1811 561 0.56 0.15 c70r33a ns - nc 4957 954 nc 0.71
c30r17a 1818 - 0.44 1860 582 2.31 0.22 c70r37a ns - nc 5102 995 nc 0.69
c30r18a 1834 - 0.11 1867 593 1.80 0.08 c70r40a ns - nc 5151 1034 nc 0.65
c30r19a 1889 - 0.48 1934 612 2.38 0.13 c70r44a ns - nc 5213 1067 nc 0.71
c30r20a 2144 - 12.9 1947 661 -9.19 0.26 c70r47a ns - nc 5557 1113 nc 0.83
c30r21a 1966 - 2.77 1936 657 -1.53 0.16 c70r50a ns - nc 5401 1158 nc 0.67

Table 1. Performances of ILP and AIDCH approaches

ILP versus AIDCH

Table 1 compares the results obtained by the ILP solver against those obtained by the AIDCH
approach. In Table 1, ns stands for no solution, nc stands for not calculable, and - shows that the
3600 seconds time limit has been attainted. For the sake of compactness, datasets are grouped by
two then tabulated side by side. Column Instance gives the instance label. The next tree columns,
ILP, t (s) and gap show the performances of the ILP. They report the objective function value, the
computing time and the gap found by the CPLEX solver. Then, the next four columns, AIDCH, t
(s), RPG, and ARPE show the performances of the AIDCH approach. They report the objective
function value, the computing time, the gap between the solutions found by the AIDCH approach
and the solution provided by the ILP solver and the average of RPEs over the 10 runs for an
instance.

The ILP approach attains optimal solutions for all nc = 18 instances. It faces difficulty for the
second dataset having nc = 30, however feasible solutions are obtained within the 3600s time limit.
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For the third and the fourth datasets having nc = 50 and nc = 70, the ILP approach fails to find
a feasible solution within the time limit.

For the first dataset, the AIDCH approach succeeded in obtaining all the optimal solutions
found by the ILP approach. We also notice that all the ARPE values are equal to 0: which means
that the AIDCH approach was able to attain the optimal solutions.

For the second dataset, the AIDCH approach attains solutions closed to or better than the
solutions obtained by the ILP approach within a 3600s time limit. For four instances the RPG
values are between 0.56 and 2.38. For the three other instances, the AIDCH approach obtains
better solutions than the ones provided by the ILP approach, with an RPG values from −0.51
up to −9.19. ARPE values are less than 0.26 for all instances which shows the stability of our
proposed heuristic approach for this dataset.

For the third and the fourth datasets, the AIDCH approach was able to find solutions in a
reasonable time. The ARPE values are less than 0.83, the proposed heuristic behaviour is stable
over the last two datasets. Unfortunately, the quality of the solutions found by the AIDCH approach
cannot be assessed since the ILP approach fails to provide solutions for these datasets within the
one hour time limit.

6 Conclusion and future work

We presented in this paper both an ILP model and a AIDCH heuristic to address the real-worl
firefighters timetabling problem (FFTP) of the INFOCA institution. The proposed approaches
were tested over four datasets with different sizes of increasing difficulty that we generated using
real data from INFOCA. The ILP approach obtained optimal or near optimal solutions for the first
two datasets, but it faced difficulty in obtaining feasible solutions for the larger instances of the two
other datasets. The AIDCH approach obtained good solutions for all the instances of the first two
datasets, those are either optimal or closed to the ones obtained by the ILP approach. The proposed
heuristic approach was able to find feasible solutions for the larger instances within a reasonable
computation time. Future works aim at investigating a metaheuristic solution approach to improve
the quality of the solutions obtained over the datasets and aim at reducing the computation time.
We also plan to obtain lower bounds for the larger instances for comparison purposes.
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